• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Study of Unsteady MHD Flow and Entropy Generation in a Rotating Permeable Channel with Slip and Hall Effects?

    2018-11-19 02:23:26KhanMakindeAhmadandKhan
    Communications in Theoretical Physics 2018年11期

    Z.H.Khan,O.D.Makinde,R.Ahmad,and W.A.Khan

    1State Key Laboratory of Hydraulics and Mountain River Engineering,College of Water Resource&Hydropower,Sichuan University,Chengdu 610065,China

    2Key Laboratory of Advanced Reactor Engineering and Safety,Ministry of Education,Tsinghua University,Beijing 100084,China

    3Faculty of Military Science,Stellenbosch University Private Bag X2,Saldanha 7395,South Africa

    4School of Mathematics and Physics,University of Queensland,St Lucia,Brisbane 4072,Queensland,Australia

    5Faculty of Engineering Sciences,GIK Institute of Engineering Sciences and Technology,Topi,Swabi,KPK,Pakistan

    6Department of Mechanical Engineering,College of Engineering,Prince Mohammad Bin Fahd University P.O.Box 1664,Al Khobar 31952,Kingdom of Saudi Arabia

    AbstractThis article investigates an unbiased analysis for the unsteady two-dimensional laminar flow of an incompressible,electrically and thermally conducting fluid across the space separated by two infinite rotating permeable walls.The influence of entropy generation,Hall and slip effects are considered within the flow analysis.The problem is modeled based on valid physical arguments and the unsteady system of dimensionless PDEs(partial differential equations)are solved with the help of Finite Difference Scheme.In the presence of pertinent parameters,the precise movement of the flow in terms of velocity,temperature,entropy generation rate,and Bejan numbers are presented graphically,which are parabolic in nature.Streamline pro files are also presented,which exemplify the accurate movement of the flow.The current study is one of the infrequent contributions to the existing literature as previous studies have not attempted to solve the system of high order non-linear PDEs for the unsteady flow with entropy generation and Hall effects in a permeable rotating channel.It is expected that the current analysis would provide a platform for solving the system of nonlinear PDEs of the other unexplored models that are associated to the two-dimensional unsteady flow in a rotating channel.

    Key words:unsteady flow,rotating permeable channel,MHD,slip,hall effects,entropy analysis, finite difference method

    1 Introduction

    Entropy generation determines the performance of thermal machines such as heat engines,power plants,heat pumps,refrigerators and air conditioners.It performs a significant part in the thermodynamics of irreversible processes,which is briefly explained by de Groot and Mazur.[1]In recent years,the analysis of entropy generation has widely been used for the investigation of thermal processes.Entropy forms the foundation of most of the formulations of thermodynamics.Entropy generation analysis appears as a powerful tool to optimize efficiency of various heat transfer and fluids engineering devices.Identification of various conditions for exergetic effectiveness enhancement to occur would serve as a useful theoretical tool for the design and thermodynamic efficiency characterization of such an integrated system.Bejan[1]studied the entropy generation in fundamental convective heat transfer and explored that in convective fluid flow,entropy generation is due to viscous shear stresses and heat transfer.One of the aims of entropy generation is to minimize the heat transfer irreversibility and viscous dissipation irreversibility.The process of irreversibility exists inside the cavity during the process of convection.To retain the energy,it is essential to vanish the process of irreversibility.[1?2]The combined effects of hydrodynamic slip,suction or injection and convective boundary conditions on the global entropy generation in a steady flow of an incompressible MHD fluid through a channel with permeable plates has been investigated by Guillermo.[3]Eegunjobi and Makinde[4]examined the analysis of entropy generation in a variable viscosity within the MHD flow with permeable walls and convective surface boundary conditions.Arikoglu et al.[5]explored the slip effects on entropy generation in MHD flow over a rotating disk by mean of a semi-numerical analytical solution technique.

    Flows that are persuaded by the rotating disks are of considerable attention to the researchers and this is due to the physical phenomena of the flow within the rotating permeable or impermeable flow passages.The applications of such types of flows have emerged well in rotating machinery,lubrication,viscometer and crystal growth processes,etc.[3?8]Similarly,magnetic effects in lubrication have received a remarkable attention due to their substantial roles in industrial applications.Another significant factor within the MHD boundary layer analysis is the Hall effects.The Hall effects are substantial only when the applied magnetic field is very strong.Thus,the electric field as a result of polarization of charges and Hall effects becomes trivial.It has been briefly discussed by Ahmad.[9?11]A study in detail linked to Hall effects on free and forced convective flow in a rotating channel is investigated by Rao and Krishna.[12]Akbar and Khan[13]performed the entropy analysis for the Peristaltic flow of Cu-water nanofluid with magnetic field in a lopsided channel.Guria and Jana[14]examined the Hall effects on the hydromagnetic convective flow in a rotating channel.The unsteady two-dimensional MHD Couette flow in a rotating system with the Hall current and ion-slip current effects is examined by Jha and Apere.[15]Seth et al.[16]examined the combined free and forced convection Couette-Hartmann flow in a rotating channel with arbitrary conducting walls and Hall effects.Eegunjobi and Makinde[17]investigated the irreversibility in a variable viscosity Hartmann flow through a rotating permeable channel with Hall effects.Mabood et al.[18]investigated the MHD flow of a variable viscosity of the nanofluid in a rotating permeable channel with Hall effects.Makinde and Onyejekwe[19]found the numerical analysis of the two-dimensional MHD generalized Couette flow and heat transfer with variable viscosity.Makinde[20]solely performed the thermal decomposition of unsteady non-Newtonian MHD Couette flow with variable properties.Sheikholeslami et al.[21?22]have discussed interesting effects of non-uniform and variable magnetic fields on the flow of nanofluids.

    In the above studies,the scholars have achieved numerous results,which are linked to the two-dimensional laminar boundary layer analysis of MHD flow with entropy generation in different permeable rotating flow passages.In all the above studies,they transformed the system of PDEs into a system of ODEs via similarity transformation and then solved the corresponding system of ODEs with suitable numerical or analytical technique.The coupled high order non-linear PDEs solutions in boundary layer analyses for the unsteady MHD flow and entropy generation in a rotating permeable microchannel are very rare and so far,it has not been explored.To cover the gap,it is essential to find the solution to the high order nonlinear PDEs for the current analysis as PDEs solution show us the exact trend of the fluid flow for any category of a flow in any flow microchannel.Practical application of the considered problem in the present study can be found in miniaturized electronic devices such as micromixers.Micromixing technology has experienced rapid development in the past few years.It is an essential component of integrated micro fluidic system for chemical,biological and medical purposes.A well-designed micromixer has rapid mixing and compact in size.The thermal management in such devices has become a taxing issue.Micro-scale heat transfer becomes a topical subject and innovative techniques are needed to improve the thermal performance of heat sinks.For this purpose,a system of nonlinear PDEs solution has been obtained by mean of Finite Difference Scheme.In the understanding of recent studies,It is expected that the current analysis would provide a platform for solving the system of nonlinear PDEs of the other unexplored and unattempted fluid flow models that are associated to the two-dimensional unsteady flow in a rotating channel.It is believed that the current study would also be beneficial in cooling of electronic devices and heat exchangers.

    2 Problem Formulation

    Consider the unsteady flow of an incompressible,electrically and thermally conducting viscous Newtonian fluid through a microchannel with two rotating permeable walls at y=0 and y=L under the action of an externally imposed transverse magnetic field B0taken into account Hall current.Initially at τ≤0,the fluid temperature is maintained at T0and no flow occurs.When τ>0,the flow occurs and both fluid and channel rotate simultaneously with a monotonous angular velocity ? about y-axis under the combined actions of uniform pressure gradient applied along x-direction and the suction/injection at the channel walls(See Fig.1).The channel lower wall is subjected to slip condition and maintained at temperature T0while the upper wall is kept at temperature T1such that T0

    Fig.1 Flow pattern of entropy generation in two rotating permeable walls.

    Bearing in mind the assumptions above,the governing equations of momentum and energy balance are given as[1?4]

    where u,w,T,σ,ρ,m= ωeτe,ωe,τe,k,cp,Eg,V,andμare respectively,the fluid velocity in x-direction,fluid velocity in z-direction, fluid temperature, fluid electrical conductivity, fluid density,Hall current parameter,cyclotron frequency,electron collision time,thermal conductivity coefficient,specific heat at constant pressure,the volumetric entropy generation rate,the injection/suction velocity and the fluid dynamic viscosity.

    The initial and boundary conditions for the fluid velocities and temperature are given as

    where C is the slip length parameter.

    Introducing the dimensionless variables and parameters as follows:

    Substituting Eq.(6),the governing equations and conditions(Eqs.(1)–(5))can be written as

    where Pr is the Prandtl number,R0signifies rotation parameter,Re signifies suction Reynolds number,Ec signifies Eckert number,δ is the slip parameter,M signifies magnetic field parameter,γ is the temperature difference parameter and A represents the pressure gradient parameter.Other quantity of interest is the Bejan number(Be),which is given as

    with initial and boundary conditions as

    It is noteworthy that N1depicts the thermodynamic irreversibility due to heat transfer while N2represents the combined effects of fluid friction and magnetic field irreversibility.When Be=0.5 both N1and N2contribute equally to the entropy production in the flow field.

    3 Finite Difference Numerical Procedure

    Finite Difference Method(FDM)serves as the basis for the numerical schemes(see Le Veque[23]).To achieve the time-dependent PDE numerical solution,both the implicit and explicit methods are widely used these days.In the current analysis,the dimensionless nonlinear second order parabolic partial differential equations i.e.,Eqs.(7)–(10)subject to initial and boundary conditions in Eq.(11)have been solved with the help of an explicit Finite Difference Scheme.The given system of PDEs is well-posed,which means that a solution exists if we restrict various embedding parameters such as Re,t,R0,δ,M,Ec,Pr,and γ to some fixed values.To obtain the PDE solutions for velocities U,W and temperature θ,we restrict the pressure gradient parameter A=1 throughout the analysis.The two infinite rotating permeable walls have been surrounded by the flow in x and y directions while the secondary flow has been taken along the z-axis.To obtain the difference equations,the region of the flow is divided into mesh of finite lines.Since the flow pattern is not varying in the x-direction so it is assumed insignificant as compared to a flow in the y-direction.The space under investigation is of finite dimension and the explicit difference equations are discretized as follows:

    Substituting Eq.(14)into Eqs.(7)–(13),the following explicit finite difference equations have been obtained

    with initial and boundary conditions take the following form

    The Bejan number have been presented in terms of difference equations as:

    It has been seen,through numerical experimentation,that as the time steps increase,a stable implicit Finite difference scheme does not always reduce CPU time and the computations do not always remain stable.As the time step increases,there is an increase in CPU time and even unstable computations and this results in issues with convergence of the problem.The finite difference scheme is standard because its relaxed stability constraints can result in better computational efficiency.The stability of the simultaneous system of PDEs for a similar type of problem was presented by Callahan and Marner.[24]In the current analysis,both the small time and large time solutions have been obtained,which converge well for the selected small values of the parameters and then all the results have been shown graphically.

    4 Results and Discussion

    The problem of two-dimensional laminar flow of an incompressible fluid between two rotating permeable walls is studied.The influence of pertinent parameters on dimensionless velocities,temperature,skin friction,Nusselt number and entropy generation rate are investigated.Figures 2(a)and 2(b)depict the effects of suction Reynolds number on the dimensionless primary and secondary velocity of the fluid between lower and upper walls respectively.In the transient state,the primary velocity at the lower wall increases with increasing time as illustrated in Fig.2(a).This velocity further increases about the lower wall and then starts decreasing until zero at the upper wall.For small time,the primary velocity has no considerable effect for lesser suction Reynolds number.As the suction Reynolds number and time increases,the difference in primary velocity increases.The secondary velocity shows the same behavior in Fig.2(b).The trend of dimensionless temperature is explained in Fig.2(c)for increasing time and suction Reynolds number.For smaller time and smaller suction Reynolds number,the dimensionless temperature remains uniform and then increases with time and suction Reynolds number.

    The effects of rotation and slip parameters on the dimensionless primary and secondary velocities are demonstrated in Figs.3(a)and 3(b)respectively.In the absence of slip,both primary and secondary velocities are zero at the lower wall.As the slip parameter increases,the primary velocity increases at the lower wall(Fig.3(a)),whereas the secondary velocity remains zero at the lower wall(Fig.3(b)).The maximum primary velocity depends upon the rotation.In the absence of rotation,this maximum velocity is largest and decreases with increasing rotation.Both the dimensionless primary and secondary velocities satisfy the boundary conditions.It is significant to note that the dimensionless secondary velocity is lowest in the absence of rotation and increases with rotation.

    Fig.2 Effects of increasing time and Reynolds number on dimensionless(a)primary velocity,(b)secondary velocity and(c)temperature in transient state.

    Fig.3 Effects of rotation and slip parameters on dimensionless(a)primary velocity and(b)secondary velocity(transient state).

    Fig.4 Effects of rotational and slip parameters on the dimensionless entropy generation rate for(a)steady state and(b)transient state.

    The variation in the rate of overall dimensionless entropy generation with rotational and slip parameters is shown in Fig.4(a)for the steady state and Fig.4(b)for the transient state respectively.It is clear from Fig.4(a)that the entire dimensionless entropy generation rate is highest at the lower surface and decreases up to a minimum value about the upper surface and then increases.The slip parameter tends to increase the total dimensionless entropy generation rate whereas the rotational parameter reduces this rate.In the transient state,see Fig.4(b),the behavior of the total dimensionless entropy generation rate is similar for a very short time and this time decreases with increasing the slip parameter.This trend is revealed for the lower wall.After transient state,the effects of rotational and slip parameters on the total dimensionless entropy generation rate can be observed noticeably.In the absence of slip parameter,the total dimensionless entropy generation rate decreases with reducing the rotational parameter and on contrary,the total dimensionless entropy generation rate increases with rotational parameters whenever the slip parameter increases.

    The effects of magnetic and Hall current parameters on the total dimensionless entropy generation rate are depicted in Fig.5(a)for the steady state and Fig.5(b)for the transient state individually.In the steady state,minimum dimensionless entropy generation rate can be observed for both the parameters.This minimum point moves towards the upper surface with increasing the magnetic and Hall current parameters.A fact can be established that the dimensionless entropy generation rate increases at the lower surface whereas decreases at the upper surface(Fig.5(a)).In the transient state(Fig.5(b)),the dimensionless entropy generation rate shows the same behavior at the lower surface for very small time.After that time,the dimensionless entropy generation rate increases at different rates.However,this increase in the dimensionless entropy generation rate decreases with the magnetic parameter but increases with the Hall current parameter.It is eminent to note that the Hall current effects on the flow are more prominent and this is due to a strong magnetic field and hence the flow becomes three-dimensional owing to the Hall current effects.

    Fig.5 Effects of magnetic and Hall current parameters on the dimensionless entropy generation rate for(a)steady state and(b)transient state.

    Fig.6 Effects of Eckert and Prandtl numbers on the dimensionless entropy generation rate for(a)steady state and(b)transient state.

    Fig.7 Effects of rotational and slip parameters on Bejan number for(a)steady state and(b)transient state.

    The Eckert number characterizes heat dissipation in thermodynamic systems.The dimensionless entropy generation rate is based on the heat transfer and fluid friction.Both of these processes dissipate heat energy that determines the Eckert number.The Prandtl number dictates heat diffusion rate.The greater the Prandtl number,the slower is the heat diffusion rate.The effect of these numbers on the dimensionless entropy generation rate is shown in Figs.6(a)and 6(b)for the steady and transient states.With both the Eckert and Prandtl numbers,the steady state dimensionless entropy generation rate increases at both the surfaces(Fig.6(a)).A minimum dimensionless entropy generation rate exists for each Eckert and Prandtl number that increases with an increase in each number.In the transient state,for a very small time,the behavior of the dimensionless entropy generation rate is same at the lower surface.After that time,the dimensionless entropy generation rate increases at different rates.This rate is influenced by both the Eckert and Prandtl numbers.The greater the Eckert or Prandtl number,the greater will be the rate of increase in the dimensionless entropy generation rate.

    The effects of pertinent parameters on the Bejan number are displayed in Figs.7–9 for both the steady and unsteady states.Thermodynamically,Bejan number can be defined as the ratio of dimensionless entropy generation rate due to heat transfer to the total dimensionless entropy generation rate due to heat transfer and fluid friction.Bejan number ranges from 0 to 1.It is imperative to mention that when:

    (i)Be→0, fluid friction dominates.

    (ii)Be→0.5,both fluid friction and heat transfer play the same role.

    (iii)Be→1,the heat transfer dominates.

    It is established that in Figs.7–9,the Bejan number exists between 0 and 1.In a steady state,the effects of rotational and slip parameters on Bejan number are demonstrated in Fig.7(a).It can be seen that,the entropy generation rate due to heat transfer dominates at the lower surface and this domination decreases up to upper surface where the entropy generation rate due to fluid friction dominates.The Bejan number increases with both the rotational and slip parameters(Fig.7(a)).In the transient state,rotational and slip parameters have no effect on Bejan number up to t=0.25 on the lower surface.After this time,the Bejan number increases with time and both parameters(Fig.7(b)).In the absence of magnetic and Hall current parameters,the entropy generation rate is almost the same due to fluid friction and heat transfer.However,it increases in the neighborhood of lower surface with increasing both the parameters at a lower surface under the steady state conditions.This is elucidated in Fig.8(a).Depending upon both parameters,after attaining maximum value,the Bejan number decreases up to the upper plate.This shows that at the upper surface, fluid friction irreversibility dominates.In the transient state,no effect could be found on the Bejan number for a very short time(Fig.8(b)).After that,the Bejan number increases with time uniformly at different rates depending upon the values of both parameters.Eckert number determines the relative importance of the kinetic energy of a flow whereas Prandtl number determines the relative importance of momentum diffusivity.The effects of these numbers on the Bejan umber are displayed in Figs.9(a)and 9(b)for the steady and transient states respectively.When these numbers are smaller,the entropy generation rates due to heat transfer and fluid friction are the same at the lower surface under the steady state condition(Fig.9(a)).However,as these numbers upsurge,the entropy generation rate due to heat transfer increases with the vertical distancrom the lower surface and then decreases up to the upper surface where the entropy generation rate due to fluid friction dominates.As usual,the entropy generation rate due to fluid friction dominates for a very short time and then de-creases with an increase in time.As t→∞,the entropy generation rate dominates due to heat transfer.The unsteady state streamline pro files with different increasing slip parameters are shown in Fig.10.Increase in slip parameter has enlarged the streamline pro file,which shows that the slip parameter has significant impact on the flow passage.

    Fig.8 Effects of magnetic and Hall current parameters on Bejan number for(a)steady state and(b)transient state.

    Fig.9 Effects of Eckert and Prandtl numbers on Bejan number for(a)steady state and(b)transient state.

    Fig.10 Streamlines pro files with variations in slip parameters.

    5 Conclusions

    This article reports an unsteady two-dimensional laminar flow of an incompressible,electrically and thermally conducting fluid across the space separated by two infinite rotating permeable walls.The effects of entropy generation,Hall and slip effects on the two-dimensional MHD flow are considered within the current flow channel.The unsteady systems of dimensionless PDEs are solved by implementing the Finite Difference Scheme.To achieve the accurate movement of the laminar MHD flow in terms of velocity,temperature,skin friction coefficient,Nusselt and Bejan numbers,the pertinent parameters such as Re,t,R0, δ,M,Ec,Pr and γ have been fixed to some constant values.Furthermore,the three-dimensional graphical representations of the streamlines are presented,which ensure the precise movement of the flow field within the existing flow channel.It is expected that the current study would provide a platform for solving the system of nonlinear PDEs of the other unexplored and unsolved fluid flow models that are linked to the two-dimensional unsteady MHD flow in rotating fluid flow passages.It is further believed that the current study would be beneficial in the field of micromixing technology by enhancing exergetic effectiveness through device design for efficient operation and thermodynamic efficiency.

    亚洲精品国产成人久久av| 国产探花在线观看一区二区| 在线观看66精品国产| 嫩草影视91久久| 国产精品av视频在线免费观看| 亚洲精品国产成人久久av| 亚洲国产色片| 99热这里只有是精品50| 午夜福利在线观看免费完整高清在 | 国产熟女欧美一区二区| 午夜福利18| 亚洲精品国产成人久久av| 国产真实乱freesex| 久久人妻av系列| 99久久九九国产精品国产免费| 欧美日本亚洲视频在线播放| 欧美性猛交╳xxx乱大交人| 成人av在线播放网站| 精品久久久噜噜| 欧美区成人在线视频| 最新中文字幕久久久久| 午夜福利在线观看吧| 色av中文字幕| 亚洲av二区三区四区| 久久精品国产自在天天线| 免费大片18禁| 桃色一区二区三区在线观看| 伦精品一区二区三区| 两个人的视频大全免费| 一级毛片电影观看 | 免费高清视频大片| 国产美女午夜福利| 久久久久免费精品人妻一区二区| 少妇人妻一区二区三区视频| 69av精品久久久久久| 蜜桃亚洲精品一区二区三区| 99久久九九国产精品国产免费| 精华霜和精华液先用哪个| 偷拍熟女少妇极品色| 国产中年淑女户外野战色| 免费一级毛片在线播放高清视频| 99国产极品粉嫩在线观看| 久久久久久国产a免费观看| 久久久色成人| 麻豆一二三区av精品| 91久久精品电影网| 成人特级av手机在线观看| 国产精品久久久久久久久免| 少妇熟女aⅴ在线视频| 精品人妻视频免费看| 观看美女的网站| 免费看av在线观看网站| 亚洲性久久影院| 欧美日本亚洲视频在线播放| 欧美在线一区亚洲| 男女那种视频在线观看| 在线观看av片永久免费下载| 听说在线观看完整版免费高清| 麻豆乱淫一区二区| 看免费成人av毛片| www日本黄色视频网| 国产黄色小视频在线观看| 欧美3d第一页| 国产精品国产高清国产av| 一区福利在线观看| 一本一本综合久久| 欧洲精品卡2卡3卡4卡5卡区| 观看免费一级毛片| 又黄又爽又刺激的免费视频.| 看片在线看免费视频| 尾随美女入室| 白带黄色成豆腐渣| 久久人人精品亚洲av| 国产成年人精品一区二区| 综合色av麻豆| 91在线精品国自产拍蜜月| 观看美女的网站| 两个人视频免费观看高清| 性插视频无遮挡在线免费观看| 国产精品一区www在线观看| 成年女人毛片免费观看观看9| 99热这里只有是精品50| 国产精品乱码一区二三区的特点| 日韩欧美 国产精品| 一a级毛片在线观看| 国产av不卡久久| av视频在线观看入口| 乱系列少妇在线播放| 精品午夜福利视频在线观看一区| 在线国产一区二区在线| 国产成人精品久久久久久| 国产成人福利小说| 国产视频内射| 看十八女毛片水多多多| 变态另类丝袜制服| 欧美中文日本在线观看视频| 免费无遮挡裸体视频| 精品一区二区免费观看| 久99久视频精品免费| 18+在线观看网站| 99国产极品粉嫩在线观看| 我要搜黄色片| 色av中文字幕| 熟女电影av网| 97在线视频观看| 99热这里只有是精品在线观看| av在线亚洲专区| 成人三级黄色视频| 在线观看午夜福利视频| 亚洲av中文字字幕乱码综合| 欧美日韩精品成人综合77777| 亚洲aⅴ乱码一区二区在线播放| 别揉我奶头 嗯啊视频| 熟女电影av网| 国国产精品蜜臀av免费| 99久国产av精品| 波野结衣二区三区在线| 亚洲av.av天堂| 男人和女人高潮做爰伦理| 免费人成在线观看视频色| 日韩精品青青久久久久久| 国产精品精品国产色婷婷| 亚洲av不卡在线观看| 在线a可以看的网站| 亚洲熟妇中文字幕五十中出| 国产精品伦人一区二区| 亚洲第一区二区三区不卡| 亚洲熟妇熟女久久| 亚洲欧美精品综合久久99| 波野结衣二区三区在线| 久久久久久久午夜电影| 亚洲精品456在线播放app| 国产黄片美女视频| 色综合站精品国产| 高清毛片免费看| 国产熟女欧美一区二区| 国产精品精品国产色婷婷| 午夜福利成人在线免费观看| 全区人妻精品视频| 中国国产av一级| 精品午夜福利视频在线观看一区| 色哟哟哟哟哟哟| 噜噜噜噜噜久久久久久91| 国产精品久久久久久久久免| 国产成人精品久久久久久| 日韩三级伦理在线观看| 女人被狂操c到高潮| 国产精品一区二区三区四区免费观看 | 乱人视频在线观看| 国产淫片久久久久久久久| 黄色欧美视频在线观看| 午夜福利在线在线| 亚洲va在线va天堂va国产| 可以在线观看毛片的网站| 日本与韩国留学比较| 免费搜索国产男女视频| 国产精品野战在线观看| 国产伦精品一区二区三区视频9| 精品欧美国产一区二区三| 欧美高清成人免费视频www| 欧美日韩精品成人综合77777| 一级毛片我不卡| 亚洲丝袜综合中文字幕| 男女做爰动态图高潮gif福利片| 男人和女人高潮做爰伦理| 中文资源天堂在线| 3wmmmm亚洲av在线观看| av视频在线观看入口| 观看免费一级毛片| 寂寞人妻少妇视频99o| 久久中文看片网| 一进一出抽搐动态| 国产成人一区二区在线| 十八禁网站免费在线| 亚洲成a人片在线一区二区| 国产白丝娇喘喷水9色精品| 亚洲av免费在线观看| 欧美色欧美亚洲另类二区| 国产黄片美女视频| 欧美性感艳星| 国产精品一区二区免费欧美| 国产精品无大码| 国产精品久久视频播放| 赤兔流量卡办理| 18禁黄网站禁片免费观看直播| 伊人久久精品亚洲午夜| 午夜福利高清视频| 麻豆国产97在线/欧美| 久久久国产成人免费| 亚洲av中文字字幕乱码综合| 日本免费一区二区三区高清不卡| 亚洲最大成人av| a级毛色黄片| 免费看光身美女| 成人国产麻豆网| 亚洲精品久久国产高清桃花| 丝袜喷水一区| 悠悠久久av| 成年女人永久免费观看视频| 亚洲精品国产av成人精品 | 2021天堂中文幕一二区在线观| 亚洲熟妇熟女久久| 久久午夜亚洲精品久久| 久久精品国产亚洲av天美| 黄色配什么色好看| av中文乱码字幕在线| 精品午夜福利在线看| 一级毛片我不卡| 亚洲国产精品国产精品| 精品福利观看| 成年女人永久免费观看视频| 国产 一区 欧美 日韩| 蜜臀久久99精品久久宅男| 欧美成人一区二区免费高清观看| 国产伦一二天堂av在线观看| 国产一区二区在线av高清观看| 老司机福利观看| 中文亚洲av片在线观看爽| 日韩欧美一区二区三区在线观看| 最近手机中文字幕大全| 国产色婷婷99| 国产熟女欧美一区二区| 色综合亚洲欧美另类图片| 久久久久久久午夜电影| 久久午夜福利片| av黄色大香蕉| 少妇的逼水好多| 久久精品91蜜桃| 亚洲精品成人久久久久久| 欧美性猛交╳xxx乱大交人| 乱码一卡2卡4卡精品| 日本五十路高清| 俺也久久电影网| 欧美激情国产日韩精品一区| 露出奶头的视频| 天堂影院成人在线观看| 婷婷色综合大香蕉| 国产精品一区www在线观看| 国产黄片美女视频| 最近中文字幕高清免费大全6| 欧美一级a爱片免费观看看| 看非洲黑人一级黄片| 国产麻豆成人av免费视频| 人人妻人人澡人人爽人人夜夜 | 国产色爽女视频免费观看| 国产午夜精品久久久久久一区二区三区 | 成年av动漫网址| 在线观看av片永久免费下载| 国产精品嫩草影院av在线观看| 国内精品一区二区在线观看| 最近视频中文字幕2019在线8| 又黄又爽又刺激的免费视频.| 精华霜和精华液先用哪个| 熟女人妻精品中文字幕| 精品不卡国产一区二区三区| 免费搜索国产男女视频| 久久鲁丝午夜福利片| 国产精品日韩av在线免费观看| 国产av一区在线观看免费| 久久人人精品亚洲av| 好男人在线观看高清免费视频| 免费无遮挡裸体视频| 乱人视频在线观看| 久久久久久久久中文| 亚州av有码| 色av中文字幕| 精华霜和精华液先用哪个| 日韩 亚洲 欧美在线| 99视频精品全部免费 在线| 亚洲av第一区精品v没综合| 99久久精品一区二区三区| 日日撸夜夜添| 亚洲国产精品国产精品| 精品国产三级普通话版| 成人亚洲精品av一区二区| 国产三级中文精品| 成人性生交大片免费视频hd| 国产极品精品免费视频能看的| 丝袜美腿在线中文| 日本熟妇午夜| 美女xxoo啪啪120秒动态图| 欧美最黄视频在线播放免费| 日本精品一区二区三区蜜桃| 男女那种视频在线观看| 精品国产三级普通话版| 亚洲人成网站在线播| 国产精品福利在线免费观看| 99热全是精品| 国内精品美女久久久久久| 六月丁香七月| 亚洲经典国产精华液单| 日韩成人av中文字幕在线观看 | 中国国产av一级| 亚洲三级黄色毛片| 亚洲18禁久久av| 国产av一区在线观看免费| 精华霜和精华液先用哪个| 免费在线观看成人毛片| 成人av一区二区三区在线看| 1024手机看黄色片| av福利片在线观看| 性插视频无遮挡在线免费观看| 精品少妇黑人巨大在线播放 | 免费高清视频大片| 黄色欧美视频在线观看| 天堂动漫精品| 国产色婷婷99| 天堂√8在线中文| 老女人水多毛片| 婷婷六月久久综合丁香| 蜜桃久久精品国产亚洲av| 亚洲国产精品sss在线观看| 精品无人区乱码1区二区| 一区二区三区高清视频在线| 久久久国产成人免费| 欧美日韩一区二区视频在线观看视频在线 | 黄色视频,在线免费观看| 美女被艹到高潮喷水动态| 亚洲av免费在线观看| 尤物成人国产欧美一区二区三区| 久久精品久久久久久噜噜老黄 | 国产中年淑女户外野战色| 国产高清视频在线播放一区| 久99久视频精品免费| 日本黄大片高清| 18禁裸乳无遮挡免费网站照片| 精品福利观看| 久久天躁狠狠躁夜夜2o2o| 国内精品一区二区在线观看| 91在线精品国自产拍蜜月| 伦精品一区二区三区| 嫩草影院精品99| 少妇的逼水好多| 亚洲国产欧美人成| 真人做人爱边吃奶动态| a级毛片a级免费在线| 99久久精品一区二区三区| 哪里可以看免费的av片| 天堂av国产一区二区熟女人妻| 日本-黄色视频高清免费观看| 偷拍熟女少妇极品色| 欧美高清成人免费视频www| 国产精品日韩av在线免费观看| 啦啦啦韩国在线观看视频| 亚洲精品色激情综合| 老女人水多毛片| 亚洲av.av天堂| 国产精品永久免费网站| 国产私拍福利视频在线观看| 国产在线精品亚洲第一网站| 国产精品人妻久久久影院| 国产 一区 欧美 日韩| 国产精品一及| 国产在线精品亚洲第一网站| 长腿黑丝高跟| 成人综合一区亚洲| 有码 亚洲区| 联通29元200g的流量卡| 亚洲精品粉嫩美女一区| 人人妻人人看人人澡| 欧美性猛交黑人性爽| 亚洲人成网站在线观看播放| 我要看日韩黄色一级片| 亚洲,欧美,日韩| 久久综合国产亚洲精品| 亚洲欧美日韩东京热| 搡老妇女老女人老熟妇| 少妇高潮的动态图| 性插视频无遮挡在线免费观看| 看十八女毛片水多多多| 一级毛片我不卡| 插逼视频在线观看| 日韩亚洲欧美综合| 在线观看av片永久免费下载| 秋霞在线观看毛片| 欧美日本亚洲视频在线播放| 极品教师在线视频| 日本 av在线| 欧洲精品卡2卡3卡4卡5卡区| 高清日韩中文字幕在线| 午夜精品一区二区三区免费看| 日韩欧美三级三区| 一级毛片aaaaaa免费看小| 国产一区二区在线av高清观看| 国产精品野战在线观看| 欧美性猛交╳xxx乱大交人| 日日摸夜夜添夜夜添av毛片| 日本爱情动作片www.在线观看 | 日韩亚洲欧美综合| 男女啪啪激烈高潮av片| 最新在线观看一区二区三区| 搡老岳熟女国产| 极品教师在线视频| 99久久精品热视频| 亚洲在线自拍视频| 有码 亚洲区| 人人妻人人看人人澡| 亚洲性夜色夜夜综合| 成人永久免费在线观看视频| 亚洲国产精品成人综合色| 国产精品1区2区在线观看.| 午夜老司机福利剧场| 成人特级黄色片久久久久久久| 国产精华一区二区三区| 日韩人妻高清精品专区| 啦啦啦啦在线视频资源| 国内揄拍国产精品人妻在线| 丝袜喷水一区| 久久精品综合一区二区三区| 特级一级黄色大片| 欧美成人a在线观看| 欧美绝顶高潮抽搐喷水| 综合色av麻豆| 成人美女网站在线观看视频| 亚洲成人精品中文字幕电影| 最后的刺客免费高清国语| 久久亚洲国产成人精品v| 免费电影在线观看免费观看| 成人二区视频| 婷婷精品国产亚洲av| 中文字幕熟女人妻在线| 天堂影院成人在线观看| 色在线成人网| 中文字幕精品亚洲无线码一区| 一区二区三区高清视频在线| 国内精品宾馆在线| 国产成人一区二区在线| 男女下面进入的视频免费午夜| 乱系列少妇在线播放| 97超碰精品成人国产| 久久人人精品亚洲av| 老司机影院成人| 亚洲电影在线观看av| 夜夜爽天天搞| 久久久久国产网址| 偷拍熟女少妇极品色| 日韩欧美在线乱码| 国产高清视频在线观看网站| 少妇熟女欧美另类| 欧美+亚洲+日韩+国产| 一区二区三区免费毛片| 一级黄色大片毛片| 日日摸夜夜添夜夜爱| 国产成人freesex在线 | 久久草成人影院| 久久久久久九九精品二区国产| 欧美成人a在线观看| 尾随美女入室| 一个人观看的视频www高清免费观看| 国产精品亚洲一级av第二区| 亚洲国产色片| 日韩欧美精品v在线| 精品久久久久久成人av| 精品午夜福利在线看| 在线国产一区二区在线| 亚洲国产精品成人综合色| 高清午夜精品一区二区三区 | 国产伦精品一区二区三区四那| 成人漫画全彩无遮挡| 成人高潮视频无遮挡免费网站| 亚洲精品久久国产高清桃花| 乱人视频在线观看| 黄色配什么色好看| 国内精品宾馆在线| 人人妻人人澡欧美一区二区| 色尼玛亚洲综合影院| 欧美精品国产亚洲| 国产伦一二天堂av在线观看| 久久久久国内视频| 久久久久久九九精品二区国产| 国产69精品久久久久777片| 亚洲欧美成人综合另类久久久 | 亚洲美女搞黄在线观看 | 成人永久免费在线观看视频| 97热精品久久久久久| 我的老师免费观看完整版| 桃色一区二区三区在线观看| 国产精品久久久久久精品电影| 欧美最黄视频在线播放免费| 天美传媒精品一区二区| 亚洲电影在线观看av| 99热6这里只有精品| 在线观看一区二区三区| 成人综合一区亚洲| 观看美女的网站| 日本成人三级电影网站| 午夜激情欧美在线| 热99在线观看视频| 啦啦啦韩国在线观看视频| 日本免费a在线| 99视频精品全部免费 在线| 国产美女午夜福利| 日韩精品有码人妻一区| 欧美最黄视频在线播放免费| 最近中文字幕高清免费大全6| 中文亚洲av片在线观看爽| 三级毛片av免费| 在线观看一区二区三区| 亚洲丝袜综合中文字幕| 女人十人毛片免费观看3o分钟| 午夜福利在线观看免费完整高清在 | 晚上一个人看的免费电影| 丰满人妻一区二区三区视频av| 久久久欧美国产精品| 69av精品久久久久久| 三级国产精品欧美在线观看| 成人二区视频| 亚洲av免费在线观看| 中国美白少妇内射xxxbb| 精品久久久久久久末码| 久久精品人妻少妇| 亚洲图色成人| 欧美一区二区国产精品久久精品| 成年版毛片免费区| 最近2019中文字幕mv第一页| 日本 av在线| 日日摸夜夜添夜夜添小说| 日日干狠狠操夜夜爽| 亚洲一区二区三区色噜噜| 女人被狂操c到高潮| 99热只有精品国产| 特级一级黄色大片| 男人和女人高潮做爰伦理| 欧美日韩在线观看h| 丝袜喷水一区| 观看美女的网站| 日本-黄色视频高清免费观看| 国产69精品久久久久777片| 国产精品,欧美在线| 欧美高清成人免费视频www| 午夜福利在线观看吧| 久久久午夜欧美精品| 尤物成人国产欧美一区二区三区| a级毛片a级免费在线| 亚洲专区国产一区二区| 久久久久性生活片| 99久久中文字幕三级久久日本| 欧美日本视频| 国产精华一区二区三区| 久久国产乱子免费精品| 亚洲三级黄色毛片| 色播亚洲综合网| 国内久久婷婷六月综合欲色啪| 久久精品综合一区二区三区| av福利片在线观看| 国产视频内射| 深夜精品福利| 成人高潮视频无遮挡免费网站| 国产淫片久久久久久久久| 看非洲黑人一级黄片| 欧美潮喷喷水| 性插视频无遮挡在线免费观看| 亚洲精品亚洲一区二区| 精品久久久久久久久久久久久| 久久久精品欧美日韩精品| 熟女电影av网| 免费看日本二区| 天堂√8在线中文| 欧美不卡视频在线免费观看| 三级毛片av免费| 久久久久久伊人网av| 国产午夜精品论理片| 一本一本综合久久| 少妇被粗大猛烈的视频| 赤兔流量卡办理| 最后的刺客免费高清国语| 久久人人精品亚洲av| 久久久精品大字幕| 欧美激情在线99| 嫩草影视91久久| 国产综合懂色| 日本a在线网址| 国内少妇人妻偷人精品xxx网站| 内地一区二区视频在线| 中文字幕熟女人妻在线| 日本-黄色视频高清免费观看| 女的被弄到高潮叫床怎么办| 欧美一区二区国产精品久久精品| 精品不卡国产一区二区三区| 免费看av在线观看网站| 国产黄a三级三级三级人| 老熟妇乱子伦视频在线观看| 久久人人爽人人片av| 国产精品一及| 亚洲欧美日韩东京热| 最近2019中文字幕mv第一页| 久久久久久久久大av| 欧美绝顶高潮抽搐喷水| 成人性生交大片免费视频hd| 国产精品久久久久久精品电影| 国产精品亚洲美女久久久| 国产片特级美女逼逼视频| 热99在线观看视频| 搡老熟女国产l中国老女人| 好男人在线观看高清免费视频| 亚洲欧美成人综合另类久久久 | 日韩一区二区视频免费看| 在线观看午夜福利视频| 国产 一区精品| a级一级毛片免费在线观看| 成人无遮挡网站| 日本色播在线视频| 可以在线观看毛片的网站| 一级毛片我不卡| 3wmmmm亚洲av在线观看| 欧美高清成人免费视频www| 午夜精品在线福利| 久久这里只有精品中国| 久久久久久久久久成人| 国产美女午夜福利| 精品乱码久久久久久99久播| 伦理电影大哥的女人| 色视频www国产| 男女边吃奶边做爰视频| 国产精品久久久久久久电影|