• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Construction and NIR Luminescence Properties of Zn-Ln Rectangular Nanoclusters

    2018-09-10 01:40:12JIANGDongmeiBOLeZHUTingTAOJunbinYANGXiaoping
    物理化學學報 2018年7期

    JIANG Dongmei, BO Le, ZHU Ting, TAO Junbin, YANG Xiaoping

    College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang Province, P. R. China.

    Abstract: Heterometallic d-4f nanoclusters are currently of interest due to their potential use in material science and as probes in biology. Self-assembly by metalligand coordination is one of the most efficient processes that organize individual molecular components into nanosized species. However, for lanthanide-based selfassemblies, their stoichiometries and structures are difficult to control during synthesis, because the Ln(III) ions often display high and variable coordination numbers. As a result, the structures of lanthanide complexes are commonly influenced by a variety of factors, such as the type of metal ions, the formation of ligands, and the nature of counter anions. In this article, two Zn-Ln nanoclusters[Ln2Zn2L2(OAc)6] (Ln = Yb (1) and Er (2)) were prepared using a new long Schiff base ligand with a Ph(CH2)Ph backbone. These nanoclusters show interesting rectangular-like structures. The long Schiff base ligand displays a “stretched” configuration and is bound to the metal ions through its N and phenoxide and methoxy O atoms. As a result, large clusters (0.7 nm × 1.1 nm × 2.2 nm for 1) were formed. In the crystal structures of 1 and 2, each Ln3+ ion and its closer Zn2+ ion are linked by one OAc- anion and phenolic oxygen atoms of two long Schiff base ligands,forming a ZnLn unit. Two such ZnLn units are then bridged by two Schiff base ligands to form the nano-rectangular structures. Energy dispersive X-ray spectroscopy (EDX) analyses of the clusters indicate that the molar ratio of Zn : Ln is about 1 : 1, in agreement with their crystal structures. Thermogravimetric analyses show that the clusters lose about 5%of the weight when heated to below 100 °C. Melting point measurements show that the clusters are thermodynamically stable. Upon excitation of the ligand-centered absorption bands, 1 and 2 exhibit the NIR luminescence of Yb3+ and Er3+,respectively. The clusters show two excitation bands from 250 to 500 nm, in agreement with their absorption spectra,confirming that energy transfer occurs from the Zn/L centers to Ln3+ ions. These results indicate that the chromogenic Zn/L components in these nanoclusters can act as efficient sensitizers for lanthanide luminescence. The efficiencies of the energy transfer from Zn/L-centers to Yb3+ is higher than that to Er3+, being 75.71% and 25.00% for 1 and 2, respectively.These results provide new insights into the design of polynuclear nanoclusters with interesting luminescence properties.

    Key Words: Construction; Zn-Ln nanocluster; Schiff base ligand; Structure; Luminescence

    1 Introduction

    Metal nanoclusters have emerged as a new class of nanomaterials and have attracted considerable interest in the recent decade1–5. Heterometallic d-4f nanoclusters are currently of interest due to the remarkable physical and chemical properties associated with this class of materials6,7. Recently,attention has focused on the clusters of Yb(III), Nd(III) and Er(III) with the near-infrared (NIR) emission around 900–1600 nm, which is highly transparent to biological systems and fibre media8. The d-block metal ions introduced into the clusters may conceivably play two different roles in the luminescence properties of Ln3+ions. They may enhance the luminescence via d→4f energy transfer9,10, or they may quench the luminescence via 4f→d energy transfer11,12. For the Zn2+ion, the saturated d10electronic configuration prevents the quenching of lanthanide luminescence through a d-d transition (4f→d energy transfer)13,which favors the use of a light-absorbing Zn(II) chromophore as the sensitizer for lanthanide luminescence.

    Schiff base ligands are classical ligands to synthesize d-4f heteronuclear complexes. Our recent studies have focused on the synthesis of 4f homometallic and d-4f heterometallic clusters with Schiff-base ligands14,15. We have employed essentially two kinds of “salen” style Schiff-base ligands in which one is a rigid conjugated ligand with a phenylene backbone H2La(Scheme 1a),and the other is exemplified by the flexible Schiff-base ligands H2Lb–d(Scheme 1b). In past studies, we discovered that “multidecker” 4f and d-4f complexes with lanthanide ions sandwiched between alternating layers of the rigid Schiff-base ligand Lacould be isolated16,17. When the more flexible Schiff base ligands H2Lb–dwere used in the synthesis, a variety of 4f and d-4f polynuclear complexes (d = Ni2+, Cu2+, Zn2+and Cd2+) were formed18–20. In these polynuclear complexes, the ligands exhibit classical “salen” type of coordination modes with the d-metal ions bound in the N2O2cavities and the 4f-metal ions in the O2O2cavities (Scheme 1a, “bending” configurations). Obviously, the backbone structures of the Schiff base ligands may affect the formation of the polynuclear d-4f complexes. As part of our continuing studies focused on the construction of luminescent polynuclear lanthanide-based frameworks, we report here two Zn-Ln nanocluster [Ln2Zn2L2(OAc)6] (Ln = Yb (1) and Er (2))with a new Schiff base ligand 6,6′-((1E,1′E)-((methylenebis(4,1-phenylene))bis(azanylylidene))bis(methanylylidene))bis(2-methoxyphenol) (H2L), which has a Ph(CH2)Ph backbone(Scheme 1b). Differing from most other salen-type Schiff base ligands used in the synthesis of d-4f complexes (i.e., H2La–d,Scheme 1a), H2L has a longer backbones and exhibits a“stretched” coordination mode with metal ions in 1 and 2(Scheme 1b). In a linear configuration the length of H2L is approximately 2.5 nm. This appears to aid in the formation of large metal clusters. For example, 1 and 2 have nanorectangular-like structures with sizes of approximately 0.7 nm × 1.1 nm × 2.2 nm, which are much larger than those lanthanide- based complexes formed by H2La–d16–20. Interestingly, 1 and 2 display the typical emission spectra of lanthanide ions.

    2 Experimental

    2.1 Materials and General Methods

    All reactions were performed under dry oxygen-free dinitrogen atmospheres using standard Schlenk techniques. The Schiff-base ligand H2L was prepared according to wellestablished procedures21. Physical measurements: NMR:AVANCE III AV500. 500 spectrometer (1H, 500 MHz) at 298 K;IR: Nicolet IS10 spectrometer; Powder XRD: D8ADVANCE.Elemental analyses (C, H, N) of compounds were carried out on a EURO EA3000 elemental analysis after dried in an oven at 100 °C for 2 h. Melting points were obtained in sealed glass capillaries under dinitrogen and are uncorrected. The thermogravimetric analyses (TA) were carried out on a TA Instruments Q600. Absorption spectra were obtained on a UV-3600 spectrophotometer, and excitation and emission spectra on a FLS 980 fluorimeter.

    2.2 Preparation of H2L

    Scheme 1 Coordination modes of Schiff base ligands: (a) “bending”configuration (H2La–d); (b) “stretched” configuration (H2L).

    2-Hydroxy-3-methoxybenzaldehyde (20.0 mmol, 3.0430 g)was dissolved in 15 mL EtOH, and a solution of 4,4′-methylenedianiline (10.0 mmol, 1.9826 g) in 20 mL EtOH was then added drop by drop. The resulting solution was stirred and heated under reflux for 2.5 h. It was allowed to cool and was then filtered. The solid was washed with EtOH (3 × 5 mL) and then dried in the air at room temperature to give yellow product. Yield(based on 4,4′-methylenedianiline): 4.5251 g (97%). Elemental analysis: Found: C, 75.64%; H, 6.43%; N, 6.09%; Calc. for C29H26N2O4: C, 74.66%; H, 5.62%; N, 6.00%.1H NMR (500 MHz, CDCl3): 8.63 (2H), 7.24 (8H), 7.00 (4H), 6.88 (2H), 3.94(6H), 1.55 (2H). IR (CH3CN, cm-1): 2972(w), 1598 (m), 1470(m), 1260 (s), 1200 (m), 1082 (s), 974 (s), 791 (m), 731(s).

    2.3 Preparation of [Yb2Zn2L2(OAc)6] (1)

    Zn(OAc)2·2H2O (0.30 mmol, 0.0659 g), Yb(OAc)3·4H2O(0.30 mmol, 0.1267 g) and H2L (0.40 mmol, 0.1866 g) were dissolved in 50 mL MeOH at room temperature, and a solution of triethylamine in MeOH (7.19 mol·L-1, 1 mL) was then added.The resulting solution was stirred and heated under reflux for 30 min. It was allowed to cool and was then filtered. Diethyl ether was allowed to diffuse slowly into the filtrate at room temperature and pale yellow crystals were obtained after one week. The crystals were filtered off, washed with MeOH (5 mL)and dried in the air for one week. Yield (based on Yb(OAc)3·4H2O): 0.1031 g (35%). m. p. > 187.6 °C (dec.).Elemental analysis: Found: C, 44.21%; H, 4.83%; N, 3.20%.Calc. for C70H66Zn2N4Yb2O20·3MeOH·6H2O: C, 44.63%; H,4.62%; N, 2.85%. IR (CH3CN, cm-1): 1652 (s), 1594 (s), 1438(s), 1232 (s), 1192 (s), 1070 (w), 970 (s), 854 (m), 736 (s), 668(s).

    2.4 Preparation of [Er2Zn2L2(OAc)6] (2)

    The procedure was the same as that for 1 using Zn(OAc)2·2H2O (0.35 mmol, 0.0768 g), Er(OAc)3·4H2O (0.35 mmol, 0.1458 g) and H2L (0.45 mmol, 0.2099 g). Pale yellow single crystals of 2 were formed after one week. Yield (based on Er(OAc)3·4H2O): 0.1264 g (37%). m. p. > 188.5 °C (dec.).Elemental analysis: Found: C, 43.67%; H, 4.89%; N, 3.02%.Calc. For C70H66Zn2N4Er2O20·3MeOH·6H2O: C, 44.90%; H,4.65%; N, 2.87%. IR (CH3CN, cm-1): 1652 (s), 1596 (w), 1390(s), 1228 (s), 1188 (s), 968 (m), 854 (s), 736 (s).

    2.5 Photophysical Studies

    The UV-visible absorption spectra were recorded at RT using an UV-3600 spectrophotometer. The solvent employed was of HPLC grade. The wavelength range was set from 200 to 600 nm.Luminescence spectra in the visible and NIR regions were recorded on a FLS 980 fluorimeter. The light source for excitation and emission spectra was a 450 W xenon arc lamp with continuous spectral distribution from 190 to 2600 nm.Liquid nitrogen cooled Ge PIN diode detector was used to detect the NIR emissions from 800 to 1700 nm. The temporal decay curves of the fluorescence signals were stored by using the attached storage digital oscilloscope. The overall quantum yields(Φem) were obtained by using an integrating sphere, according to eqn Φem= Nem/Nabs, where Nemand Nabsare the numbers of emitted and absorbed photons, respectively. Besides, systematic errors have been deducted through the standard instrument corrections. All the measurements were carried out at room temperature.

    2.6 Crystallography

    Data were collected on a Smart APEX CCD diffractometer with graphite monochromated Mo-Kαradiation (λ = 0.071073 nm) at 190 K. The data set was corrected for absorption based on multiple scans and reduced using standard methods. Data reduction was performed using DENZO-SMN. The structures were solved by direct methods and refined anisotropically using full-matrix least-squares methods with the SHELX 97 program package. Coordinates of the non-hydrogen atoms were refined anisotropically, while hydrogen atoms were included in the calculation isotropically but not refined. Neutral atom scattering factors were taken from Cromer and Waber. Crystallographic data for 1 and 2 have been deposited with the Cambridge Crystallographic Data (CCDC reference numbers 1590241 and 1590242). These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif. Selected bond lengths and angles of 1 and 2 are given in Tables S1 and S2 (Supporting Information).

    1: C70H66Zn2N4Yb2O20, monoclinic, space group P2(1)/n, a =19.0913(18) nm, b = 20.7436(19) nm, c = 2.2387(2) nm, α = 90°,β = 100.947(2)°, γ = 90°, V = 8.7043(14) nm3, Z = 4, Dc= 1.447 g cm-3, μ(Mo-Kα) = 2.745 mm-1, F(000) = 3788, T = 190 K. R1= 0.0681, wR2= 0.1958 for 13750 independent reflections with a goodness-of-fit of 1.039.

    2: C70H66Zn2N4Er2O20, monoclinic, space group P2(1)/n, a =18.900(4) nm, b = 20.622(4) nm, c = 2.2531(4) nm, α = 90°, β =100.983(2)°, γ = 90°, V = 8.620(3) nm3, Z = 4, Dc= 1.464 g cm-3,μ(Mo-Kα) = 2.550 mm-1, F(000) = 3808, T = 190 K. R1=0.1056, wR2 = 0.2618 for 15087 independent reflections with a goodness-of-fit of 1.111.

    3 Results and discussion

    3.1 Preparation and crystal structures of the nanoclusters

    Fig. 1 Two views of the square-like structure of 1: viewed along the ac-axis (top) and b-axis (lower).Yb3+: blue; Zn2+: green. Color online.

    The new Schiff base ligand H2L was synthesized from the reaction of 2-Hydroxy-3-methoxybenzaldehyde with 4,4′-methylenedianiline in refluxing ethanol with yields of 97%21.The1H NMR spectrum of H2L show signals for imino protons(―CH=N―) at 8.63 (Fig. S1 in the Supporting Information),while the signal for the aldehyde proton (Ar-CHO) of the reactant at 10.0 disappears. In the presence of Et3N, reactions of H2L with Zn(OAc)2·2H2O and Ln(OAc)3·4H2O in refluxing methanol produced yellow solutions from which isomorphous 1 and 2 were isolated as pale yellow crystalline solids. The IR spectra of 1 and 2 show one absorption band of C=N stretching at 1652 cm-1, which blue shifts as compared to that of the free Schiff base ligand (1598 cm-1for H2L, Fig. S2 (Supporting Information)). Two views of the crystal structure of 1 are shown in Fig. 1. Each Yb3+ion and its closer Zn2+ion are linked by one OAc-anion and phenolic oxygen atoms of two L ligands with an average separation of 0.3406 nm, forming a ZnYb unit. Two such ZnYb units are bridged together by two long Schiff base ligands, forming a nano-rectangular structure of 1 (Fig. 1). The metric dimensions of 1 measure approximately 0.7 nm × 1.1 nm× 2.2 nm. In 1, both Yb3+ions have similar coordination environment. They have nine-coordinate deformed three prism geometries, surrounded by nine oxygen atoms from two L ligands and three OAc-anions. Two Zn2+ions show square pyramidal geometries, coordinated with three oxygen and two nitrogen atoms from two L ligands and one OAc-anion. The Schiff base ligands exhibit “stretched” coordination modes,bound to the metal ions through their N and phenoxide and methoxy O atoms. For the OAc-anions, four bind to two Yb3+ions (μ2-bridging modes), and two bind to one Yb3+and one Zn2+ions (μ2-bridging mode). For 1 and 2, the Zn―O and Zn―N bond lengths range from 0.1978 to 0.2094 nm and 0.2054 to 0.2097 nm, respectively. While, the Yb―O and Er―O bond lengths range from 0.2283 to 0.2610 nm and 0.2272 to 0.2596 nm, respectively.

    A panoramic scanning electron microscopy (SEM) image shows the crystalline nature of 1 (Fig. 2a). Energy dispersive X-ray spectroscopy (EDX) analysis of 1 indicates that the molar ratio of Zn : Yb is about 1 : 1, in agreement with the crystal structure (Fig. 2b). The powder XRD patterns of 1 and 2 show large background peaks (Fig. S3 (Supporting Information)),indicating that they are predominantly amorphous. This may be due to the fact that the uncoordinated solvent molecules in 1 and 2 can easily escape from the structures of clusters, and the crystalline products become amorphous. Thermogravimetric analyses show that on heating 1 and 2 undergo weight losses of about 5%–8% before 100 °C (Fig. S4), assigned to the loss of uncoordinated solvent molecules such as MeOH and H2O.Melting point measurements show that 1 and 2 are thermodynamically stable, starting to decompose from 187.6 and 188.5 °C, respectively (Supporting Information).

    3.2 Photophysical properties of the nanoclusters

    Fig. 3 UV-Vis spectra of the free H2L and clusters 1 and 2 in CH3CN.

    Fig. 4 Excitation and emission spectra of the free ligand H2L.

    Fig. 2 SEM image (a) and EDX spectrum (b) of 1.

    The photophysical properties of 1 and 2 were studied in CH3CN solution and the solid state. The free ligand H2L exhibits absorption bands at 230, 275 and 323 nm which are red-shifted upon co-ordination to metal ions in the clusters (Fig. 3). For the free ligand H2L, excitations at the absorption wavelengths produce broad emission bands at 515 nm (Fig. 4). Upon excitation of the ligand-centered absorption bands, 1 and 2 exhibit the NIR luminescence of Yb3+(2F5/2→2F7/2transition)and Er3+(4I13/2→4I15/2transition), respectively (Figs. 5 and 6). 1 and 2 show two excitation bands from 250 to 500 nm (i.e., λex=302, 421 nm for 1), in agreement with their absorption spectra,confirming that the energy transfers from the Zn/L centers to Ln3+ions occur. These results indicate that the Zn/L centers can act as efficient sensitizers for Ln(III) ions in 1 and 2 (Scheme 2).For each Zn-Ln cluster, the luminescence spectrum in the solid state is similar to that in the solution. The excitation and emission wavelengths (λexand λem), quantum yields (Φem), emission lifetimes (τ) and energy transfer efficiencies (ηsens) of H2L and 1–2 in solution are given in Table 1.

    Fig. 5 Excitation and NIR emission spectra of 1 in CH3CN.

    Fig. 6 Excitation and NIR emission spectra of 2 in CH3CN.

    Scheme 2 Relevant energy levels in 1–6.Those marked with * can act as energy acceptors by either F?rster or Dexter mechanism 25.

    Table 1 The excitation and emission wavelengths, quantum yields(Φem), emission lifetimes (τ) and energy transfer efficiencies (ηsens) of H2L and 1–2 in solution.

    Fig. 7 NIR emission lifetime of 1 in CH3CN.

    As shown in Figs. 5 and 6, 1 and 2 exhibit NIR emission bands of Yb3+and Er3+at 978 and 1532 nm, respectively. The emission lifetimes (τ) of 1 and 2 in CH3CN are 14.05 and 6.05 μs,respectively (Figs. 7 and S5 (Supporting Information)). The intrinsic quantum yields (ΦLn) of Yb3+and Er3+emissions in 1 and 2 are calculated as 0.70% and 0.04%, respectively, using ΦLn= τ/τ0(τ0= 2000 μs22and 14000 μs23for the natural lifetimes of Yb3+and Er3+, respectively). The overall emission quantum yields (Φem) of 1 and 2 are 0.53% and 0.01%, respectively. Thus,the efficiencies (ηsens) of the energy transfer from Zn/L-centers to Yb3+and Er3+in 1 and 2 are calculated as 75.71% and 25.00%,respectively, using ηsens= Φem/ΦLn24, indicating that the Zn/L center in 1 shows higher energy transfer efficiency than that in 2. This difference may be due to the fact that 1 and 2 can show different energy transfer mechanisms from the Zn/L-centers to Ln3+ions. As shown in Scheme 2, compared with Er3+ion, the Yb3+ion has only a single excited state2F5/2at 10200 cm-1which is much lower than those of Zn/L center. The energy-transfer process in 1 may perhaps be described as electron transfer mechanism and/or phonon-assisted energy-transfer mechanisms26,27.The former mechanism is based on the fact that among the lanthanides, Yb(III) does not possess a very negative reduction potential (-1.05 V vs the NHE) and can be transiently reduced to Yb(II) when the sensitizer acts as electron donor in its excited state.

    4 Conclusions

    In summary, we describe the successful synthesis of two Zn-Ln (Ln = Yb and Er) rectangular clusters from a Schiff base ligand featuring a Ph(CH2)Ph backbone. The long Schiff base ligand displays a “l(fā)inear” configuration in these clusters,resulting in the formation of molecules with nanoparticle like dimensions (0.7 nm × 1.1 nm × 2.2 nm). The Zn/L chromophores of the clusters can sensitize the lanthanide luminescence following Zn/L-center→4f energy transfer. 1 and 2 exhibit interesting NIR luminescence properties. The study of luminescence properties shows that the Zn-Yb cluster 1 has higher energy transfer efficiency than the Zn-Er cluster 2.Further studies focused on the construction of luminescent d-f nanoclusters with higher nuclearity are in progress.

    Supporting Information:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    欧美av亚洲av综合av国产av| 国产又爽黄色视频| 欧美午夜高清在线| 国产高清videossex| 天堂动漫精品| 亚洲中文字幕一区二区三区有码在线看 | 最新美女视频免费是黄的| 麻豆av在线久日| 88av欧美| 免费少妇av软件| 巨乳人妻的诱惑在线观看| 亚洲自拍偷在线| 老司机靠b影院| 色老头精品视频在线观看| av福利片在线| 女生性感内裤真人,穿戴方法视频| 女人高潮潮喷娇喘18禁视频| 国产熟女xx| 欧美久久黑人一区二区| 三级毛片av免费| 满18在线观看网站| 色精品久久人妻99蜜桃| 国产欧美日韩精品亚洲av| 男女午夜视频在线观看| 一级a爱片免费观看的视频| 日本五十路高清| 午夜免费成人在线视频| 亚洲中文字幕一区二区三区有码在线看 | 亚洲一卡2卡3卡4卡5卡精品中文| 1024视频免费在线观看| 校园春色视频在线观看| 变态另类成人亚洲欧美熟女 | 淫妇啪啪啪对白视频| 亚洲自偷自拍图片 自拍| 97碰自拍视频| 少妇被粗大的猛进出69影院| 欧美av亚洲av综合av国产av| 久久亚洲精品不卡| 亚洲av熟女| 热99re8久久精品国产| 欧美色欧美亚洲另类二区 | 亚洲电影在线观看av| 亚洲自偷自拍图片 自拍| 一级a爱视频在线免费观看| 亚洲第一av免费看| 久久久久久久久久久久大奶| 天堂影院成人在线观看| 国产一区二区三区视频了| avwww免费| 国产精品精品国产色婷婷| 免费观看人在逋| 亚洲中文av在线| 国产成人精品在线电影| 精品一区二区三区四区五区乱码| 久久精品国产综合久久久| 好男人电影高清在线观看| 亚洲精品粉嫩美女一区| 国产成人一区二区三区免费视频网站| 91精品国产国语对白视频| 亚洲中文字幕日韩| 天天躁夜夜躁狠狠躁躁| 午夜视频精品福利| 国产av一区二区精品久久| 一二三四社区在线视频社区8| 91精品三级在线观看| 久久中文字幕一级| 精品久久蜜臀av无| 国产精品一区二区精品视频观看| 国产免费av片在线观看野外av| 少妇裸体淫交视频免费看高清 | 欧洲精品卡2卡3卡4卡5卡区| 精品福利观看| 欧美激情 高清一区二区三区| 午夜福利在线观看吧| 亚洲精品国产一区二区精华液| 亚洲一区二区三区不卡视频| 欧美在线黄色| 黄片大片在线免费观看| 黄片播放在线免费| 亚洲全国av大片| 欧美日韩中文字幕国产精品一区二区三区 | 日韩中文字幕欧美一区二区| 精品一品国产午夜福利视频| 国产亚洲av嫩草精品影院| xxx96com| 欧美+亚洲+日韩+国产| 国产精品自产拍在线观看55亚洲| 熟女少妇亚洲综合色aaa.| 9热在线视频观看99| 一区福利在线观看| 成人手机av| 久久人人爽av亚洲精品天堂| 亚洲专区中文字幕在线| av视频免费观看在线观看| 岛国视频午夜一区免费看| 黄色女人牲交| 一区二区三区精品91| 人妻丰满熟妇av一区二区三区| 欧美亚洲日本最大视频资源| or卡值多少钱| 亚洲国产中文字幕在线视频| 又黄又爽又免费观看的视频| 亚洲男人天堂网一区| 波多野结衣一区麻豆| 人人澡人人妻人| 国产一级毛片七仙女欲春2 | 18禁黄网站禁片午夜丰满| 热re99久久国产66热| 午夜免费成人在线视频| 在线观看午夜福利视频| 两个人看的免费小视频| 婷婷精品国产亚洲av在线| 香蕉丝袜av| 免费不卡黄色视频| 一卡2卡三卡四卡精品乱码亚洲| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产私拍福利视频在线观看| 成人手机av| 91精品国产国语对白视频| 91成人精品电影| 色播亚洲综合网| 91大片在线观看| 麻豆久久精品国产亚洲av| 视频区欧美日本亚洲| 热99re8久久精品国产| 热re99久久国产66热| 亚洲国产精品合色在线| 久久午夜综合久久蜜桃| 久久久精品国产亚洲av高清涩受| 久久精品国产99精品国产亚洲性色 | 亚洲人成电影观看| 黑人欧美特级aaaaaa片| 人人妻人人澡欧美一区二区 | 精品一区二区三区视频在线观看免费| 免费高清视频大片| 久久久久国产一级毛片高清牌| 国产乱人伦免费视频| 亚洲男人天堂网一区| 69精品国产乱码久久久| 不卡av一区二区三区| 久久亚洲精品不卡| tocl精华| 99久久99久久久精品蜜桃| 午夜福利18| 国产成人精品久久二区二区91| 91大片在线观看| 999久久久国产精品视频| 免费观看人在逋| 日韩欧美在线二视频| 女同久久另类99精品国产91| 欧美激情极品国产一区二区三区| 日本vs欧美在线观看视频| 啦啦啦观看免费观看视频高清 | 久久国产精品男人的天堂亚洲| 国产亚洲精品一区二区www| 精品不卡国产一区二区三区| 搡老岳熟女国产| 亚洲性夜色夜夜综合| 丝袜人妻中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 欧美国产日韩亚洲一区| 精品久久久精品久久久| 免费一级毛片在线播放高清视频 | 午夜福利18| 亚洲中文av在线| 99精品久久久久人妻精品| 午夜久久久久精精品| 麻豆久久精品国产亚洲av| 日韩视频一区二区在线观看| 麻豆国产av国片精品| 国产精品自产拍在线观看55亚洲| 在线永久观看黄色视频| 男人舔女人下体高潮全视频| 女同久久另类99精品国产91| 午夜福利欧美成人| 亚洲aⅴ乱码一区二区在线播放 | 精品国产国语对白av| 国产视频一区二区在线看| 久久人人精品亚洲av| 在线天堂中文资源库| 日本撒尿小便嘘嘘汇集6| 欧美不卡视频在线免费观看 | 午夜福利欧美成人| 国产麻豆成人av免费视频| 757午夜福利合集在线观看| 在线免费观看的www视频| 99久久国产精品久久久| 夜夜看夜夜爽夜夜摸| 久久久久久大精品| 精品久久久久久久久久免费视频| 日本五十路高清| 国产精品 国内视频| 精品国产乱子伦一区二区三区| 国产男靠女视频免费网站| 中亚洲国语对白在线视频| 99精品在免费线老司机午夜| 在线视频色国产色| bbb黄色大片| 97人妻天天添夜夜摸| 亚洲熟妇熟女久久| 色尼玛亚洲综合影院| 12—13女人毛片做爰片一| 欧美成人性av电影在线观看| 国产1区2区3区精品| 午夜福利高清视频| 在线免费观看的www视频| 国产亚洲欧美在线一区二区| 亚洲七黄色美女视频| 国产精品久久久久久人妻精品电影| cao死你这个sao货| 操出白浆在线播放| 91大片在线观看| 一级a爱视频在线免费观看| 男女下面进入的视频免费午夜 | 国产一区二区三区视频了| 久久精品aⅴ一区二区三区四区| 亚洲久久久国产精品| 在线观看日韩欧美| 在线观看免费视频日本深夜| 两个人视频免费观看高清| 黄色a级毛片大全视频| 波多野结衣av一区二区av| 久久午夜亚洲精品久久| 97人妻天天添夜夜摸| 成人亚洲精品一区在线观看| 午夜久久久在线观看| www.自偷自拍.com| 久9热在线精品视频| 久久久久国产精品人妻aⅴ院| 长腿黑丝高跟| 亚洲精品国产一区二区精华液| 国产欧美日韩一区二区三区在线| 国产色视频综合| 国产精品亚洲美女久久久| 午夜福利,免费看| 欧美黄色淫秽网站| 亚洲av成人不卡在线观看播放网| 搡老妇女老女人老熟妇| 成熟少妇高潮喷水视频| 久久精品亚洲熟妇少妇任你| 九色亚洲精品在线播放| 黑人欧美特级aaaaaa片| 啦啦啦韩国在线观看视频| 又黄又粗又硬又大视频| 自线自在国产av| 免费高清在线观看日韩| x7x7x7水蜜桃| 欧美日本视频| 日韩欧美国产一区二区入口| 亚洲男人天堂网一区| 亚洲精华国产精华精| 亚洲avbb在线观看| 久久精品亚洲精品国产色婷小说| 婷婷精品国产亚洲av在线| 欧美日韩亚洲综合一区二区三区_| 免费不卡黄色视频| www日本在线高清视频| 女人高潮潮喷娇喘18禁视频| 中文字幕另类日韩欧美亚洲嫩草| aaaaa片日本免费| 韩国av一区二区三区四区| 亚洲伊人色综图| 黄色视频,在线免费观看| 两人在一起打扑克的视频| 欧美日本视频| 国产野战对白在线观看| 在线天堂中文资源库| 久久久国产成人免费| 国产成人免费无遮挡视频| 色哟哟哟哟哟哟| 十八禁网站免费在线| 欧美成人一区二区免费高清观看 | 成熟少妇高潮喷水视频| 欧美日韩精品网址| 在线观看一区二区三区| 亚洲精品中文字幕一二三四区| 欧美黄色淫秽网站| 久久久久国产精品人妻aⅴ院| 99热只有精品国产| 91国产中文字幕| 一级毛片女人18水好多| 国产一区二区三区视频了| www.999成人在线观看| 午夜精品久久久久久毛片777| 可以在线观看毛片的网站| 少妇粗大呻吟视频| 19禁男女啪啪无遮挡网站| 久久九九热精品免费| 欧美成人免费av一区二区三区| 一区二区三区国产精品乱码| 亚洲全国av大片| 久久久国产精品麻豆| 在线观看免费午夜福利视频| 久久国产亚洲av麻豆专区| 在线观看66精品国产| 一a级毛片在线观看| 精品免费久久久久久久清纯| 亚洲第一电影网av| 欧美日韩黄片免| 亚洲人成77777在线视频| 欧美另类亚洲清纯唯美| 麻豆成人av在线观看| 一二三四社区在线视频社区8| 久久久久久亚洲精品国产蜜桃av| 搞女人的毛片| 在线观看一区二区三区| 男人的好看免费观看在线视频 | 亚洲精品美女久久久久99蜜臀| 热99re8久久精品国产| 成人永久免费在线观看视频| 欧美在线黄色| 免费人成视频x8x8入口观看| 桃色一区二区三区在线观看| 国产精品亚洲美女久久久| 搡老岳熟女国产| a级毛片在线看网站| www日本在线高清视频| 丝袜美腿诱惑在线| 久久午夜综合久久蜜桃| 亚洲 欧美 日韩 在线 免费| 亚洲精品国产精品久久久不卡| 非洲黑人性xxxx精品又粗又长| 国产99久久九九免费精品| 久久欧美精品欧美久久欧美| av视频在线观看入口| 法律面前人人平等表现在哪些方面| 亚洲欧美激情在线| 国产私拍福利视频在线观看| 制服诱惑二区| 亚洲国产欧美网| 美女免费视频网站| 国产色视频综合| 亚洲av成人一区二区三| 亚洲国产毛片av蜜桃av| 久久人妻福利社区极品人妻图片| 黄片播放在线免费| 搞女人的毛片| 午夜福利欧美成人| 久久久久国内视频| 久久热在线av| 欧美+亚洲+日韩+国产| 叶爱在线成人免费视频播放| 大码成人一级视频| 成人特级黄色片久久久久久久| 黑丝袜美女国产一区| 法律面前人人平等表现在哪些方面| 在线观看66精品国产| 欧美黄色片欧美黄色片| 操出白浆在线播放| 一边摸一边抽搐一进一出视频| 男人舔女人下体高潮全视频| bbb黄色大片| 欧美日本视频| 亚洲成av片中文字幕在线观看| 亚洲一区高清亚洲精品| 久久国产精品影院| 日韩视频一区二区在线观看| 黄片播放在线免费| 亚洲国产精品999在线| 中国美女看黄片| 国产精品电影一区二区三区| 亚洲中文字幕日韩| 亚洲熟妇中文字幕五十中出| 国产97色在线日韩免费| 一区二区三区激情视频| 免费高清视频大片| 校园春色视频在线观看| 伊人久久大香线蕉亚洲五| a级毛片在线看网站| 99精品在免费线老司机午夜| 免费看a级黄色片| 久久久久国内视频| 午夜福利影视在线免费观看| 精品人妻在线不人妻| 桃红色精品国产亚洲av| 黑人操中国人逼视频| 久久精品aⅴ一区二区三区四区| 日韩有码中文字幕| 免费在线观看视频国产中文字幕亚洲| 久热这里只有精品99| 精品熟女少妇八av免费久了| av电影中文网址| 男人舔女人下体高潮全视频| 午夜精品久久久久久毛片777| 中文字幕av电影在线播放| 日本五十路高清| 久久久久久久精品吃奶| 国产av一区在线观看免费| 天天躁夜夜躁狠狠躁躁| 免费女性裸体啪啪无遮挡网站| 亚洲情色 制服丝袜| ponron亚洲| 免费人成视频x8x8入口观看| 欧美最黄视频在线播放免费| 国产又爽黄色视频| 久久久久九九精品影院| 色播在线永久视频| 欧美av亚洲av综合av国产av| 久久久久久久久久久久大奶| 窝窝影院91人妻| 亚洲精品久久成人aⅴ小说| 两人在一起打扑克的视频| 丝袜在线中文字幕| 18禁裸乳无遮挡免费网站照片 | www国产在线视频色| 午夜福利高清视频| 18禁裸乳无遮挡免费网站照片 | 中文字幕av电影在线播放| 日韩精品青青久久久久久| 母亲3免费完整高清在线观看| 亚洲精品av麻豆狂野| 国产蜜桃级精品一区二区三区| 麻豆国产av国片精品| 韩国av一区二区三区四区| 久久精品国产亚洲av香蕉五月| 美女 人体艺术 gogo| 亚洲最大成人中文| 天堂动漫精品| www.精华液| 国产三级在线视频| 午夜福利在线观看吧| 午夜免费鲁丝| 久久天堂一区二区三区四区| 精品一区二区三区四区五区乱码| 欧美激情久久久久久爽电影 | www.熟女人妻精品国产| av天堂在线播放| 两性夫妻黄色片| 一边摸一边抽搐一进一出视频| 亚洲中文av在线| 亚洲欧洲精品一区二区精品久久久| 人人妻,人人澡人人爽秒播| a在线观看视频网站| 欧美激情久久久久久爽电影 | 国产激情欧美一区二区| 国产又色又爽无遮挡免费看| 久99久视频精品免费| 动漫黄色视频在线观看| 色播亚洲综合网| www.精华液| 日韩中文字幕欧美一区二区| 制服丝袜大香蕉在线| 中文字幕最新亚洲高清| 波多野结衣高清无吗| 日本 欧美在线| 亚洲精品av麻豆狂野| 午夜a级毛片| 在线观看免费午夜福利视频| 侵犯人妻中文字幕一二三四区| 国产三级黄色录像| svipshipincom国产片| 日韩免费av在线播放| 国产精品久久久久久人妻精品电影| 9191精品国产免费久久| 亚洲男人天堂网一区| 久久精品国产99精品国产亚洲性色 | 丁香六月欧美| 国产精品久久久av美女十八| 国产熟女午夜一区二区三区| 国产成人精品久久二区二区免费| 午夜a级毛片| 99久久国产精品久久久| 在线观看66精品国产| 午夜亚洲福利在线播放| 脱女人内裤的视频| 99re在线观看精品视频| 日韩大码丰满熟妇| 精品福利观看| 亚洲一码二码三码区别大吗| 黄色毛片三级朝国网站| 日韩欧美三级三区| 亚洲第一电影网av| 午夜福利欧美成人| 成年女人毛片免费观看观看9| 免费在线观看影片大全网站| 夜夜爽天天搞| 两性午夜刺激爽爽歪歪视频在线观看 | av福利片在线| 亚洲 欧美 日韩 在线 免费| 亚洲五月天丁香| 亚洲中文日韩欧美视频| 男女下面进入的视频免费午夜 | 亚洲欧美一区二区三区黑人| 国产精品野战在线观看| 男女床上黄色一级片免费看| 亚洲国产精品久久男人天堂| 啦啦啦免费观看视频1| 日本撒尿小便嘘嘘汇集6| 天天躁夜夜躁狠狠躁躁| 欧美成狂野欧美在线观看| 97人妻天天添夜夜摸| 淫秽高清视频在线观看| 欧美久久黑人一区二区| 日韩精品免费视频一区二区三区| 国产成人一区二区三区免费视频网站| 亚洲中文字幕日韩| 狠狠狠狠99中文字幕| 国产免费男女视频| 琪琪午夜伦伦电影理论片6080| 黄片播放在线免费| 他把我摸到了高潮在线观看| 首页视频小说图片口味搜索| 纯流量卡能插随身wifi吗| 麻豆国产av国片精品| 成人av一区二区三区在线看| 久9热在线精品视频| 亚洲欧美激情在线| 99国产精品一区二区蜜桃av| 又黄又粗又硬又大视频| 99国产综合亚洲精品| 国产亚洲精品综合一区在线观看 | 国产视频一区二区在线看| a在线观看视频网站| 黄网站色视频无遮挡免费观看| 桃红色精品国产亚洲av| 亚洲国产高清在线一区二区三 | 90打野战视频偷拍视频| 中文字幕最新亚洲高清| 亚洲成人国产一区在线观看| 亚洲国产精品久久男人天堂| 久久婷婷人人爽人人干人人爱 | 久久国产乱子伦精品免费另类| 久久这里只有精品19| 妹子高潮喷水视频| 亚洲黑人精品在线| 亚洲va日本ⅴa欧美va伊人久久| 大陆偷拍与自拍| 男男h啪啪无遮挡| 亚洲熟妇熟女久久| www.熟女人妻精品国产| 午夜福利18| 国产精品秋霞免费鲁丝片| 国产99白浆流出| 波多野结衣一区麻豆| 亚洲欧美激情在线| 亚洲五月婷婷丁香| 777久久人妻少妇嫩草av网站| 久久人妻福利社区极品人妻图片| 丁香六月欧美| 国产黄a三级三级三级人| 日韩欧美国产在线观看| 精品一品国产午夜福利视频| 国产精品亚洲av一区麻豆| 久久人人97超碰香蕉20202| 国产极品粉嫩免费观看在线| 动漫黄色视频在线观看| 久久精品成人免费网站| 黑人巨大精品欧美一区二区mp4| 久久精品成人免费网站| 777久久人妻少妇嫩草av网站| 久久久久久久精品吃奶| 国产伦一二天堂av在线观看| 成人免费观看视频高清| 淫妇啪啪啪对白视频| 国产成年人精品一区二区| 人妻丰满熟妇av一区二区三区| 天堂动漫精品| 亚洲在线自拍视频| 人人妻人人爽人人添夜夜欢视频| 国产片内射在线| 少妇被粗大的猛进出69影院| 亚洲国产中文字幕在线视频| avwww免费| 久久国产精品人妻蜜桃| 91麻豆精品激情在线观看国产| 黄片播放在线免费| 免费在线观看完整版高清| 两个人看的免费小视频| 亚洲成人国产一区在线观看| 黑人欧美特级aaaaaa片| АⅤ资源中文在线天堂| 色综合婷婷激情| 香蕉丝袜av| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品久久国产高清桃花| 久久久久久人人人人人| 老司机午夜十八禁免费视频| 男女下面进入的视频免费午夜 | 中国美女看黄片| 一边摸一边做爽爽视频免费| 欧美乱妇无乱码| 12—13女人毛片做爰片一| 久久香蕉激情| 亚洲精品一区av在线观看| 欧美一级毛片孕妇| 一区二区日韩欧美中文字幕| 亚洲情色 制服丝袜| 成人亚洲精品一区在线观看| 老司机深夜福利视频在线观看| 一夜夜www| 日韩精品中文字幕看吧| 免费搜索国产男女视频| 777久久人妻少妇嫩草av网站| 91av网站免费观看| 欧美性长视频在线观看| 亚洲一码二码三码区别大吗| 国产精品99久久99久久久不卡| 色精品久久人妻99蜜桃| 日本黄色视频三级网站网址| 欧美成人性av电影在线观看| 窝窝影院91人妻| 久久久久久大精品| 色播在线永久视频| 久久久久久久午夜电影| 免费观看精品视频网站| 极品教师在线免费播放| 色婷婷久久久亚洲欧美| 色播亚洲综合网| 亚洲国产高清在线一区二区三 | 日韩欧美三级三区| 黄色毛片三级朝国网站| 亚洲性夜色夜夜综合| 岛国在线观看网站| 欧美成人一区二区免费高清观看 |