• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spin Thermoelectric Effects in a Three-Terminal Double-Dot Interferometer?

    2018-11-19 02:23:18FengLiang梁峰BenLingGao高本領(lǐng)GuangSong宋光andYuGu古宇
    Communications in Theoretical Physics 2018年11期
    關(guān)鍵詞:本領(lǐng)

    Feng Liang(梁峰), Ben-Ling Gao(高本領(lǐng)),Guang Song(宋光),and Yu Gu(古宇)

    1Department of Applied Physics,Huaiyin Institute of Technology,Huaian 223003,China

    2Department of Physics and Siyuan Laboratory,Jinan University,Guangzhou 510632,China

    AbstractWe theoretically investigate the thermoelectric properties of a three-terminal double-dot interferometer with Rashba spin-orbit interaction.It is found that with some temperature distributions a thermal spin current can even be produced without the help of magnetic flux and by tuning the spin interference effect in the system,a pure spin or fully spin-polarized current can be driven by temperature differences.For the cases that two of the terminals are held at the same temperature,the charge(spin)thermopower and the charge(spin) figure of merit are defined and calculated in the linear response regime.With some choices of the system parameters the calculated spin and charge thermopowers are of the same order of magnitude and the charge figure of merit can exceed 1.

    Key words:thermoelectric effects,thermal spin current,Rashba spin-orbit interaction,interferometer,nonequilibrium Green’s function method

    1 Introduction

    During the last few years,a new sub field of spintronics named as thermospintronics[1?2](or spin caloritronics)has emerged in condensed matter physics.To realize the functionalities of thermospintronics devices,a variety of efforts from both theoretical and experimental areas have been devoted to investigate how to generate a spin current by means of the temperature difference instead of the electric voltage bias.The findings of the spin-dependent thermoelectric effects in various materials and nanostructures have paved the way for the realization of thermally driven spin-polarized transport through solid state devices.A pioneering work about this was an experimental one[3]that demonstrated the possibility of generating a longitudinal spin current in the permalloy NiFe by using a temperature difference.After then,this phenomenon which is often referred to as the spin Seebeck effect was also observed in a ferromagnetic semiconductor system,[4]in thin films of the Heusler compound Co2MnSi[5]and even in magnetic tunneling junctions.[6?8]In addition to the spin Seebeck effect,the thermospin effect in quantum dot(QD)systems[9?16]and the spin-dependent Seebeck effect in Aharonov-Bohm interferometers[17?22]have also attracted a great amount of attention.For instance,Gong et al.[9]proposed that an apparent thermospin effect can occur in a quantum dot system under the action of circularly polarized light.This effect originates from the spin polarization induced by the polarized light.Up to now,the Aharonov-Bohm interferometers for research of the spindependent Seebeck effect are mostly two-terminal ones.Due to the phase locking effect,[23]driving a spin current to flow through such a system must require the help of magnetic materials or magnetic flux.However,a threeterminal interferometer can get rid of this effect and in fact it has been demonstrated that in three-terminal quantum interferometers a spin-polarized current can be produced purely by electric voltage or temperature bias.[24?28]

    Inspired by the previous works about the spinpolarized electron transport in three-terminal mesoscopic interferometers,[24?28]the spin-dependent thermoelectric effect in a three-terminal double-dot interferometer,in which the Rashba spin-orbit interaction(RSOI)is considered in one of the QDs,is investigated in this work.Due to the spin-dependent quantum interference effect based on the RSOI,temperature differences applied to the system can also give rise to a spin current.By using the nonequilibrium Green’s function method,we studied the properties of the generated thermal spin current in detail and demonstrated the controllability of the thermoelectric and thermospin transport processes in the studied system.The rest of the paper is organized as follows.In Sec.2,a model Hamiltonian for the studied system is given and the general formalism for the thermal spin current,the charge(spin)Seebeck coefficient and the charge(spin) figure of merit are derived.In Sec.3,the numerical investigation is presented to show the properties of the thermoelectric and thermospin transport in the mesoscopic interferometer.Finally,a brief conclusion is drawn in Sec.4.

    2 Model and Method

    In this paper we investigate a thermospin device consisting of two single-level QDs,which are coupled to three normal leads as displayed schematically in Fig.1.The left and right leads are coupled to both of the two QDs,but the middle lead is only coupled to QD2.A magnetic flux Φ may penetrate through the area enclosed by this device and the RSOI is only taken into account in QD1.Using the method of second quantization,the studied three terminal mesoscopic interferometer can be described by the following Hamiltonian

    The term HCin Eq.(1)is the Hamiltonian for electrons in the three normal leads.With the free electron gas model,HCcan be written as

    In the above equation,the tunnel matrix element tαiσis assumed to be independent of momentum k and it can be written asThe spin-dependent phase factor φσcan be described as φσ= ? ? σφ,in which the Aharonov-Bohm(AB)phase ? =2πΦ/Φ0with Φ0being the flux quantum and the RSOI-induced spin precession phasewith α being the RSOI strength,L being the length of QD1,and m?being the electron effective mass.

    In this work,we only focus on the electron transport in the middle lead.By employing the nonequilibrium Green’s function method,the spin-dependent electric current in the middle lead in stationary state can be expressed in the general Landauer-Büttiker formula form[30?31]

    For simplicity,the tunnel couplings between the QDs and the leads are assumed identical withand Γ = πt2ραwhere ραis the density of electron states in lead α.In the expression of the transmission coefficient,anddenote the spin-dependent retarded and advanced Green’s functions of the QDs in the spectrum space respectively which satisfy the relationFollowing from the Dyson equation,the retarded QDs Green’s function can be calculated as

    where the bare QDs Green’s functioncan be obtained by the equation of motion method

    with η being a positive infinitesimal and within the wideband approximation the self-energy contributed by the three leads is written as∑(α =L,R,M).After some straightforward algebra calculations,we get

    Fig.1 Schematic plot of a three-terminal double-dot interferometer,in which a QD contains RSOI.A magnetic flux may penetrate the area enclosed by the ring-shaped system.

    To investigate the influence of the temperature distribution on the spin-dependent thermoelectric transport properties of the system qualitatively,we focus on the three cases forandThe case ofis similar with the case of,so it is not specially discussed in this paper.For the case of,due toEq.(5)can be reduced to

    with

    3 Results and Discussions

    For numerical calculations,the dot-lead coupling strength Γ is assumed to be the energy unit,i.e.,Γ =1.The common chemical potential of the three leads is taken as the energy reference and the dot energy level in QD1 is set to be aligned with it,i.e.,μL= μR= μM= ε1=0.

    In Fig.2 we show the thermally driven charge current Icand spin current Isas functions of the dot energy level ε2for the case ofAs we have discussed above,in this situation only if the RSOI is present in the system a spin current can be generated to flow through the middle lead by temperature differences even without any magnetic flux.So as shown in Fig.2(a)in addition to a charge current a spin current also varies with ε2for ? =0.But the charge current and spin current possess different symmetries.To be exact,the charge current satisfies the symmetrywhile the spin current satisfies the symmetryTo understand this difference,we define ταc, ταsand?fαasand.Then according to Eq.(5)and the relevant definitions,the charge and spin currents have the forms

    It is easy to demonstrate that

    when ? =nπ(n=0,1,2,3,...).These symmetries together with the fact that

    lead to the integration on the right side of Eq.(15)(and thus Ic)and Eq.(16)(and thus Is)having centrosymmetry and mirror symmetry about ε2=0 respectively for ? =0(see Fig.2(a))and ? = π (see Fig.2(d)).When the phase ? lies between 0 and π,the relationsandcannot hold ever so that the charge and spin currents loose their original symmetries(see Figs.2(b)and 2(c)).The sign of the spin current can also be changed with the variation of ?. Compared to the sign of the spin current in the case of ?=0,the sign of the spin current in the case of ? = π is completely reversed.This is because the sign of ταsis reversed under the operation ? → ? + π.But ταcremains unchanged under this operation and thus so does the charge current.In Fig.2,at some points(A1,A2,A3,A4)the charge current completely vanishes while the spin current is nonzero.Thus by tuning the system parameters appropriately a thermally driven pure spin current can be produced in the proposed device.Moreover,the formation of the pure spin current at point A1also implies that the proposed device can act as an all-electrical pure-spin-current thermal generator since the magnetic flux is absent in Fig.2(a)and the dot energy level ε2can be tuned by a gate voltage.At some other points(B1,B2,B3,B4)the charge current is identical with the spin current indicating that a fully spin-polarized charge current,which is composed of only one spin component current,can also be thermally driven to flow in the middle lead.

    Fig.2 The thermally driven charge and spin currents versus ε2for(a)? =0,(b)? =0.1π.(c)? =0.25π and(d)? = π.Other parameters are chosen as ? =0,kBTL=1.0,kBTR=0.5,and kBTM=0.1.

    The RSOI induced spin-dependent quantum interference effect should play a crucial role in the generation of the spin current.To show this clearly,in Fig.3 we plot the spin current as a function of the RSOI-induced phase φ with different values of the dot-lead coupling strength Γ forand ? =0.The numerical results show that the spin current oscillates as a function of φ with a period of 2π.For weak dot-lead coupling,the spin current is a perfect sinusoidal function.However,with the increase of the dot-lead coupling strength the spin current exhibits a non-sinusoidal oscillation.We can explain this as a result of the spin interference effect between different Feynman paths.For the studied device,there are two possible paths for an electron tunneling from the αth lead to the middle lead.One path is the αth lead → QD1→ the βthlead → QD2 → the middle lead and the other one is the αth lead → QD2 → the middle lead.As the dot-lead coupling is weak,one can only consider the lowest-order tunneling process,the spin-dependent effective coupling strength between the αth lead and the middle lead can be expressed as[27?28,32?33]

    Obviously when ?=0,sinφσ=σ sinφ and thussinφ such that the thermally driven spin current flowing in the middle lead behaves like a sinusoidal function.On the contrary,for the strong coupling case the contribution from higher-order tunneling processes is not negligible,which causes the difference between the two spin-dependent effective coupling strength never to be proportional to sinφ and consequently leads to the deviation of the spin current from a sinusoidal function of φ.

    Fig.3 The thermally driven spin current versus φ for ? =0, ε2=1.0,kBTL=1.0,kBTR=0.5,and kBTM=0.1.

    Equation(18)shows a linear relation between the spindependent current Iσand the temperature difference in the linear response regime,which induces the charge(spin)current to be linear functions of kB?T(see Fig.4(c)).Asthe temperature difference is defined by?T=TR?TM.From Eq.(5)the spin-dependent current in the middle lead for this case can be expressed as

    Utilizing the same approximation method as adopted above,Eq.(19)yields

    As a result,the charge and spin currents for the case ofare also linear with kB?T(see Fig.4(d))when the temperature difference is considerably small(kB?T≤0.5).

    Fig.4 (Color online)The thermally driven charge and spin currents versus ε2for(a)kBTL=kBTR=1.0 and kBTM=0.5 and(b)kBTL=kBTM=1.0 and kBTR=0.5.The thermally driven charge and spin currents versus kB?T for(c)and(d)The spin precession phase is set as ? =0.

    Fig.5 (a)The charge and spin thermopowers versus ε2.(b)The charge and spin figure of merits versus ε2.(c)The ratioat ε=μL=0 versus ε2.The other parameters are chosen as kBTL=kBTR=1.0,kBTM=0.5,? =0.25π,and ? =0.

    Fig.6(a)and(b)The charge and spin thermopowers versus ε2.(c)and(d)The charge and spin figure of merits versus ε2.The other parameters are chosen as kBTL=kBTM=1.0,kBTR=0.5,and ? =0.

    4 Conclusion

    In conclusion,we have explored the thermoelectric and thermospin transport in a three-terminal double-dot interferometer with one dot containing RSOI.The results evaluated by the non-equilibrium Green’s function technique show that some particular temperature distribution makes the generation of the thermal spin current demand the help of a magnetic flux.However,at other temperature distributions the magnetic flux is not indispensable for producing the spin current thermally.By appropriately adjusting the system parameters,the proposed device can work as a pure-spin-current or fully-spin-polarized-current thermal generator.For other two cases that only one terminal is kept at a temperature different from the others,the system under study resembles a two-terminal device,the defined spin thermopower is shown to be comparable to the charge one and the defined charge figure of merit is expected to exceed 1.These characteristics of the currents,thermopowers and figure of merits endow the considered setup with potential application values.Furthermore,some other interesting properties of the currents,thermopowers and figure of merits are also revealed in this paper.

    猜你喜歡
    本領(lǐng)
    小透明,大本領(lǐng)
    靠不住
    誰的本領(lǐng)大
    誰的本領(lǐng)最大
    學(xué)習(xí)新本領(lǐng)
    幼兒園(2019年18期)2019-12-24 10:24:08
    誰的本領(lǐng)大
    誰的本領(lǐng)大 等
    誰的本領(lǐng)大
    苦練本領(lǐng)
    續(xù)寫《誰的本領(lǐng)大》
    久久精品国产亚洲网站| 久久久久久久久久黄片| 性插视频无遮挡在线免费观看| 国产中年淑女户外野战色| 日本在线视频免费播放| 国产免费男女视频| 蜜臀久久99精品久久宅男| 波多野结衣高清作品| 亚洲精品影视一区二区三区av| 三级毛片av免费| 99热这里只有是精品50| 日本黄色视频三级网站网址| 91麻豆精品激情在线观看国产| av在线播放精品| 国产日本99.免费观看| 成人综合一区亚洲| 人妻夜夜爽99麻豆av| 看非洲黑人一级黄片| 国产精品精品国产色婷婷| 99久久精品国产国产毛片| 高清毛片免费看| 欧美日本视频| 欧美又色又爽又黄视频| 亚洲最大成人av| 男人和女人高潮做爰伦理| 欧洲精品卡2卡3卡4卡5卡区| 一个人看的www免费观看视频| 深夜a级毛片| 丰满乱子伦码专区| 精品无人区乱码1区二区| 久久久久久久亚洲中文字幕| 精品不卡国产一区二区三区| 色吧在线观看| 亚洲欧美清纯卡通| 久久久a久久爽久久v久久| 三级经典国产精品| 菩萨蛮人人尽说江南好唐韦庄 | 99久久无色码亚洲精品果冻| 亚洲美女搞黄在线观看| .国产精品久久| 97人妻精品一区二区三区麻豆| 好男人视频免费观看在线| 国产精品蜜桃在线观看 | av又黄又爽大尺度在线免费看 | 久久久国产成人免费| 久久人妻av系列| 黄色日韩在线| 久久久久久久久大av| 亚洲高清免费不卡视频| av黄色大香蕉| 亚洲中文字幕日韩| 国产成年人精品一区二区| 一区二区三区免费毛片| 中文字幕av成人在线电影| 一区福利在线观看| 六月丁香七月| 中文字幕人妻熟人妻熟丝袜美| 国产白丝娇喘喷水9色精品| 国产 一区精品| 乱人视频在线观看| 免费人成视频x8x8入口观看| 日韩一区二区三区影片| 欧美高清成人免费视频www| 久久久久久九九精品二区国产| 国产精品人妻久久久影院| 亚洲精品久久国产高清桃花| 久久人妻av系列| 国产亚洲精品久久久久久毛片| 草草在线视频免费看| av在线播放精品| 国产精品久久久久久久久免| 久久久久免费精品人妻一区二区| 日韩精品青青久久久久久| 久久人人爽人人爽人人片va| 亚洲四区av| 国产高清三级在线| 在线a可以看的网站| 欧美bdsm另类| 精品免费久久久久久久清纯| 麻豆av噜噜一区二区三区| 18+在线观看网站| 久久久午夜欧美精品| 国产视频首页在线观看| 亚洲成人久久爱视频| 免费一级毛片在线播放高清视频| 人妻夜夜爽99麻豆av| 波多野结衣高清作品| 好男人在线观看高清免费视频| 又黄又爽又刺激的免费视频.| 欧美区成人在线视频| 亚洲综合色惰| 99riav亚洲国产免费| 日韩欧美国产在线观看| 在线天堂最新版资源| 久久久久久久久大av| 国产成人影院久久av| 又爽又黄a免费视频| 变态另类成人亚洲欧美熟女| 日日撸夜夜添| 男插女下体视频免费在线播放| 日韩欧美国产在线观看| 中文亚洲av片在线观看爽| 亚洲av.av天堂| 日韩高清综合在线| 久久精品国产鲁丝片午夜精品| av福利片在线观看| 久久久久久久久大av| 亚洲精品国产av成人精品| 久久久久久久亚洲中文字幕| 身体一侧抽搐| 国产国拍精品亚洲av在线观看| 日韩亚洲欧美综合| 亚洲三级黄色毛片| 日韩欧美 国产精品| 国产黄a三级三级三级人| 最近2019中文字幕mv第一页| 麻豆一二三区av精品| 日日啪夜夜撸| 欧美一区二区亚洲| 欧美丝袜亚洲另类| 久久久久免费精品人妻一区二区| 国产一区二区三区av在线 | 白带黄色成豆腐渣| 国产高清激情床上av| 欧美xxxx黑人xx丫x性爽| 99久久成人亚洲精品观看| 插逼视频在线观看| 丰满人妻一区二区三区视频av| 亚洲精品国产av成人精品| 亚洲欧美日韩高清在线视频| 悠悠久久av| 久久久精品94久久精品| 99热全是精品| 麻豆成人av视频| 26uuu在线亚洲综合色| 六月丁香七月| 国产 一区 欧美 日韩| 欧美日韩一区二区视频在线观看视频在线 | 男女做爰动态图高潮gif福利片| a级毛片a级免费在线| 嫩草影院入口| 亚洲最大成人手机在线| 午夜激情福利司机影院| a级毛色黄片| 三级毛片av免费| 99久久无色码亚洲精品果冻| 舔av片在线| 久久久成人免费电影| 美女黄网站色视频| 亚洲国产欧美在线一区| 亚洲欧洲日产国产| av在线播放精品| 97热精品久久久久久| 午夜福利视频1000在线观看| 人妻系列 视频| 成人午夜精彩视频在线观看| 久久99精品国语久久久| 狠狠狠狠99中文字幕| 亚洲国产精品久久男人天堂| 你懂的网址亚洲精品在线观看 | 亚洲va在线va天堂va国产| 国内精品久久久久精免费| 大型黄色视频在线免费观看| 超碰av人人做人人爽久久| 成熟少妇高潮喷水视频| 九九在线视频观看精品| 99在线人妻在线中文字幕| 在线免费观看不下载黄p国产| 伦精品一区二区三区| 最新中文字幕久久久久| 午夜福利视频1000在线观看| 国产伦精品一区二区三区四那| 最好的美女福利视频网| 日日干狠狠操夜夜爽| 欧美另类亚洲清纯唯美| 国产老妇女一区| 床上黄色一级片| 久久99热6这里只有精品| 久久鲁丝午夜福利片| 久久99热这里只有精品18| 国产亚洲精品久久久com| 日韩一区二区视频免费看| 久久人人精品亚洲av| 丝袜美腿在线中文| 真实男女啪啪啪动态图| 亚洲精品自拍成人| 校园人妻丝袜中文字幕| 国产精品永久免费网站| 国产女主播在线喷水免费视频网站 | 久久精品91蜜桃| 国产一区二区激情短视频| 免费看日本二区| av天堂中文字幕网| 精品久久久久久久久av| 日本黄色片子视频| h日本视频在线播放| 欧美精品国产亚洲| a级毛色黄片| 波野结衣二区三区在线| 久久精品影院6| 欧美丝袜亚洲另类| 波野结衣二区三区在线| 亚洲欧洲日产国产| 精品日产1卡2卡| 你懂的网址亚洲精品在线观看 | 秋霞在线观看毛片| 免费无遮挡裸体视频| 亚洲国产欧洲综合997久久,| 桃色一区二区三区在线观看| av福利片在线观看| 国产精品日韩av在线免费观看| 国产单亲对白刺激| 你懂的网址亚洲精品在线观看 | 麻豆精品久久久久久蜜桃| 亚洲av二区三区四区| 变态另类丝袜制服| 国产单亲对白刺激| 天堂中文最新版在线下载 | 日本一本二区三区精品| 2021天堂中文幕一二区在线观| 亚洲精品影视一区二区三区av| 亚洲丝袜综合中文字幕| 日韩中字成人| 在现免费观看毛片| 天天一区二区日本电影三级| 亚洲自偷自拍三级| 国产日本99.免费观看| 在线a可以看的网站| 淫秽高清视频在线观看| 直男gayav资源| 日韩精品青青久久久久久| 嫩草影院入口| 看黄色毛片网站| 久久亚洲精品不卡| 国产成人aa在线观看| 黄色一级大片看看| 国产亚洲91精品色在线| 如何舔出高潮| 欧美精品一区二区大全| 91久久精品国产一区二区成人| 美女被艹到高潮喷水动态| av免费观看日本| 欧美色视频一区免费| 不卡视频在线观看欧美| 欧美精品国产亚洲| 欧美极品一区二区三区四区| ponron亚洲| 日韩av在线大香蕉| 国产精品电影一区二区三区| 在线观看一区二区三区| 国产人妻一区二区三区在| 黄色配什么色好看| 国产一区二区亚洲精品在线观看| 精品久久久久久成人av| 男人舔奶头视频| 欧美成人一区二区免费高清观看| 国产午夜精品一二区理论片| 久久精品国产亚洲av香蕉五月| 精品无人区乱码1区二区| 九九在线视频观看精品| 亚洲av一区综合| 啦啦啦观看免费观看视频高清| 国产不卡一卡二| 一进一出抽搐动态| 成人亚洲欧美一区二区av| 深爱激情五月婷婷| 久久久精品大字幕| 少妇被粗大猛烈的视频| 人妻少妇偷人精品九色| 免费av不卡在线播放| 狂野欧美激情性xxxx在线观看| 亚洲图色成人| 久久人人精品亚洲av| 在现免费观看毛片| 一个人看的www免费观看视频| 亚洲最大成人av| 99热这里只有是精品50| 26uuu在线亚洲综合色| 美女 人体艺术 gogo| 日本成人三级电影网站| 免费大片18禁| 成人一区二区视频在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品永久免费网站| 2022亚洲国产成人精品| 男插女下体视频免费在线播放| 一级毛片aaaaaa免费看小| 日韩人妻高清精品专区| 午夜老司机福利剧场| 亚洲在线自拍视频| 国内少妇人妻偷人精品xxx网站| 亚洲精品影视一区二区三区av| 91狼人影院| 变态另类丝袜制服| 中文在线观看免费www的网站| 国产真实伦视频高清在线观看| 国产精品一区www在线观看| 变态另类成人亚洲欧美熟女| 日韩成人av中文字幕在线观看| 国产欧美日韩精品一区二区| 国产不卡一卡二| 青春草国产在线视频 | 国产成人a∨麻豆精品| 日日摸夜夜添夜夜添av毛片| 哪里可以看免费的av片| 99久久人妻综合| 国产午夜精品久久久久久一区二区三区| av女优亚洲男人天堂| 亚洲av二区三区四区| 超碰av人人做人人爽久久| 美女被艹到高潮喷水动态| 色吧在线观看| 亚洲不卡免费看| 日本与韩国留学比较| 人妻少妇偷人精品九色| 亚洲国产高清在线一区二区三| 日韩成人av中文字幕在线观看| 99久久人妻综合| 少妇人妻一区二区三区视频| 国产成人aa在线观看| 亚洲国产高清在线一区二区三| 丝袜美腿在线中文| 特级一级黄色大片| 久久久久久大精品| 日韩一本色道免费dvd| 性插视频无遮挡在线免费观看| 欧美激情国产日韩精品一区| 丰满乱子伦码专区| 欧美一级a爱片免费观看看| 久久精品国产亚洲av香蕉五月| 男人狂女人下面高潮的视频| 日日啪夜夜撸| 国产真实乱freesex| 九九在线视频观看精品| 毛片一级片免费看久久久久| 搞女人的毛片| 最近视频中文字幕2019在线8| 日韩大尺度精品在线看网址| 一区福利在线观看| 久久草成人影院| av在线观看视频网站免费| 国产精品美女特级片免费视频播放器| 国内精品美女久久久久久| 久久午夜福利片| 老熟妇乱子伦视频在线观看| 亚洲av第一区精品v没综合| 久久亚洲国产成人精品v| 变态另类丝袜制服| 黄色欧美视频在线观看| 久久精品国产清高在天天线| 亚洲图色成人| avwww免费| 亚洲精品456在线播放app| 免费看a级黄色片| 熟女人妻精品中文字幕| 人妻夜夜爽99麻豆av| 日本一二三区视频观看| 精品不卡国产一区二区三区| 美女内射精品一级片tv| 欧美激情久久久久久爽电影| 日韩成人av中文字幕在线观看| 日日摸夜夜添夜夜添av毛片| 噜噜噜噜噜久久久久久91| 成人午夜精彩视频在线观看| 国产一区二区在线av高清观看| 国产 一区 欧美 日韩| 国产成人91sexporn| 亚洲国产精品久久男人天堂| 精品国产三级普通话版| 女的被弄到高潮叫床怎么办| 亚洲成人中文字幕在线播放| 成人二区视频| 国产精品无大码| 桃色一区二区三区在线观看| 国产亚洲5aaaaa淫片| 久久精品夜色国产| 亚洲av中文av极速乱| 午夜爱爱视频在线播放| ponron亚洲| 简卡轻食公司| 日本免费一区二区三区高清不卡| 精品人妻熟女av久视频| 在线观看av片永久免费下载| 国产美女午夜福利| 天天躁夜夜躁狠狠久久av| 久99久视频精品免费| 22中文网久久字幕| 精品人妻熟女av久视频| 天天躁夜夜躁狠狠久久av| 国产美女午夜福利| 亚洲精品乱码久久久久久按摩| 午夜精品在线福利| 悠悠久久av| 国产人妻一区二区三区在| 国产精品综合久久久久久久免费| 亚洲国产精品成人久久小说 | 99热6这里只有精品| 神马国产精品三级电影在线观看| 热99re8久久精品国产| 男女啪啪激烈高潮av片| 少妇人妻精品综合一区二区 | 亚洲四区av| 精品一区二区三区人妻视频| 国产片特级美女逼逼视频| 日韩欧美 国产精品| 熟女人妻精品中文字幕| 亚洲av中文av极速乱| 日本撒尿小便嘘嘘汇集6| 国产精品福利在线免费观看| 桃色一区二区三区在线观看| 日本色播在线视频| 国产精品久久久久久久久免| 一区福利在线观看| 在线播放国产精品三级| 99久久中文字幕三级久久日本| 内地一区二区视频在线| 国产精品久久久久久精品电影| 乱码一卡2卡4卡精品| 国产一区亚洲一区在线观看| 99精品在免费线老司机午夜| 欧美性猛交黑人性爽| 日韩在线高清观看一区二区三区| 青青草视频在线视频观看| 天天一区二区日本电影三级| 亚洲国产精品成人综合色| 老熟妇乱子伦视频在线观看| 成人无遮挡网站| 免费观看在线日韩| 在线免费十八禁| 日韩人妻高清精品专区| 国产精品一二三区在线看| 国产 一区精品| 亚洲人成网站在线播| 久久婷婷人人爽人人干人人爱| 国产大屁股一区二区在线视频| 国产精品免费一区二区三区在线| 国产成人a区在线观看| 中文精品一卡2卡3卡4更新| 联通29元200g的流量卡| 91久久精品国产一区二区三区| 中国美白少妇内射xxxbb| 激情 狠狠 欧美| 99久久精品一区二区三区| 国产精品国产三级国产av玫瑰| 如何舔出高潮| 国产精品一区二区性色av| 欧美成人a在线观看| 欧美激情国产日韩精品一区| 欧美性猛交黑人性爽| 观看免费一级毛片| 五月伊人婷婷丁香| 一级黄片播放器| 在线天堂最新版资源| 亚洲欧美成人综合另类久久久 | 男人和女人高潮做爰伦理| 少妇高潮的动态图| 欧美日韩乱码在线| kizo精华| 欧美精品国产亚洲| 亚洲天堂国产精品一区在线| 欧美日韩精品成人综合77777| 免费在线观看成人毛片| 欧美三级亚洲精品| 欧美在线一区亚洲| 国产成人一区二区在线| 亚洲自偷自拍三级| 九九爱精品视频在线观看| 深夜a级毛片| 99热全是精品| 国内少妇人妻偷人精品xxx网站| 最近手机中文字幕大全| 波野结衣二区三区在线| 亚洲欧美日韩卡通动漫| 欧美日本视频| 色综合站精品国产| 日韩欧美国产在线观看| 热99在线观看视频| 嘟嘟电影网在线观看| 免费看a级黄色片| 可以在线观看的亚洲视频| 欧美三级亚洲精品| 一区二区三区免费毛片| 国产精品一区二区三区四区免费观看| 久久久久久国产a免费观看| 亚洲在线观看片| 欧美性猛交黑人性爽| 天天一区二区日本电影三级| 日本一二三区视频观看| 午夜福利在线在线| 国产久久久一区二区三区| 欧美精品国产亚洲| 国产精品99久久久久久久久| 在线观看午夜福利视频| 国产爱豆传媒在线观看| 欧美成人免费av一区二区三区| av免费在线看不卡| 小蜜桃在线观看免费完整版高清| 丝袜美腿在线中文| 99久久久亚洲精品蜜臀av| 女人被狂操c到高潮| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲丝袜综合中文字幕| 爱豆传媒免费全集在线观看| 少妇的逼水好多| 欧美激情在线99| 你懂的网址亚洲精品在线观看 | 看黄色毛片网站| 女人十人毛片免费观看3o分钟| 亚洲电影在线观看av| 中文字幕精品亚洲无线码一区| av免费观看日本| 日本一本二区三区精品| 国产精品女同一区二区软件| 少妇熟女aⅴ在线视频| 最后的刺客免费高清国语| 日韩人妻高清精品专区| 校园春色视频在线观看| 变态另类丝袜制服| 人妻制服诱惑在线中文字幕| 国产精品嫩草影院av在线观看| 国产精品福利在线免费观看| 国产亚洲av片在线观看秒播厂 | 日本免费一区二区三区高清不卡| 女的被弄到高潮叫床怎么办| 亚洲综合色惰| 18+在线观看网站| 亚洲高清免费不卡视频| 亚洲精品乱码久久久久久按摩| 校园春色视频在线观看| 一边亲一边摸免费视频| 国内精品一区二区在线观看| 日本欧美国产在线视频| 久久国产乱子免费精品| 国内精品久久久久精免费| 国产黄色小视频在线观看| 成年女人看的毛片在线观看| 成人二区视频| 国产男人的电影天堂91| 特级一级黄色大片| 久久午夜亚洲精品久久| 亚洲成人中文字幕在线播放| 日韩大尺度精品在线看网址| 日日干狠狠操夜夜爽| 麻豆久久精品国产亚洲av| 国产精品久久久久久久久免| 亚洲熟妇中文字幕五十中出| 少妇熟女aⅴ在线视频| 久久久久网色| www日本黄色视频网| 国产探花在线观看一区二区| 69av精品久久久久久| 男的添女的下面高潮视频| 精品99又大又爽又粗少妇毛片| 有码 亚洲区| 少妇高潮的动态图| 日韩 亚洲 欧美在线| 久久这里只有精品中国| 人人妻人人看人人澡| 亚洲高清免费不卡视频| av天堂在线播放| 天堂影院成人在线观看| 舔av片在线| 国产熟女欧美一区二区| 日本撒尿小便嘘嘘汇集6| 色吧在线观看| 亚洲在久久综合| 好男人在线观看高清免费视频| 亚洲国产精品sss在线观看| 亚洲人成网站高清观看| 一个人免费在线观看电影| av在线蜜桃| 亚洲人成网站在线播| 一级毛片电影观看 | 一区二区三区高清视频在线| 国产精品久久电影中文字幕| 亚洲国产欧美人成| 一级黄色大片毛片| 久久精品久久久久久久性| 国产精品国产三级国产av玫瑰| 欧美+日韩+精品| 国产老妇伦熟女老妇高清| 男女下面进入的视频免费午夜| 欧美变态另类bdsm刘玥| 欧美成人一区二区免费高清观看| 欧美日本亚洲视频在线播放| 国产日韩欧美在线精品| 一区二区三区四区激情视频 | 成熟少妇高潮喷水视频| 国国产精品蜜臀av免费| 免费av不卡在线播放| 国产亚洲欧美98| 亚洲国产欧美在线一区| 伦理电影大哥的女人| 久久人人爽人人片av| 国产精品久久久久久精品电影| 中文字幕久久专区| 色综合站精品国产| 特级一级黄色大片| 91在线精品国自产拍蜜月| 久久久久久久久久成人| 亚洲aⅴ乱码一区二区在线播放| 美女脱内裤让男人舔精品视频 | 国产av麻豆久久久久久久| 国产精品精品国产色婷婷| www.av在线官网国产| 午夜免费激情av| 亚洲精品亚洲一区二区| 女的被弄到高潮叫床怎么办| 男女下面进入的视频免费午夜| 99热这里只有精品一区| 国产私拍福利视频在线观看| 一本精品99久久精品77| 丰满人妻一区二区三区视频av| 亚洲在线自拍视频| 一边亲一边摸免费视频|