• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PPh3: Converts Thiolated Gold Nanoparticles to [Au25(PPh3)10(SR)5Cl2]2+

    2018-09-10 01:40:08ZHUMinLIManboYAOChuanhaoXIANanZHAOYanYANNanLIAOLingwenWUZhikun
    物理化學(xué)學(xué)報 2018年7期

    ZHU Min , LI Manbo , YAO Chuanhao , XIA Nan , ZHAO Yan ,2, YAN Nan , LIAO Lingwen ,WU Zhikun ,*

    1 Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China.

    2 University of Science and Technology of China, Hefei 230026, P. R. China.

    Abstract: Research on gold nanoclusters is at the frontier of nanoscience and nanotechnology. The introduction of the first phosphineprotected gold nanocluster, Au11(PPh3)7(SCN)3 (where PPh3 stands for triphenylphosphine and Ph stands for benzene), can be dated back to 1969. As research in the field progressed, many structures of phosphineprotected nanoclusters such as Au5, Au8, Au13, and Au39 were reported.However, the stability of these phosphine-protected nanoclusters was not satisfactory, which handicapped their research and application. In an attempt to find alternatives for phosphine-protected nanoclusters,thiolated gold nanoclusters have attracted extensive attention in recent years. So far, there has been great progress primarily owing to the development of wet-chemical synthesis techniques,among which the utilization of ligand-exchange has been proved to be very effective to synthesize thiolated gold nanoclusters. It can be easily understood that phosphine in gold nanoclusters can be exchanged with thiolate because the latter has stronger affinity for gold. However, we recently found that the reverse ligand-exchange, i.e., the exchange of thiolate with phosphine, can also take place. Some questions have naturally arisen: Is the reverse ligand-exchange only applicable to superatomic [Au25(SR)18]- (SR: thiolate) nanoclusters? Can it occur in other thiolated gold nanoclusters? If so, is this reverse ligand-exchange also dependent on the starting nanoclusters? These intriguing issues have inspired us to conduct this work.

    Key Words: Thiolated gold nanoparticles; PPh3; Universal converter; Luminescence

    1 Introduction

    The study of gold nanoclusters (ultrasmall nanoparticles)protected by phosphine has long history1–10, much longer than that of the thiolated ones. The first phosphine-protected gold nanocluster can be dated back to 1969, when McPartlin et al.1reported the Au11(PPh3)7(SCN)3nanocluster. As research in the field progressed, many structures of phosphine-protected nanoclusters such as Au52, Au73, Au84, Au111,5,6, Au137,8and Au399were unravelled. However, the stability of these phosphine-protected nanoclusters was not satisfactory. For this reason, people had to move their sights to the more stable species,thiolated gold nanoclusters, thus booming the related research11–47.So far, great progress has been achieved primarily owing to the development of wet-chemistry synthesis techniques, among which, ligand-exchange, developed by Schmid, Hutchison,Tsukuda, Jin, et al. has been proved to be very effective to synthesize thiolated gold nanoclusters25,48–57. It can be easily understood that phosphine in gold nanoclusters can be exchanged with thiolate because the latter has stronger affinity for gold. However, we recently found that the reverse ligandexchange, i.e., thiolate was exchanged by phosphine, can also take place58,59. Questions naturally arising are: Is the reverse ligand-exchange only applicable to superatomic Au25? Can it occur in other thiolated gold nanoclusters? If so, is this reverse ligand exchange also dependent on the starting nanoclusters25,43,57,60? These intriguing issues inspired us to make an investigation on the reactions of PPh3 with some other thiolated gold nanoclusters. Surprisingly, the experimental results show that thiolated gold nanoclusters (nanoparticles) with different compositions, structures, sizes and protecting thiolates can be uniformly transformed to [Au11(PPh3)8Cl2]+(Au11for short), and finally to [Au25(PPh3)10(SR)5Cl2]2+(SR: thiolate)under the action of PPh353, while [Ag25(SPhMe2)18]-(Ag25 for short)61, and PVP(citrate)-protected gold nanoparticles can’t be transformed to [Au25(PPh3)10(SR)5Cl2]2+(or [Ag25(PPh3)10(SR)5Cl2]2+) under the same conditions, indicating the unique chemistry of thiolated gold nanoparticles. Employing this special chemistry, we synthesized seven [Au25(PPh3)10(SR)5Cl2]2+species with various ligands, and investigated the ligand influence on the luminescence properties of [Au25(PPh3)10(SR)5Cl2]2+.

    2 Experimental and section

    2.1 Chemicals

    Tetraoctylammonium bromide (TOABr, 98%), 2-phenylethanethiol (PhC2H4SH, ≥ 99%), 4-(tert-butyl) benzene-1-thiol (t-Bu-PhSH, 99.0%), cyclohexanethiol (C6H11SH,99.0%), 1-hexanethiol (C6H14S, ≥ 98%), 1-dodecanethiol(C12H26S, ≥ 98%), benzyl mercaptane (PhCH2SH, 99.0%), 4-tert-butylbenzylmethanethiol (t-Bu-PhCH2SH, 99.0%) were purchased from Sigma-Aldrich. Sodium borohydride (NaBH4, ≥96%), dichloromethane (CH2Cl2, ≥ 99.5%), and methanol(CH3OH, ≥ 99.5%) were purchased from Sinopharm Chemical Reagent Co. Ltd.

    All chemicals were used as received. The water used in all experiments was ultrapure (resistivity 18.2 MΩ?cm), produced with a Milli-Q NANO pure water system.

    2.2 Materials

    [Au23(SC6H11)16]-(Au23for short)62, Au24(SC2H4Ph)20(Au24for short)60, Au36(TBBT)28(Au36for short)57, Au38(SC2H4Ph)24(Au38for short)40, 3 nm Au nanoparticles38, PVP/citrate protected Au nanoparticles63,64and Ag2561were synthesized following the previous methods.

    2.3 Measurements

    All UV-Vis-NIR absorption spectra were recorded using a UV-2550 spectrophotometer (Shimadzu, Japan) at room temperature. Electrospray ionization mass spectra (ESI-MS)were acquired on a Waters Q-TOF mass spectrometer equipped with a Z-spray source. The sample was dissolved in toluene (~1 mg?mL-1) and diluted 1 : 1 in dry ethanol (5 mmol?L-1CsOAc).The sample was directly infused at 5 μL?min-1. The source temperature was fixed at 70 °C. The spray voltage was set at 2.20 kV and the cone voltage at 60 V. Fluorescence spectra were recorded on a Fluoromax-4 spectrofluorometer (HORIBA JobinYvon), and the excitation wavelength was kept at 514 nm with slit of 10 nm.

    2.4 Isolation and purification of[Au15(PPh3)7(SC6H11)7]+

    Au23was dissolved in CH2Cl2and 20 equivalents of PPh3were added to the solution in a dropwise fashion. The reaction mixture was stirred at room temperature for 30 min. After the reaction was completed, the reaction mixture was concentrated by vaporating solvent under a reduced pressure.[Au15(PPh3)7(SC6H11)7]+(Au15for short) was purified by fractional precipitation with petroleum ether as the precipitator.

    2.5 Isolation and purification of [Au11(PPh3)8Cl]2+and [Au(PPh3)2]+

    Au23(Au24and Au36) was dissolved in CH2Cl2and 20 equivalents of PPh3were added to the solution in a dropwise fashion. The reaction mixture was stirred at room temperature for 5 h. After the reaction was completed, the reaction mixture was concentrated by evaporating solvent under a reduced pressure. Au11and [Au(PPh3)2]+were purified by column chromatography on silica gel (methanol/dichloromethane = 1/20,V/V).

    2.6 Isolation and purification of[Au25(PPh3)10(SR)5Cl2]2+

    Au23(Au24and Au36) was dissolved in CH2Cl2and 20 equivalents of PPh3were added to the solution in a dropwise fashion. The reaction mixture was stirred at room temperature for 24 h. After the reaction was completed, the reaction mixture was concentrated by evaporating solvent under a reduced pressure. [Au25(PPh3)10(SR)5Cl2]2+was purified by column chromatography on silica gel (methanol/ dichloromethane =1/20, V/V).

    2.7 Synthesis of Aux(SR)y mixture nanocluster

    HAuCl4?4H2O (0.42 mmol, dissolved in 2 mL of water) was mixed with TOAB (0.48 mmol, dissolved in 10 mL of dichloromethane), the solution was vigorously stirred to facilitate phase transfer of the Au(III) salt into the organic phase.After 15 min., the aqueous layer was removed and 2-phenylethanethiol (6.0 equivs. relative to gold) was added. After 1 h, 5 mL of aqueous NaBH4(10 equivs. relative to gold atom)was rapidly added to the solution. The reaction was allowed to proceed under constant stirring for 2 h. The CH2Cl2 phase was then removed via rotary evaporation and washed with methanol.

    3 Results and discussion

    Au23is the second case that is negatively charged as Au25, and its molecular composition differs from Au25only by an Au2(SR)2unit (without considering the ligand difference), but the structure and protecting thiolate are utterly different from those of Au2562,so Au23was first chosen as the starting nanocluster. In a typical transformation test (details are provided in the experimental section), Au23was dissolved in dichloromethane (DCM), after which a freshly prepared dichloromethane solution of PPh3(20 equivs. per mole of Au nanoclusters) was added dropwise. The reaction mixture was stirred at room temperature and monitored by UV-Vis-NIR spectrometry, which reveals three main reaction stages similar to those in the reaction of Au25with PPh3(Fig. 1a).In the first stage, the characteristic peak of Au23at 450 nm blueshifted to 430 nm, and the characteristic peak of Au23at 570 nm blue-shifted to 550 nm, with a new absorption band centered at 690 nm appeared in the UV-Vis-NIR spectrum. In the second stage, the peak at 430 nm blue-shifted to 415 nm, and the peak at 550 nm red-shifted to 580 nm, with the peak at 690 nm disappeared and a new absorption band centered at 380 nm appeared in the UV-Vis-NIR spectrum in the meantime. Thirdly,two new peaks at 450 and 700 nm were observed with the previous peaks at 415 and 380 nm unchanged. The UV-Vis-NIR spectra of the products at stage 2 and 3 are analogous to those of the reaction between Au25and PPh358, respectively, indicating that Au11and biicosahedral [Au25(PPh3)10(SR)5Cl2]2+rod might also be formed in the reaction of Au23 with PPh3. Electrospray ionization mass spectrometry (ESI-MS), a well-known technology for the formula determination of metal nanoclusters,indeed confirm this, see Fig. 2.

    Fig. 1 UV-Vis-NIR spectrometry monitoring the reaction between Au23 (a), Au24 (b), Au36 (c) and PPh3; UV-Vis-NIR spectrum of PPh3 (d) (solvent: CH2Cl2).

    Fig. 2 The UV-Vis-NIR and the corresponding ESI-MS spectra of stage 1 (a, b), stage 2 (c, d) and stage 3 (e, f) for the reaction between Au23 with PPh3.Inset: The comparison of simulated and experimentally obtained isotopic patterns.

    Since the ligand-exchange reaction is closely related to the cluster size25,57and might be influenced by the protecting ligand25,43,57,60, a larger nanocluster with different protecting thiolate Au3657was then chosen to react with PPh3. After the addition of 20 equivs. of PPh3, the characteristic peaks of Au36disappeared and new absorption bands centered at 415 nm and 380 nm appeared in the UV-Vis-NIR spectra, indicating the formation of Au11. A few hours later, the characteristic peaks of Au11disappeared and new absorption peaks at 341, 392, 426, 460 and 694 nm appeared, indicating that Au11was transformed to[Au25(PPh3)10(TBBT)5Cl2]2+, which was identified by ESI-MS.Interestingly, Au25, Au23 and Au36 are all uniformly transformed to [Au25(PPh3)10(SR)5Cl2]2+through the same intermediate Au11.Due to the fact that the kernels in Au25, Au23and Au36are all bigger than Au11(Au13for Au2535,36, Au15for Au2362, and Au23for Au3657), we speculate that the nanoclusters with kernels smaller than Au11may not be tranformed to Au11, and finally to[Au25(PPh3)10(SR)5Cl2]2+after etched by PPh3. To test this, Au24 was chosen as the starting nanocluster since it has a Au8kernel60.However, the reaction process of Au24with PPh3is similar to the case of Au36with PPh3: Au11was first generated and then[Au25(PPh3)10(SR)5Cl2]2+formed, which was identified by the UV-Vis-NIR and ESI-MS spectrometry (see Figs. 1b and 3a–d).Further experiments demonstrate that even Au38 and the polydisperse gold nanocluster protected by 2-phenylethanethiolatecan be transformed to [Au25(PPh3)10(SR)5Cl2]2+, see Figs. S1b and 4b. The fact that nanoclusters with kernels smaller than Au11can be transformed to Au11and[Au25(PPh3)10(SR)5Cl2]2+indicates that the peeling process found in the case of Au25 may not be applicable to these cases.To address this, we conducted more investigations on the intermediates of the above mentioned reactions.

    Fig. 3 UV-Vis-NIR and corresponding ESI-MS spectra of the reaction between Au24 (a–d), Au36 (e–h) and PPh3.Inset: The comparison of simulated and experimentally obtained isotopic patterns.

    Fig. 4 UV-Vis-NIR spectra of the reaction between ~3 nm thiolated Au nanoparticles (a), polydispersed Aux(SR)y (b) and PPh3.

    In the reaction of Au23and PPh3, we obtained three different products by controlling the reaction time. The first one (denoted as S1) exhibiting similar absorption as that in stage 1 (see above)was isolated when Au23and PPh3were reacted for 30 min, the second one (denoted as S2) showing a similar UV-Vis-NIR spectrum as that in stage 2 was obtained after 5 h’s reaction, and the third product (denoted as S3) with similar absorption as that in stage 3 was isolated after reaction of 24 h. Two distinct peaks centered at M/Z 4335 and 5598 are shown in ESI-MS spectrum of S1, which are assigned to [Au11(PPh3)8Cl2]2+and[Au15(PPh3)7(SC6H11)2]+, respectively, and the isotopic patterns are in good agreement with the simulated ones, see Fig. 2b,confirming these assignments. Moreover, S2 and S3 were identified to be [Au11(PPh3)8Cl2]2+(Fig.2d) and [Au25(PPh3)10(SC6H11)5Cl2]2+(Fig. 2f) by ESI-MS, respectively. It’s known that Au23has a Au15core62, thus the identification of Au15(PPh3)7(SC6H11)7+indicates that the peeling of staples may also occur to the etching of Au23by PPh3. However, in the cases of Au36and Au24, Au11was formed immediately after the addition of PPh3 monitored by UV-Vis-NIR, indicating that the staples peeling is very fast or not applicable to the two cases. Of note, in all of these reactions,we isolated and identified three small nanoclusters [Au2(PPh3)2(SR)]+, [Au3(PPh3)2(SR)2]+and[Au(PPh3)2]+(See Fig.5a), among which, [Au3(PPh3)2(SR)2]+is newly found, while [Au2(PPh3)2(SR)]+65and [Au(PPh3)2]+58have been previously reported.

    Why can thiolated gold nanoclusters with different compositions, structures, sizes and protecting ligands be transformed into [Au25(PPh3)10(SR)5Cl2]2+(see Fig. 6)? The reason could be assigned to the exceptional stability of[Au25(PPh3)10(SR)5Cl2]2+under the investigated conditions. We exclude the quantumn size effect reason by revealling that ~3 nm thiolated gold nanoparticles can also be transformed to[Au25(PPh3)10(SR)5Cl2]2+, while gold nanoparticles protected by polyvinylpyrrolidone (PVP)/citrate or Ag25(SPhMe2)-18(for their synthesis and characterization, see experimental section)cannot be transformed to [Au25(PPh3)10(SR)5Cl2]2+(or[Ag25(PPh3)10(SR)5Cl2]2+) under the similar conditions (Fig. S2).Especially, Ag25 shares the similar structure with Au2561,however, there are no change in the UV-Vis-NIR spectrum of Ag25upon the addition of PPh3(Fig. 5b) even if the reaction time is extended to 48 h, indicating that Ag25is inert to PPh3. These experiment results indicate the unique reactivity of thiolated gold nanoparticles with PPh3, in other words, PPh3acts as a universal converter for thiolated gold nanoparticles.

    Fig. 5 ESI-MS spectrum of three small byproducts [Au(PPh3)2]+,[Au2(PPh3)2(SR)]+ and [Au3(PPh3)2(SR)2]+(a), UV-Vis-NIR spectral evolution for the reaction between Ag25 and PPh3(b).

    One utility of this kind of uniform transformation is that it provides ideal opportunities to investigate ligands influence on the properties of gold nanoclusters and screen ligands for special applications. For example, we synthesized seven[Au25(PPh3)10(SR)5Cl2]2+species with different thiolates(including S-c-C6H11, SC6H13, SC12H25, SC2H4Ph, SCH2Ph,SCH2Ph-t-Bu and SPh-t-Bu) (see Fig. 7a) by using this reverse exchange method, investigated their luminescence properties,and found that their luminescence quantum yields follow the order of [Au25(PPh3)10(SCH2Ph-t-Bu)5Cl2]2+(1.32 × 10-4) >[Au25(PPh3)10(SCH2Ph)5Cl2]2+(8.23 × 10-5) > [Au25(PPh3)10(SC2H4Ph)5Cl2]2+(5.35 × 10-6) > [Au25(PPh3)10(SC12H25)5Cl2]2+(5.02 × 10-6) > [Au25(PPh3)10(SPh-t-Bu)5Cl2]2+(3.97 × 10-6) >[Au25(PPh3)10(SC6H13)5Cl2]2+(3.73 × 10-6) > [Au25(PPh3)10(S-c-C6H11)5Cl2]2+(1.53 × 10-6). (See Fig. 7b). Basing on the QY comparison, we might conclude that SCH2Ph-t-Bu is the best ligand, while S-c-C6H11is the worse ligand for the luminescence triggering of gold nanoparticles in these investigated ligands. It is known that the surface ligands greatly influence the luminescence properties of metal nanoclusters, and one effecting factor is the electron donability of the ligands18. However, it is worth noting that the fluorescence mechanism is complex,and there are some other influencing factors on basis of our previous work18,43,60,66–68. Such diversity in surface ligand is not found in other nanoclusters, for example, although several Au25(SR)-18(SRH: thiols, including 1-hexanethiol, 1-octanethiol, 1-dodecanethiol, 2-phenylethanethiol, glutathione, 2-naphthalenethiol) nanoclusters have been reported32,69, the TBBT-protected Au25nanocluster is not obtained yet until now due to steric hindrance, which limits the systematic investigation on ligand effect.

    Fig. 6 Mechanism illustration of the etching process. Purple,Au atoms; yellow, S atoms; blue, P atoms; green, Cl atoms.Note: The structures used here are all from the solid single crystals,might different from those in liquid phases.

    Fig. 7 UV-Vis-NIR (a) and luminescence (b) spectra of[Au25(PPh3)10(SR)5Cl2]2+ species with different thiolate ligands.Excitation wavelength: 514 nm.

    4 Conclusions

    In summary, we have demonstrated that thiolated gold nanoparticles have different compositions, structures, sizes and protecting thiolates can be transformed to [Au25(PPh3)10(SR)5Cl2]2+(SR: thiolate) through [Au11(PPh3)8Cl2]2+intermediate under the action of PPh3, i.e., PPh3acts as a universal converter for thiolated gold nanoparticles. But this transformation was not found in gold nanoparticles protected by other ligands (PVP, citrate) and Ag25, indicating the unique reactivity of thiolated gold nanoparticles with PPh3. The utility of this finding is that it provides ideal opportunity to investigate the ligand effect and screen ligand for speical applications of thiolated gold nanoparticles.

    Supporting Information:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    99久久精品国产亚洲精品| 女人精品久久久久毛片| 成人影院久久| 老司机影院成人| 精品亚洲乱码少妇综合久久| 国产精品国产av在线观看| 免费高清在线观看日韩| 亚洲欧美成人综合另类久久久| 91老司机精品| 亚洲精品成人av观看孕妇| 国产xxxxx性猛交| 久久久水蜜桃国产精品网| 亚洲国产日韩一区二区| 9191精品国产免费久久| 老熟妇乱子伦视频在线观看 | 亚洲精品一卡2卡三卡4卡5卡 | 国产精品自产拍在线观看55亚洲 | 日韩欧美国产一区二区入口| 丝瓜视频免费看黄片| 欧美在线黄色| 十八禁网站免费在线| 色94色欧美一区二区| 美女高潮到喷水免费观看| 女人久久www免费人成看片| 免费高清在线观看日韩| 亚洲精品粉嫩美女一区| 美女大奶头黄色视频| 亚洲精品自拍成人| 精品熟女少妇八av免费久了| 熟女少妇亚洲综合色aaa.| 人人澡人人妻人| 国产成人免费观看mmmm| 最新在线观看一区二区三区| 女人精品久久久久毛片| 丰满人妻熟妇乱又伦精品不卡| 一级毛片女人18水好多| 五月天丁香电影| 成人av一区二区三区在线看 | 免费不卡黄色视频| 国产人伦9x9x在线观看| 黄色毛片三级朝国网站| 亚洲午夜精品一区,二区,三区| 狂野欧美激情性bbbbbb| 亚洲精品成人av观看孕妇| 精品亚洲成a人片在线观看| 99久久人妻综合| 久热这里只有精品99| 在线永久观看黄色视频| 久久久精品免费免费高清| kizo精华| 中文字幕另类日韩欧美亚洲嫩草| 国产黄频视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 久久这里只有精品19| 一级毛片电影观看| 国产免费一区二区三区四区乱码| 国产精品1区2区在线观看. | 视频区欧美日本亚洲| 中亚洲国语对白在线视频| 成人黄色视频免费在线看| 黄色片一级片一级黄色片| 国产片内射在线| 中文字幕av电影在线播放| 丝袜脚勾引网站| 999精品在线视频| 国产精品久久久av美女十八| 岛国毛片在线播放| 视频在线观看一区二区三区| 最新在线观看一区二区三区| 色视频在线一区二区三区| 精品福利观看| 午夜福利视频在线观看免费| 成人亚洲精品一区在线观看| 狠狠狠狠99中文字幕| 国产欧美日韩综合在线一区二区| 国产激情久久老熟女| 精品高清国产在线一区| 黑人巨大精品欧美一区二区mp4| 国产又爽黄色视频| videosex国产| 男女下面插进去视频免费观看| 日韩有码中文字幕| av网站在线播放免费| 少妇的丰满在线观看| 午夜老司机福利片| 国产欧美日韩一区二区精品| 两性夫妻黄色片| 日韩一卡2卡3卡4卡2021年| 欧美另类亚洲清纯唯美| 久久影院123| 正在播放国产对白刺激| 青春草亚洲视频在线观看| 亚洲欧洲精品一区二区精品久久久| 99九九在线精品视频| 三上悠亚av全集在线观看| 两个人免费观看高清视频| 免费高清在线观看日韩| 国产熟女午夜一区二区三区| 国产男女内射视频| 在线观看免费高清a一片| 97精品久久久久久久久久精品| 无遮挡黄片免费观看| 亚洲成av片中文字幕在线观看| 黄频高清免费视频| 中文欧美无线码| 18禁裸乳无遮挡动漫免费视频| 国产片内射在线| 午夜福利影视在线免费观看| 免费在线观看影片大全网站| 日韩欧美一区二区三区在线观看 | 脱女人内裤的视频| 老司机深夜福利视频在线观看 | 欧美激情极品国产一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 欧美成狂野欧美在线观看| 可以免费在线观看a视频的电影网站| 亚洲精品乱久久久久久| av在线播放精品| 人妻人人澡人人爽人人| 水蜜桃什么品种好| 国产成人系列免费观看| 久久精品人人爽人人爽视色| 免费看十八禁软件| 日本撒尿小便嘘嘘汇集6| 青春草亚洲视频在线观看| 91九色精品人成在线观看| 精品少妇一区二区三区视频日本电影| 丝瓜视频免费看黄片| 91精品三级在线观看| 高清黄色对白视频在线免费看| 亚洲人成电影免费在线| 一级毛片电影观看| 男男h啪啪无遮挡| 黄网站色视频无遮挡免费观看| 国产亚洲av片在线观看秒播厂| 大陆偷拍与自拍| 操出白浆在线播放| 欧美黄色淫秽网站| 久久国产精品男人的天堂亚洲| 日本欧美视频一区| 国产一卡二卡三卡精品| 女人久久www免费人成看片| 日韩欧美免费精品| 中亚洲国语对白在线视频| 老司机午夜福利在线观看视频 | 少妇裸体淫交视频免费看高清 | 午夜福利影视在线免费观看| 日韩一区二区三区影片| 99国产极品粉嫩在线观看| 国产不卡av网站在线观看| 国产精品九九99| 免费观看人在逋| 一个人免费在线观看的高清视频 | 欧美另类一区| 欧美 亚洲 国产 日韩一| 亚洲国产欧美日韩在线播放| 国产主播在线观看一区二区| 黑丝袜美女国产一区| 美女主播在线视频| 欧美国产精品一级二级三级| 午夜福利视频精品| 国产亚洲av高清不卡| 国产在线观看jvid| 国产精品自产拍在线观看55亚洲 | 伊人久久大香线蕉亚洲五| 午夜福利一区二区在线看| 久久久国产精品麻豆| 久久九九热精品免费| 久久久久视频综合| av国产精品久久久久影院| 国产精品一区二区精品视频观看| 午夜免费成人在线视频| 久久av网站| 69av精品久久久久久 | 国产麻豆69| 高清av免费在线| 在线观看免费高清a一片| 亚洲欧美激情在线| 亚洲成人免费av在线播放| 18禁国产床啪视频网站| 免费观看人在逋| 中国美女看黄片| 午夜久久久在线观看| 国产精品久久久久久精品电影小说| 狂野欧美激情性bbbbbb| 人人妻人人添人人爽欧美一区卜| 亚洲成人手机| 深夜精品福利| 女性生殖器流出的白浆| 天天操日日干夜夜撸| 久久久久视频综合| 男人爽女人下面视频在线观看| 精品卡一卡二卡四卡免费| 亚洲 国产 在线| 日韩电影二区| 男人操女人黄网站| 岛国在线观看网站| 人人妻人人爽人人添夜夜欢视频| 亚洲色图 男人天堂 中文字幕| 一级毛片精品| 久久精品熟女亚洲av麻豆精品| 亚洲人成电影观看| 99久久综合免费| 精品视频人人做人人爽| 国产熟女午夜一区二区三区| 亚洲一区中文字幕在线| 大香蕉久久网| 国产高清国产精品国产三级| 国产一级毛片在线| 满18在线观看网站| 91精品伊人久久大香线蕉| 丁香六月天网| tocl精华| 手机成人av网站| 美女高潮喷水抽搐中文字幕| 中文字幕色久视频| 999精品在线视频| 性色av乱码一区二区三区2| av一本久久久久| 亚洲专区中文字幕在线| 亚洲人成电影观看| 丝袜脚勾引网站| 久久亚洲国产成人精品v| 国产区一区二久久| 久久久久久久大尺度免费视频| 51午夜福利影视在线观看| 我的亚洲天堂| 久久精品国产亚洲av香蕉五月 | 99精品久久久久人妻精品| 王馨瑶露胸无遮挡在线观看| 午夜福利,免费看| 在线av久久热| 女人被躁到高潮嗷嗷叫费观| 国产黄色免费在线视频| 老司机亚洲免费影院| 精品乱码久久久久久99久播| 美女扒开内裤让男人捅视频| 亚洲少妇的诱惑av| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜激情av网站| 91成年电影在线观看| 国产男女内射视频| 精品亚洲乱码少妇综合久久| 99香蕉大伊视频| 一边摸一边抽搐一进一出视频| 十八禁网站免费在线| 首页视频小说图片口味搜索| 午夜视频精品福利| 中国美女看黄片| 黑人操中国人逼视频| 国产91精品成人一区二区三区 | 国产成+人综合+亚洲专区| 美女高潮喷水抽搐中文字幕| 伦理电影免费视频| 午夜福利乱码中文字幕| 欧美黄色淫秽网站| 成人国产一区最新在线观看| tocl精华| 丰满饥渴人妻一区二区三| 日韩欧美免费精品| 亚洲成人手机| av有码第一页| 人人妻人人添人人爽欧美一区卜| 国产精品久久久人人做人人爽| 免费在线观看黄色视频的| 久久人人爽人人片av| 国产伦人伦偷精品视频| netflix在线观看网站| 久久亚洲国产成人精品v| 中文精品一卡2卡3卡4更新| 91字幕亚洲| 最新的欧美精品一区二区| 我要看黄色一级片免费的| 欧美激情极品国产一区二区三区| 黑人欧美特级aaaaaa片| 少妇被粗大的猛进出69影院| 久久久国产一区二区| 国产精品影院久久| 黄色片一级片一级黄色片| 秋霞在线观看毛片| 日韩人妻精品一区2区三区| 夜夜骑夜夜射夜夜干| 日韩三级视频一区二区三区| 黄片播放在线免费| 国产一卡二卡三卡精品| 国产精品 欧美亚洲| 新久久久久国产一级毛片| 久久九九热精品免费| av免费在线观看网站| 国产精品自产拍在线观看55亚洲 | 法律面前人人平等表现在哪些方面 | 91麻豆精品激情在线观看国产 | 精品少妇黑人巨大在线播放| 青春草亚洲视频在线观看| 欧美av亚洲av综合av国产av| 99热网站在线观看| 欧美+亚洲+日韩+国产| 桃红色精品国产亚洲av| 一二三四在线观看免费中文在| 狠狠婷婷综合久久久久久88av| 中文字幕av电影在线播放| 亚洲成人国产一区在线观看| 欧美少妇被猛烈插入视频| 少妇精品久久久久久久| 夜夜夜夜夜久久久久| 少妇粗大呻吟视频| 美女主播在线视频| 蜜桃国产av成人99| 大陆偷拍与自拍| 老司机福利观看| 高清欧美精品videossex| 午夜福利视频在线观看免费| 岛国毛片在线播放| 别揉我奶头~嗯~啊~动态视频 | 久久精品国产亚洲av香蕉五月 | 十八禁网站网址无遮挡| 亚洲欧美日韩高清在线视频 | 免费人妻精品一区二区三区视频| 亚洲五月色婷婷综合| 精品福利永久在线观看| 9热在线视频观看99| 欧美xxⅹ黑人| 免费在线观看视频国产中文字幕亚洲 | 男女高潮啪啪啪动态图| 人妻 亚洲 视频| 精品欧美一区二区三区在线| 国产日韩欧美在线精品| 人妻久久中文字幕网| 丁香六月天网| 可以免费在线观看a视频的电影网站| 十八禁高潮呻吟视频| 一进一出抽搐动态| 久久久久久久大尺度免费视频| 两性夫妻黄色片| 一级a爱视频在线免费观看| 国产福利在线免费观看视频| 国产老妇伦熟女老妇高清| 最近中文字幕2019免费版| 中文字幕av电影在线播放| 国产在线视频一区二区| 亚洲色图综合在线观看| 亚洲精品美女久久久久99蜜臀| 久久午夜综合久久蜜桃| 一本一本久久a久久精品综合妖精| 国产高清国产精品国产三级| 欧美黄色片欧美黄色片| 91老司机精品| 99国产精品免费福利视频| 国产高清国产精品国产三级| 美女高潮喷水抽搐中文字幕| 国产99久久九九免费精品| 十八禁网站免费在线| 青青草视频在线视频观看| 黄片小视频在线播放| 久久影院123| 国产真人三级小视频在线观看| 中文字幕人妻熟女乱码| 亚洲色图综合在线观看| 叶爱在线成人免费视频播放| 丰满人妻熟妇乱又伦精品不卡| 丝袜喷水一区| 欧美亚洲 丝袜 人妻 在线| 国产免费视频播放在线视频| 国产精品影院久久| 久久天躁狠狠躁夜夜2o2o| 啦啦啦中文免费视频观看日本| 久久精品国产a三级三级三级| 国产福利在线免费观看视频| 91老司机精品| 国产精品一区二区精品视频观看| 美女高潮喷水抽搐中文字幕| 国产成人免费观看mmmm| 亚洲五月色婷婷综合| 亚洲人成77777在线视频| 亚洲精品国产一区二区精华液| 欧美亚洲日本最大视频资源| 成在线人永久免费视频| 伦理电影免费视频| 日韩制服丝袜自拍偷拍| 亚洲黑人精品在线| 日日爽夜夜爽网站| h视频一区二区三区| 久9热在线精品视频| 亚洲中文日韩欧美视频| 热99久久久久精品小说推荐| 国产精品一区二区在线不卡| 中文字幕人妻丝袜一区二区| 91精品国产国语对白视频| 午夜福利免费观看在线| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩亚洲综合一区二区三区_| 搡老熟女国产l中国老女人| 91av网站免费观看| 免费在线观看视频国产中文字幕亚洲 | 一本—道久久a久久精品蜜桃钙片| 日本91视频免费播放| 日韩中文字幕视频在线看片| 美女中出高潮动态图| 免费久久久久久久精品成人欧美视频| 考比视频在线观看| 久久人人爽av亚洲精品天堂| 久久久久精品人妻al黑| 午夜日韩欧美国产| 中文字幕人妻丝袜制服| av免费在线观看网站| 18在线观看网站| 热re99久久精品国产66热6| 如日韩欧美国产精品一区二区三区| 蜜桃国产av成人99| 精品久久久久久电影网| 亚洲第一av免费看| 国产高清videossex| 人人妻人人爽人人添夜夜欢视频| 国产免费视频播放在线视频| 精品国产乱码久久久久久男人| 我要看黄色一级片免费的| 人成视频在线观看免费观看| 国产亚洲av高清不卡| 两性夫妻黄色片| 纯流量卡能插随身wifi吗| 久久久精品国产亚洲av高清涩受| 国产在线观看jvid| √禁漫天堂资源中文www| 久久亚洲国产成人精品v| 免费在线观看日本一区| 精品国产一区二区三区久久久樱花| 欧美性长视频在线观看| 亚洲激情五月婷婷啪啪| 国产高清视频在线播放一区 | 人妻 亚洲 视频| 十八禁网站网址无遮挡| 91精品伊人久久大香线蕉| 欧美日韩亚洲综合一区二区三区_| 色婷婷久久久亚洲欧美| 中亚洲国语对白在线视频| 国产视频一区二区在线看| 制服诱惑二区| 国产在线一区二区三区精| 爱豆传媒免费全集在线观看| 午夜福利一区二区在线看| 久久久久久久久免费视频了| 成人免费观看视频高清| 老司机深夜福利视频在线观看 | 999久久久国产精品视频| 精品久久久久久电影网| 成年动漫av网址| 91大片在线观看| 老汉色av国产亚洲站长工具| 午夜日韩欧美国产| 纵有疾风起免费观看全集完整版| 一区二区三区激情视频| 视频区图区小说| videos熟女内射| 2018国产大陆天天弄谢| 免费在线观看完整版高清| 91精品国产国语对白视频| 免费女性裸体啪啪无遮挡网站| 亚洲午夜精品一区,二区,三区| 欧美亚洲 丝袜 人妻 在线| 久久久久久久国产电影| 777米奇影视久久| 热99久久久久精品小说推荐| 国产免费视频播放在线视频| 亚洲一码二码三码区别大吗| 建设人人有责人人尽责人人享有的| 久久香蕉激情| 天天影视国产精品| 久久影院123| videosex国产| 曰老女人黄片| 制服诱惑二区| 无遮挡黄片免费观看| 免费av中文字幕在线| 欧美日本中文国产一区发布| 国产在视频线精品| 午夜福利在线观看吧| 国产一级毛片在线| 中文字幕色久视频| 人妻一区二区av| 99国产精品99久久久久| 亚洲黑人精品在线| 中文字幕制服av| 各种免费的搞黄视频| 热99久久久久精品小说推荐| 男男h啪啪无遮挡| 久久精品国产亚洲av高清一级| 亚洲中文字幕日韩| 日本撒尿小便嘘嘘汇集6| 美女中出高潮动态图| 淫妇啪啪啪对白视频 | 啦啦啦视频在线资源免费观看| 精品国产乱码久久久久久男人| 久热爱精品视频在线9| 后天国语完整版免费观看| 日韩一区二区三区影片| 99精国产麻豆久久婷婷| 久久久久久久久久久久大奶| 欧美 亚洲 国产 日韩一| 色94色欧美一区二区| 丰满人妻熟妇乱又伦精品不卡| 国产免费av片在线观看野外av| av天堂久久9| 国产又爽黄色视频| 欧美日韩一级在线毛片| 超碰97精品在线观看| 91av网站免费观看| 国产亚洲欧美精品永久| 国产日韩欧美亚洲二区| 久久久久国产一级毛片高清牌| 久久中文看片网| 在线观看舔阴道视频| 国产精品 国内视频| 纯流量卡能插随身wifi吗| 亚洲综合色网址| 国产在线视频一区二区| 女性被躁到高潮视频| 中文欧美无线码| av在线app专区| 中国国产av一级| 最近中文字幕2019免费版| 99热全是精品| 桃花免费在线播放| 亚洲视频免费观看视频| 亚洲av成人一区二区三| 汤姆久久久久久久影院中文字幕| 男女午夜视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 久久精品人人爽人人爽视色| 国产精品1区2区在线观看. | 他把我摸到了高潮在线观看 | 国产在线一区二区三区精| 久久久精品94久久精品| 久久国产精品大桥未久av| 少妇 在线观看| 久久久精品国产亚洲av高清涩受| 久久久欧美国产精品| 亚洲成人手机| 十八禁人妻一区二区| av在线app专区| 欧美久久黑人一区二区| videosex国产| 亚洲精品国产av成人精品| 在线看a的网站| a在线观看视频网站| 午夜两性在线视频| a在线观看视频网站| 一区二区三区激情视频| 午夜精品久久久久久毛片777| 人人妻,人人澡人人爽秒播| 久久久久国产一级毛片高清牌| 男女无遮挡免费网站观看| 亚洲欧洲日产国产| 91精品三级在线观看| 9191精品国产免费久久| 欧美精品一区二区大全| 韩国高清视频一区二区三区| 精品一区二区三区四区五区乱码| 丝袜喷水一区| 色综合欧美亚洲国产小说| 考比视频在线观看| 黑人欧美特级aaaaaa片| 精品国产乱子伦一区二区三区 | 无限看片的www在线观看| 两性夫妻黄色片| 欧美97在线视频| 一区二区三区四区激情视频| 亚洲一码二码三码区别大吗| 自线自在国产av| 中国国产av一级| 51午夜福利影视在线观看| 亚洲国产成人一精品久久久| 国产精品 欧美亚洲| 精品国产一区二区三区久久久樱花| 啦啦啦啦在线视频资源| 大码成人一级视频| 大香蕉久久网| 日韩一区二区三区影片| 亚洲国产欧美在线一区| 美女高潮到喷水免费观看| 又紧又爽又黄一区二区| 爱豆传媒免费全集在线观看| 国产在线免费精品| 黑人巨大精品欧美一区二区mp4| 成人国产av品久久久| 国产有黄有色有爽视频| 丝袜在线中文字幕| 欧美国产精品一级二级三级| 黑丝袜美女国产一区| 老汉色∧v一级毛片| 夫妻午夜视频| 99精国产麻豆久久婷婷| 免费在线观看影片大全网站| 一级毛片电影观看| 国产伦人伦偷精品视频| 男人舔女人的私密视频| 亚洲欧洲精品一区二区精品久久久| 国产伦人伦偷精品视频| 亚洲 国产 在线| 黑人欧美特级aaaaaa片| 国产精品久久久久久人妻精品电影 | 涩涩av久久男人的天堂| 精品国内亚洲2022精品成人 | 久久亚洲国产成人精品v| 岛国在线观看网站| 极品人妻少妇av视频| 国产欧美日韩精品亚洲av| 成年人午夜在线观看视频| 色婷婷av一区二区三区视频| 精品人妻熟女毛片av久久网站| 久热爱精品视频在线9| 日韩中文字幕视频在线看片| 90打野战视频偷拍视频| 国产精品久久久久久精品古装| 男女高潮啪啪啪动态图| 久久精品国产亚洲av高清一级|