• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ag7(MBISA)6 Nanoclusters Conjugated with Quinacrine for FRETEnhanced Photodynamic Activity under Visible Light Irradiation

    2018-09-10 01:40:10TOMINAGAChiakiHIKOSOUDailoOSAKAIsseyKAWASAKHideya
    物理化學(xué)學(xué)報 2018年7期

    TOMINAGA Chiaki , HIKOSOU Dailo , OSAKA Issey , KAWASAK Hideya ,*

    1 Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University,Suita-shi, Osaka 564-8680, Japan.

    2 Center for Nano Materials and Technology, Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi-shi, Ishikawa 923-1292, Japan.

    Abstract: Singlet oxygen (1O2) plays an important role in various applications, such as in the photodynamic therapy (PDT) of cancers,photodynamic inactivation of microorganisms, photo-degradation of toxic compounds, and photo-oxidation in synthetic chemistry. Recently,water-soluble metal nanoclusters (NCs) have been utilized as photosensitizers for the generation of highly reactive 1O2 because of their high water solubility, low toxicity, and surface functionalizability for targeted substances. In the case of metal NC-based photosensitizers, the photo-physical properties depend on the core size of the NCs and the core/ligand interfacial structures. A wide range of atomically precise gold NCs have been reported; however, reports on the synthesis of atomically precise silver NCs are limited due to the high reactivity and low photostability (i.e., easy oxidation) of Ag NCs. In addition, there have been few reports on what kinds of metal NCs can generate large amounts of 1O2. In this study, we developed a new one-pot synthesis method of water-soluble Ag7(MBISA)6 (MBISA = 2-mercapto-5-benzimidazolesulfonic acid sodium salt) NCs with highly efficient 1O2 generation ability under the irradiation of white light emitting diodes (LEDs). The molecular formula and purity were determined by electrospray ionization mass spectrometry and gel electrophoresis. To the best of our knowledge, this is the first report on atomically precise thiolate silver clusters (Agn(SR)m) for efficient 1O2 generation under visible light irradiation. The 1O2 generation efficiency of Ag7(MBISA)6 NCs was higher than those of the following known water-soluble metal NCs: bovine serum albumin (BSA)-Au25 NCs, BSA-Ag8 NCs, BSA-Ag14 NCs, Ag25(dihydrolipoic acid)14 NCs,Ag35(glutathione)18 NCs, and Ag75(glutathione)40 NCs. The metal NCs examined in this study showed the following order of 1O2 generation efficiency under white light irradiation: Ag7(MBISA)6 > BSA-Ag14 > Ag75(SG)40 > Ag35(SG)18 >BSA-Au25 >> BSA-Ag8 (not detected) and Ag25(DHLA)14 (not detected). For further improving the 1O2 generation of Ag7(MBISA)6 NCs, we developed a novel fluorescence resonance energy transfer (FRET) system by conjugating Ag7(MBISA)6 NCs with quinacrine (QC) (molar ratio of Ag NCs to QC is 1 : 0.5). We observed the FRET process, from QC to Ag7(MBISA)6 NCs, occurring in the conjugate. That is, the QC works as a donor chromophore, while the Ag NCs work as an acceptor chromophore in the FRET process. The FRET-mediated process caused a 2.3-fold increase in 1O2 generation compared to that obtained with Ag7(MBISA)6 NCs alone. This study establishes a general and simple strategy for improving the PDT activity of metal NC-based photosensitizers.

    Key Words: Silver nanoclusters; Singlet oxygen; Photodynamic therapy; Organic dyes; FRET;Hybrid photosensitizers

    1 Introduction

    Metal nanoclusters (NCs) ofsizes less than 3 nm have been recognized as a new substance with unique crystal structures and novel physical/chemical properties, such as electronic,magnetic, optical, and chemical properties, that differ from those of metal nanoparticles greater than 3 nm in size1–3. The size of metal NCs, the metallic core, and the core/ligand interfacial structures determine their physicochemical properties at the atomic level. Because of such atomically dependent-properties, several atomically controlled solution-phase synthesis of metal nanoclusters have been developed for gold nanoclusters (Au NCs) and silver nanoclusters (Ag NCs)4–9. The Au/Ag NCs have shown great potential in various applications including catalysis,fluorescence, sensing, electronics, bio-imaging, biomedical assays, and biomedical therapies10–15.

    Recently, water-soluble Au NCs have been utilized as photosensitizers for the generation of highly reactive singlet oxygen (1O2) toward biomedical applications, including photodynamic therapy (PDT)16–21, because of their high water-solubility, low toxicity, and surface functionalizability for targeted substances. For effective1O2generation, in general,photosensitizers require the following photo-physical properties: (1) a high absorption coefficient in the excitation light region; (2) a triplet state energy of more than 95 kJ?mol-1for energy transfer to ground-state oxygen; (3) a high quantum yield of the triplet state; and (4) high photostability22.

    In the case of metal NC-based photosensitizers, the photo-physical properties depend on the core size of the NCs and the core/ligand interfacial structures. However, there have been few reports about what kinds of metal NCs have the ability to generate high amounts of1O2.

    Previously, we have reported that Aun(SR)mNCs have the ability to generate1O2, and the effectiveness depended on their size: Au25(SR)18> Au18(SR)14> Au38(SR)2418,23,where SR represents an organic thiolate ligand. We also investigated the ligand effect of biomolecular-protected Au25NCs on1O2generation. The1O2generation efficiency of bovine serum albumin (BSA)-Au25NCs was higher than that of Au25(glutathione)18NCs23. More recently, it has been reported that BSA-Ag14NCs show much higher1O2generation efficiency under visible light irradiation compared to BSA-Au25NCs24. Moreover, the antimicrobial property of Ag NCs makes them superior to Au NCs for biomedical applications25,26. A wide range of atomically precise Au NCs have been reported;however, reports on the synthesis of atomically precise Ag NCs are limited due to the high reactivity and low photostability(i.e., easy oxidation) of Ag NCs27.

    In this study, we report the atomically precise synthesis of Ag7(MBISA)6NCs, where MBISA represents 2-mercapto-5-benzimidazolesulfonic acid sodium salt. The molecular formula of the Ag NCs and the purity were determined by electrospray ionization mass spectrometry (ESI-MS) and gel electrophoresis. Herein, for the first time, we employed MBISA as the ligand for Ag NCs. Interestingly, the Ag7(MBISA)6NCs exhibited highly efficient1O2generation under white light emitting diode (LED)light irradiation. The1O2generation efficiency of the Ag7(MBISA)6NCs was higher than those of other known water-soluble Ag NCs: BSA-Ag8,BSA-Ag14,Ag25(dihydrolipoic acid)14, Ag35(glutathione)18, and Ag75(glutathione)40. Furthermore, we developed a novel fluorescence resonance energy transfer (FRET) system by conjugating Ag7(MBISA)6NCs to quinacrine (QC), where the QC acts as a donor and the Ag NCs act as an acceptor. The1O2generation by Ag NCs will be discussed on the basis of intersystem crossing and triplet-triplet energy transfer processes.

    2 Experimental

    2.1 Chemicals

    All of the chemicals were used as received without further purification. Glutathione (reduced form, GSH, 98%), methanol(99.7%), ethanol (99.5%), 1-butanol (99%), silver nitrate(AgNO3, 99.9%), bovine serum albumin (crystalized, BSA),acrylamide (99%), N,N-methylenebis-(acrylamide) (97.0%),tetraoctylammonium bromide (TOAB, > 98%), hydrochloric acid (1 mol?L-1), ammonium peroxodisulphate (APS, 99%),formic acid (99%), glycerol (99.0%), quinacrine dihydrochloride dihydrate (95%), N,N,N,N-tetramethyl-ethylenediamine (TEMED, 99.0%), and tris-HCl (1 mol?L-1, pH 8.8)were purchased from Wako Pure Chemical Industries Ltd.,Japan. 2-Mercapto-5-benzimidazolesulfonic acid (MBISA, >98.0%) and dihydrolipoic acid (DHLA, > 97.0%) were purchased from TCI, Japan. Sodium borohydride (NaBH4,99.99%) and 9,10-anthracenediyl-bis(methylene)dimalonic acid(ABDA, 99.9%) were purchased from Sigma-Aldrich, USA.tris (hydroxymethyl)aminomethane (TRIS) was purchased from Serva, Germany. Glycine was purchased from the Peptide Institute, Japan. Nanopure water (resistivity 18.2 MΩ·cm) was obtained using a pure de-ionized water system (Barnstead NANO, Thermo Scientific, USA).

    2.2 Synthesis

    The synthesis of Ag7(MBISA)6was performed at room temperature. In a typical synthesis, an AgNO3aqueous solution(4.1 mg, 1 mL) is added to 20 mL water, and a MBISA aqueous solution (13.84 mg. 0.48 mL) is added with stirring at 650 r?min-1. Thereafter, a NaBH4aqueous solution (2.7 mg, 1 mL)is rapidly added with stirring at 650 r?min-1. The solution color immediately changes to brown-black. The reaction is further stirred for 5 h. To purify the Ag NCs, we added 1-butanol (16 mL) and methanol (4 mL) into the resultant solution with vigorous shaking. After centrifugation at 6000 r?min-1for 5 min, the supernatant is removed and this treatment is repeated 5 times. Finally, Ag7(MBISA)6is extracted from a mixed solution(V(methanol) : V(ethanol) = 1 : 1, 0.5 mL) twice and the extracted clusters are dried under vacuum.

    The synthesis of other Ag NCs and Au NCs reported previously were performed in air according to the syntheses described in the literature: Ag75(SG)4028, Ag25(DHLA)1429,Ag35(SG)1830, BSA-Ag14NCs24, BSA-Ag8NCs24, and BSA-Au25NCs6.

    The Ag7(MBISA)6NCs-QC conjugates were prepared through the electrostatic interaction between anionic Ag7(MBISA)6NCs and cationic QC. A 1 mmol?L-1QC solution and a 1 mmol?L-1Ag NCs solution were prepared as stock solutions. The QC solution was mixed with the Ag7(MBISA)6NC solution in molar ratios of 1 : 0.1, 1 : 0.5,and 1 : 0.7 (AgNC : QC). The resultant solutions were stirred at 200 r?min-1for 2 h. Thereafter, the solution is purified with a centrifugal ultrafiltration tube (Millipore, 3 KD) to remove the free QC. After the ultrafiltration treatment, the filtrate solution(< MW 3000) is colorless at the ratio of 1 : 0.5 as shown in no absorbance of QC, in the filtrate solution (Fig. S1, Supporting Information), indicating that most of the QC binds to the Ag NCs. It should be noted that we did not experimentally determine quantitative binding numbers of QC to the Ag NCs.

    2.3 Detection of 1O2

    The1O2generation efficiency by the photoexcited Ag NCs and Au NCs was evaluated with an1O2chemical trap probe,ABDA31. ABDA can react irreversibly with1O2, inducing a reduction in the ABDA absorption band around 380 nm. In a typical procedure, a 10 mmol?L-1stock solution of ABDA in DMF is prepared and then added to a deuterated aqueous solution (D2O) of the metal NCs (2 mL) to give final concentrations of ABDA at 20 μmol?L-1. The solutions are then irradiated with a white LED light (15 mW, SPF-D2, Shodensha,Osaka, Japan).

    2.4 Measurements

    UV-Vis (absorption) and fluorescence (excitation and emission) spectra were recorded using a UV-Vis-NIR spectrophotometer (V-670, JASCO, Japan) and spectrofluorometer (FP-6300, JASCO, Japan), respectively. ESI-MS was conducted in the positive mode on the Ag NC solutions(0.3 mg?mL-1) using Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR) on a SolariX 9.4T device (Bruker Daltonics Inc., Billerica, MA, USA). The following settings were used: solvent (V(H2O) : V(MeOH) = 1 : 1); sample flow rate, 2 μL?min-1; drying gas temperature, 200 °C; spray voltage, -4.5 kV; polyacrylamide gel electrophoresis (PAGE)was performed on a five-lane electrophoresis system(Mini-Protean, Bio-Rad, USA). In the ESI-MS, TOAB was added in the Ag7(MBISA)6solution (V(TOAB) : V(Ag NCs) =3 : 1) to solvate the Ag NCs into the organic solution.

    The mass fractions of acrylamide monomer and cross-linker in the resolving gels were 47% and 3% [acrylamide/bis(acrylamide)], respectively. The eluting buffer contained 1.4 mol?L-1tris-HCl (pH = 8.4). The as-synthesized Ag NCs were dissolved in 5% (volume fraction) water, after which 0.3 mL of the sample was loaded and subjected to elution at 150 V for 5 h.

    3 Results and discussion

    3.1 Synthesis and characterization

    In the synthesis of Ag7(MBISA)6NCs, the size-focusing process after 3–5 h resulted in five absorption peaks in the UV-Vis spectrum (463, 505, 552, 612, and 684 nm) (Fig. 1a).PAGE of the as-prepared Ag NCs showed one main band (band A) with a minor band (band B) (Fig. 1a). The absorption spectrum of the product extracted from band A was consistent with that of the as-prepared Ag NCs (Fig. S2), indicating good mono-dispersity of the as-prepared Ag NCs. The highresolution FT-ICR ESI-MS spectrum obtained for the as-prepared Ag NCs indicated that the ion carried a positive charge at m/z = 2176.150 (Fig. 1b). Good agreement between simulated and experimental isotope patterns allowed for the elemental formula: Ag7(MBISA)6(Fig. S3). A quasi-twodimensional Ag7core structure was reported in [Ag7(SR)4]-with a stable motif of [-RS-Ag-RS-]32. At present, the crystal structure of Ag7(MBISA)6NCs has not been obtained, but such a stable motif is also likely for Ag7(MBISA)6NCs.

    3.2 Singlet Oxygen Generation using Ag7(MBISA)6 NCs

    Fig. 1 (a) UV-Vis spectrum of Ag7(MBISA)6NCs in an aqueous media; (b) ESI-mass spectrum of the Ag7(MBISA)6 NCs.

    Fig. 2 (a) UV-Vis spectra of ABDA in the presence of Ag7(MBISA)6 NCs during the white LED light irradiation;(b) QY values as a measure of 1O2 generation efficiency for different Ag NCs under white light irradiation.

    In the present study, ABDA was employed to examine the1O2generation efficiency of Ag7(MBISA)6NCs. It is wellknown that1O2can selectively react with ABDA to decrease the absorbance of ABDA31,33. Ag7(MBISA)6NCs have a broad absorbance in the UV-Vis-NIR range of 400 to 800 nm;hence, a white LED light was chosen as an effective photoexcitation source for the Ag NCs. The UV-Vis spectra of ABDA in the presence of Ag7(MBISA)6NCs in D2O were acquired. In the dark, there was no change over time in the UV-Vis spectra. After irradiation with the white LED, the three absorbance peaks of ABDA, at around 350–400 nm, decreased over time because the1O2generated by the photoexcited Ag7(MBISA)6NCs reacted with ABDA (Fig. 2a). It should be noted that a change of the absorbance in the UV region during the LED light irradiation was observed for both Ag7(MBISA)6NCs and Ag7(MBISA)6NCs-QC (Fig. S4). This indicates the occurrence of partial degradation of Ag NCs under the LED light irradiation, in contrast to the case of stable photo-stability of Au NCs18. This is because easier photo-oxidation of Ag NCs than that of Au NCs27.

    3.3 Comparison of singlet oxygen production efficiency of Ag7(MBISA)6 NCs with other thiolate-protected Ag NCs

    To compared the1O2generation efficiency of various thiolate-protected Ag NCs, we determined the QY value, where QY = Slope/Area. Here Slope is the decrease of ABDA absorbance (ΔAbs) during the white light irradiation (ΔTime/min.), which is represented by Slope = (ΔAbs/ΔTime). Area is the absorption area from 400 to 800 nm in the UV-Vis spectrum of the Ag NCs. We compared the QY values of Ag7(MBISA)6with the other water-soluble Ag NCs and BSA-Au NCs: BSA-Au25NCs, BSA-Ag8, BSA-Ag14, Ag25(DHLA)14, Ag35(SG)18, and Ag75(SG)40. Similar1O2generation tests using ABDA were performed for the other Ag NCs (Figs.S5–S7).

    Fig. 2b shows the QY values of all the metal NCs examined here. The Ag7(MBISA)6NCs showed largest QY value among them, showing that Ag7(MBISA)6NCs had the highest1O2generation capability. As for other Ag NCs, BSA-Ag14NCs showed relatively high1O2generation efficiency while the other Ag NCs showed low1O2generation efficiency. We could not estimate the QY value for Ag25(DHLA)14NCs because of its low photostability under white light irradiation (Fig. S8).The1O2generation by BSA-Ag8NCs was not detectable by using the ABDA probe. Thus, we concluded the order of1O2generation efficiency under white light irradiation by the metal NCs examined in this study as follows: Ag7(MBISA)6(QY =150 × 10-5) > BSA-Ag14(QY = 38 × 10-5) > Ag75(SG)40(QY =14 × 10-5) > Ag35(SG)18(QY = 8 × 10-5) > BSA-Au25(QY = 4 ×10-5) >> BSA-Ag8(Not detected) and Ag25(DHLA)14(Not detected).

    1O2is generated by the triplet-triplet energy transfer (TTET)between ground-state oxygen (triplet state) and the photosensitizer (PS) through intersystem crossing (ISC) (Fig.3), which competes with other deactivation processes. In general, high ISC efficiency causes a high1O2quantum yield22,33. Therefore, the high1O2generation by Ag7(MBISA)6NCs may be attributed to the high ISC efficiency. If the production of1O2was inhibited by other pathways, the1O2generation efficiency would be low. All of the Ag NCs examined here (except for Ag7(MBISA)6) exhibited strong red fluorescence6,24,25,28–30. The negligibly weak fluorescence of Ag7(MBISA)6NCs might be attributed to fluorescent quenching as a consequence of the ISC and subsequent1O2generation.

    Fig. 3 The generation of 1O2 through intersystem crossing (ISC) and triplet-triplet energy transfer (TTET) processes.

    3.4 FRET-mediated enhancement of 1O2 generation using an Ag7(MBISA)6–QC conjugate

    Conjugation of other ligands into metal NCs can create novel properties depending on the individual properties of ligands and the interaction of metal NCs with the ligands. In this study, we developed a FRET-mediated enhancement of1O2generation using the conjugation of Ag7(MBISA)6NCs with QC (Ag7(MBISA)6-QC conjugate). In order to construct an efficient FRET system, several conditions must be met. In particular, the donor (QC) emission and the acceptor(Ag7(MBISA)6) absorption spectra should significantly overlap34,35. Clinically, QC is already used as malaria preventative treatment36, and more recently, it has been also reported to inhibit tumorigenesis in endometrial cancer in vitro37.

    Fig. 4 (a) UV-Vis absorption spectrum of Ag7(MBISA)6 NCs and the fluorescence emission spectrum of QC from 413 nm excitation in an aqueous solution; (b) UV-Vis spectra of the Ag7(MBISA)6-QC conjugates with various ratios of Ag7(MBISA)6 to QC.

    Fig. 5 (a) Fluorescence emission spectra (excitation at 413 nm) of QC, Ag7(MBISA)6 NCs, and Ag7(MBISA)6-QC conjugate (1 : 0.5);(b) UV-Vis spectra of ABDA in the presence of the Ag7(MBISA)6-QC conjugate (1 : 0.5) during white LED light irradiation.

    Fig. 6 (a) QY values as a measure of 1O2 generation efficiency for Ag7(MBISA)6 NCs, QC, and Ag7(MBISA)6-QC conjugates of different molar ratios under white light irradiation; (b) Schematic illustration of the FRET system: conjugation of Ag7(MBISA)6NCs to QC for enhanced 1O2 generation from white LED light irradiation.

    The key issues for FRET efficiency are energy level matching and suitable linkers between the energy donor and the energy acceptor. The broad absorption band of Ag7(MBISA)6at less than 750 nm overlaps well with the emission spectrum of QC at around 500 nm (Fig. 4a), satisfying the overlap condition for an efficient FRET34,35. Moreover, the distance for the FRET event to occur is generally 1–10 nm. Thus, if QC can be attached to Ag7(MBISA)6NCs, a FRET process can be expected. Fig. 4b shows the UV-Vis spectra of the Ag7(MBISA)6-QC conjugate. The QC has strong absorbance at 400–500 nm (Fig. S9). Upon conjugation of QC with Ag7(MBISA)6NCs, the QC absorbance at around 400–500 nm increases with the ratio of QC to Ag7(MBISA)6. The conjugation of Ag7(MBISA)6NCs with QC (molar ratio of AgNCs to QC is 1 : 0.5) increased the fluorescence intensity of Ag7(MBISA)6NCs at around 600–800 nm with a simultaneous decrease in the fluorescence intensity of QC (Fig. 5a). These observations suggest that the FRET process, from QC to Ag7(MBISA)6NCs, occurred in the conjugate. That is, the QC works as a donor chromophore while the Ag NCs work as an acceptor chromophore in the FRET process.

    The1O2generation tests using ABDA were performed the for Ag7(MBISA)6-QC conjugates (Figs. 5b and S6). The QY values of Ag7(MBISA)6-QC conjugate, Ag7(MBISA)6NCs,and QC are summarized in Fig. 6a. It is clear that the Ag7(MBISA)6-QC conjugates show larger QY values than that of Ag7(MBISA)6NCs alone or that of QC alone. In particular,Ag7(MBISA)6-QC conjugate (1 : 0.5) showed the highest QY value (QY = 362 × 10-5), which was a 2.3-fold increase in1O2generation compared to that of Ag7(MBISA)6NCs alone. It is reasonable that the FRET process from QC to Ag7(MBISA)6NCs mainly contributes to the enhanced1O2generation in the conjugate, as shown in Fig. 6b.

    4 Conclusions

    We performed a one-pot synthesis of atomically precise silver thiolate nanoclusters (Ag7(MBISA)6) using the size-focusing method. The molecular formula and purity were determined by ESI-MS and gel electrophoresis. We found that water-soluble Ag7(MBISA)6NCs generated1O2with high efficiency under irradiation with a white LED, superior to the following water-soluble metal NCs examined here: BSA-Au25NCs, BSA-Ag14, BSA-Ag8, Ag25(DHAL)14, Ag75(SG)40, and Ag35(SG)18. To the best of our knowledge, this is the first report of atomically precise thiolate silver clusters (Agn(SR)m) being used for efficient1O2generation. For improving the1O2generation of Ag7(MBISA)6NCs further, we developed a novel FRET system by conjugating Ag7(MBISA)6NCs to quinacrine.The conjugation further doubled the1O2generation efficiency of the Ag7(MBISA)6NCs.

    草草在线视频免费看| 18+在线观看网站| 日韩欧美在线乱码| 神马国产精品三级电影在线观看| 91av网一区二区| 激情 狠狠 欧美| 天美传媒精品一区二区| 99riav亚洲国产免费| 精品欧美国产一区二区三| 日本黄色片子视频| 日韩国内少妇激情av| 99国产极品粉嫩在线观看| 变态另类丝袜制服| 三级毛片av免费| 亚洲三级黄色毛片| 亚洲国产高清在线一区二区三| 久久热精品热| 色哟哟·www| 给我免费播放毛片高清在线观看| 啦啦啦观看免费观看视频高清| 国产亚洲精品久久久久久毛片| 亚洲欧洲国产日韩| 变态另类丝袜制服| 国产成人aa在线观看| 婷婷色av中文字幕| 久久亚洲国产成人精品v| 22中文网久久字幕| 黄色视频,在线免费观看| 日韩 亚洲 欧美在线| 精品久久久噜噜| 国产午夜福利久久久久久| 国产私拍福利视频在线观看| 日本欧美国产在线视频| 久久久国产成人精品二区| 国产精品人妻久久久久久| 日韩一本色道免费dvd| 国产国拍精品亚洲av在线观看| 亚洲最大成人手机在线| 久久这里有精品视频免费| 身体一侧抽搐| 国产亚洲91精品色在线| 麻豆国产av国片精品| 成人美女网站在线观看视频| 国产精品综合久久久久久久免费| 国产精品一区二区三区四区久久| 能在线免费观看的黄片| kizo精华| 亚洲精品成人久久久久久| 欧美日韩乱码在线| 国产一级毛片在线| 亚洲av二区三区四区| 男人舔女人下体高潮全视频| 欧美xxxx黑人xx丫x性爽| 国产久久久一区二区三区| 色综合色国产| 美女黄网站色视频| 国产精品美女特级片免费视频播放器| kizo精华| 亚洲成人精品中文字幕电影| 日韩av在线大香蕉| 丝袜喷水一区| 麻豆久久精品国产亚洲av| 亚洲18禁久久av| 国产亚洲精品久久久com| 久久久久久久亚洲中文字幕| 日韩人妻高清精品专区| 青春草亚洲视频在线观看| 欧美色欧美亚洲另类二区| 国产亚洲精品av在线| 国产亚洲5aaaaa淫片| or卡值多少钱| 青春草国产在线视频 | 色哟哟哟哟哟哟| 美女黄网站色视频| 久久精品夜色国产| 日韩国内少妇激情av| 欧美bdsm另类| 美女cb高潮喷水在线观看| 观看免费一级毛片| 久久精品人妻少妇| 一夜夜www| 人妻久久中文字幕网| 大香蕉久久网| 日韩欧美三级三区| 日韩一区二区三区影片| 欧美日韩国产亚洲二区| 亚洲美女视频黄频| 给我免费播放毛片高清在线观看| 亚洲精华国产精华液的使用体验 | 99热这里只有精品一区| 夜夜看夜夜爽夜夜摸| 亚洲精品色激情综合| 亚洲最大成人手机在线| 尾随美女入室| 久久久久久久久久久丰满| 伦理电影大哥的女人| 日韩制服骚丝袜av| 在线免费十八禁| 少妇的逼水好多| 欧美一区二区精品小视频在线| 精品人妻视频免费看| 久久久精品94久久精品| 人妻系列 视频| 欧美人与善性xxx| 97人妻精品一区二区三区麻豆| 一区二区三区四区激情视频 | 黑人高潮一二区| 一本一本综合久久| 伦精品一区二区三区| av国产免费在线观看| 一个人观看的视频www高清免费观看| 欧美另类亚洲清纯唯美| av在线蜜桃| 国产黄a三级三级三级人| 少妇人妻精品综合一区二区 | 亚洲精品粉嫩美女一区| 欧美成人精品欧美一级黄| 亚洲色图av天堂| 99久久中文字幕三级久久日本| 久久久色成人| 亚洲欧美日韩东京热| 久久亚洲精品不卡| 好男人在线观看高清免费视频| 麻豆一二三区av精品| 亚洲真实伦在线观看| 一夜夜www| 国产av一区在线观看免费| 国产精品久久久久久久电影| 国产一区二区亚洲精品在线观看| 亚洲成a人片在线一区二区| 国产精品乱码一区二三区的特点| 国产伦精品一区二区三区视频9| 最近手机中文字幕大全| 亚洲性久久影院| 日韩中字成人| 国产真实乱freesex| av在线亚洲专区| 男人舔女人下体高潮全视频| 人妻少妇偷人精品九色| 精品少妇黑人巨大在线播放 | 成人无遮挡网站| 成人综合一区亚洲| 少妇被粗大猛烈的视频| 精品人妻熟女av久视频| 老熟妇乱子伦视频在线观看| 久久精品综合一区二区三区| 日本在线视频免费播放| 12—13女人毛片做爰片一| 美女xxoo啪啪120秒动态图| 国产精品久久电影中文字幕| 日韩精品青青久久久久久| 最近中文字幕高清免费大全6| 九九爱精品视频在线观看| 国产一级毛片七仙女欲春2| 变态另类丝袜制服| 欧美高清性xxxxhd video| 永久网站在线| or卡值多少钱| 国产精品麻豆人妻色哟哟久久 | 身体一侧抽搐| 91久久精品国产一区二区成人| 观看免费一级毛片| 国产精品无大码| 日韩欧美精品免费久久| 国产午夜精品论理片| 亚洲精品日韩av片在线观看| av女优亚洲男人天堂| 成人永久免费在线观看视频| 爱豆传媒免费全集在线观看| 久久精品国产99精品国产亚洲性色| 免费看光身美女| 国产精品福利在线免费观看| 波多野结衣高清无吗| 国产毛片a区久久久久| 亚洲中文字幕日韩| 中文欧美无线码| 九九热线精品视视频播放| 欧美色视频一区免费| 国产精品嫩草影院av在线观看| 国产乱人偷精品视频| 午夜免费男女啪啪视频观看| 亚洲第一区二区三区不卡| www.色视频.com| 91久久精品国产一区二区三区| 久久精品久久久久久久性| 97超碰精品成人国产| 日韩av不卡免费在线播放| 在线观看一区二区三区| 18禁在线播放成人免费| 欧美极品一区二区三区四区| 久久久久免费精品人妻一区二区| 22中文网久久字幕| 精品午夜福利在线看| 久久九九热精品免费| 久久这里有精品视频免费| 99久久久亚洲精品蜜臀av| 黑人高潮一二区| 99久国产av精品国产电影| 最近最新中文字幕大全电影3| 波野结衣二区三区在线| 国产伦精品一区二区三区视频9| 国产精品精品国产色婷婷| 亚洲美女搞黄在线观看| 色综合色国产| 亚洲乱码一区二区免费版| 国产精品免费一区二区三区在线| 亚洲欧美日韩高清专用| 蜜桃久久精品国产亚洲av| 大香蕉久久网| 男女下面进入的视频免费午夜| 欧美激情在线99| 欧美成人免费av一区二区三区| 变态另类成人亚洲欧美熟女| 日韩精品有码人妻一区| а√天堂www在线а√下载| 人妻系列 视频| 国产精品乱码一区二三区的特点| 2022亚洲国产成人精品| 最近视频中文字幕2019在线8| 99久久精品国产国产毛片| 国产伦精品一区二区三区四那| 1000部很黄的大片| 亚洲内射少妇av| 美女cb高潮喷水在线观看| 久久人妻av系列| 国产精品综合久久久久久久免费| 精品久久久久久久久av| 欧美xxxx性猛交bbbb| 中文字幕久久专区| 日本撒尿小便嘘嘘汇集6| 久久久国产成人免费| 久久久a久久爽久久v久久| 美女脱内裤让男人舔精品视频 | 色哟哟·www| a级毛色黄片| 黄色日韩在线| 草草在线视频免费看| 久久久久网色| 国产又黄又爽又无遮挡在线| 亚洲中文字幕一区二区三区有码在线看| 91麻豆精品激情在线观看国产| 午夜老司机福利剧场| 校园春色视频在线观看| 亚洲经典国产精华液单| 国内揄拍国产精品人妻在线| 一区二区三区四区激情视频 | 国产极品天堂在线| 国产成人精品婷婷| 国产成人aa在线观看| 亚洲无线观看免费| www日本黄色视频网| 91久久精品国产一区二区成人| 99久久人妻综合| 高清午夜精品一区二区三区 | 国产成人精品一,二区 | av女优亚洲男人天堂| 午夜视频国产福利| av天堂在线播放| 免费大片18禁| 高清毛片免费看| 亚洲电影在线观看av| 国产男人的电影天堂91| 欧美另类亚洲清纯唯美| 97人妻精品一区二区三区麻豆| 乱系列少妇在线播放| .国产精品久久| 18禁在线播放成人免费| 日韩欧美在线乱码| 国国产精品蜜臀av免费| 亚洲在线观看片| 久久这里只有精品中国| 嘟嘟电影网在线观看| 国产爱豆传媒在线观看| 欧美色视频一区免费| 夫妻性生交免费视频一级片| 成人午夜高清在线视频| 亚洲性久久影院| 国产成人福利小说| 国产色婷婷99| 五月玫瑰六月丁香| 老师上课跳d突然被开到最大视频| 国产一区二区三区av在线 | av国产免费在线观看| 最近2019中文字幕mv第一页| 人妻夜夜爽99麻豆av| 日韩高清综合在线| 精品不卡国产一区二区三区| 一区二区三区免费毛片| 亚洲经典国产精华液单| 99久久无色码亚洲精品果冻| 国产毛片a区久久久久| 欧美性猛交╳xxx乱大交人| 亚洲欧美日韩高清在线视频| 97超视频在线观看视频| 国产乱人偷精品视频| 精品久久久久久久久亚洲| 日本撒尿小便嘘嘘汇集6| 一区二区三区高清视频在线| 亚洲精品国产av成人精品| 大香蕉久久网| 日韩av在线大香蕉| 欧美人与善性xxx| a级毛片a级免费在线| 中文字幕久久专区| 中文精品一卡2卡3卡4更新| 国内久久婷婷六月综合欲色啪| 五月伊人婷婷丁香| 国产亚洲欧美98| 男女啪啪激烈高潮av片| 国产美女午夜福利| 日韩一本色道免费dvd| 男人和女人高潮做爰伦理| 精品不卡国产一区二区三区| 日韩高清综合在线| 中文亚洲av片在线观看爽| 免费搜索国产男女视频| 成年版毛片免费区| 男女视频在线观看网站免费| 成年版毛片免费区| 狠狠狠狠99中文字幕| 国产成人一区二区在线| 欧美性猛交╳xxx乱大交人| 精品久久久久久久人妻蜜臀av| 亚洲av成人av| 国产探花在线观看一区二区| 国产成人精品婷婷| 欧美潮喷喷水| 亚洲国产欧美人成| 欧美变态另类bdsm刘玥| 久久精品综合一区二区三区| 精品久久久噜噜| 久久国产乱子免费精品| 国产不卡一卡二| 国产高清视频在线观看网站| 一进一出抽搐动态| 伊人久久精品亚洲午夜| 丰满的人妻完整版| 国产美女午夜福利| 大香蕉久久网| 精品久久国产蜜桃| 一卡2卡三卡四卡精品乱码亚洲| 美女脱内裤让男人舔精品视频 | 91久久精品国产一区二区成人| 亚洲在线观看片| 日本与韩国留学比较| 欧美激情在线99| 欧美最黄视频在线播放免费| 国产精品福利在线免费观看| 成人无遮挡网站| 国产亚洲精品av在线| 国产成人91sexporn| 一级黄片播放器| 欧美区成人在线视频| 我要看日韩黄色一级片| 国产大屁股一区二区在线视频| 日本与韩国留学比较| 国产亚洲精品久久久com| 99视频精品全部免费 在线| 午夜福利在线观看吧| 夫妻性生交免费视频一级片| 最近手机中文字幕大全| 国内精品美女久久久久久| 午夜精品在线福利| 成人毛片60女人毛片免费| 亚洲四区av| 国产成人精品久久久久久| 久久九九热精品免费| 欧美三级亚洲精品| 国产老妇伦熟女老妇高清| 精品一区二区三区人妻视频| 麻豆成人午夜福利视频| 亚洲精品亚洲一区二区| 欧美丝袜亚洲另类| 自拍偷自拍亚洲精品老妇| 精品无人区乱码1区二区| 午夜福利在线在线| 一级av片app| 欧美日韩在线观看h| 美女高潮的动态| 日本与韩国留学比较| 干丝袜人妻中文字幕| 精品人妻视频免费看| 晚上一个人看的免费电影| 哪个播放器可以免费观看大片| 国产精品蜜桃在线观看 | 欧美色欧美亚洲另类二区| 只有这里有精品99| 国产单亲对白刺激| 搡女人真爽免费视频火全软件| 国产精品久久电影中文字幕| 国产私拍福利视频在线观看| 大又大粗又爽又黄少妇毛片口| 又粗又硬又长又爽又黄的视频 | 国产精华一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 日韩亚洲欧美综合| 日韩av不卡免费在线播放| 精品无人区乱码1区二区| av在线观看视频网站免费| 免费看av在线观看网站| 黄片wwwwww| 亚洲久久久久久中文字幕| 色综合亚洲欧美另类图片| 最近最新中文字幕大全电影3| 国产成年人精品一区二区| 联通29元200g的流量卡| 我要看日韩黄色一级片| 国内精品一区二区在线观看| 一边摸一边抽搐一进一小说| 国内精品美女久久久久久| 乱系列少妇在线播放| 神马国产精品三级电影在线观看| 蜜桃亚洲精品一区二区三区| 国产高清激情床上av| 亚洲天堂国产精品一区在线| 国产成人精品婷婷| 国产精品不卡视频一区二区| 岛国在线免费视频观看| 亚洲人成网站在线播放欧美日韩| 精品一区二区三区视频在线| 免费看a级黄色片| 婷婷色av中文字幕| 久久久成人免费电影| 久久久a久久爽久久v久久| 国产av不卡久久| 国产成人午夜福利电影在线观看| 一夜夜www| 三级经典国产精品| 男人的好看免费观看在线视频| 国产成人精品久久久久久| 国产精品美女特级片免费视频播放器| 亚洲成人精品中文字幕电影| 久久久久久久久久久丰满| 黑人高潮一二区| 亚洲av中文字字幕乱码综合| 搡老妇女老女人老熟妇| 在线观看免费视频日本深夜| 国产淫片久久久久久久久| 日韩精品青青久久久久久| 久久精品国产99精品国产亚洲性色| 久久精品久久久久久噜噜老黄 | 日本-黄色视频高清免费观看| 在线免费十八禁| 久久99精品国语久久久| 欧美极品一区二区三区四区| 黑人高潮一二区| 小蜜桃在线观看免费完整版高清| а√天堂www在线а√下载| 三级男女做爰猛烈吃奶摸视频| 99久久精品国产国产毛片| 日本免费一区二区三区高清不卡| 女人被狂操c到高潮| 草草在线视频免费看| 国产精品麻豆人妻色哟哟久久 | 国产激情偷乱视频一区二区| 少妇的逼好多水| 日日摸夜夜添夜夜添av毛片| 亚洲五月天丁香| 亚洲第一区二区三区不卡| 国产麻豆成人av免费视频| 中文欧美无线码| 亚洲图色成人| 国产黄a三级三级三级人| av在线亚洲专区| 男女视频在线观看网站免费| 亚洲成人久久性| 日本黄色片子视频| 国产精品av视频在线免费观看| 又黄又爽又刺激的免费视频.| 男女边吃奶边做爰视频| 伊人久久精品亚洲午夜| 午夜福利视频1000在线观看| 日韩精品青青久久久久久| 晚上一个人看的免费电影| 99久久中文字幕三级久久日本| a级一级毛片免费在线观看| 天美传媒精品一区二区| 国产精品久久久久久久电影| 少妇熟女欧美另类| 男女下面进入的视频免费午夜| 精品久久久久久久久久免费视频| 久久久精品欧美日韩精品| 伦理电影大哥的女人| 亚洲av免费高清在线观看| 国产极品天堂在线| 直男gayav资源| 亚洲内射少妇av| 伊人久久精品亚洲午夜| 99久久精品国产国产毛片| 神马国产精品三级电影在线观看| 欧洲精品卡2卡3卡4卡5卡区| АⅤ资源中文在线天堂| 国产精品99久久久久久久久| 日本一二三区视频观看| 日本与韩国留学比较| 99久久成人亚洲精品观看| 国产av不卡久久| 亚洲在久久综合| 美女cb高潮喷水在线观看| 欧美又色又爽又黄视频| 直男gayav资源| 国国产精品蜜臀av免费| 看十八女毛片水多多多| 久99久视频精品免费| 欧美日韩精品成人综合77777| 亚洲人成网站高清观看| 一级毛片久久久久久久久女| 日本黄色视频三级网站网址| 久久99热6这里只有精品| 精品一区二区免费观看| 在线国产一区二区在线| 亚洲高清免费不卡视频| 亚洲精品自拍成人| 日本三级黄在线观看| 成年女人永久免费观看视频| 老熟妇乱子伦视频在线观看| 熟女人妻精品中文字幕| 精品国产三级普通话版| 亚洲丝袜综合中文字幕| 69av精品久久久久久| 日韩欧美 国产精品| 女的被弄到高潮叫床怎么办| 国产亚洲91精品色在线| 人妻制服诱惑在线中文字幕| 久久久久网色| 色噜噜av男人的天堂激情| 联通29元200g的流量卡| 欧美激情在线99| 一进一出抽搐gif免费好疼| 欧美成人精品欧美一级黄| 波多野结衣高清作品| 国产伦在线观看视频一区| 男插女下体视频免费在线播放| 午夜福利在线在线| 乱码一卡2卡4卡精品| av在线天堂中文字幕| 亚洲中文字幕日韩| 成人二区视频| 久久人人爽人人爽人人片va| 伦精品一区二区三区| 国内精品宾馆在线| 婷婷色综合大香蕉| 日韩一区二区视频免费看| 女人十人毛片免费观看3o分钟| 国产精品一区二区性色av| 欧美成人免费av一区二区三区| 一边亲一边摸免费视频| h日本视频在线播放| 51国产日韩欧美| 草草在线视频免费看| 在线国产一区二区在线| 国产成人影院久久av| 亚洲欧美精品专区久久| 国产日韩欧美在线精品| 69人妻影院| 国内少妇人妻偷人精品xxx网站| 99热这里只有精品一区| 淫秽高清视频在线观看| 高清午夜精品一区二区三区 | 国产精品国产三级国产av玫瑰| 国产精品99久久久久久久久| 久久久久网色| 久久这里只有精品中国| 国产精品不卡视频一区二区| 99久久精品国产国产毛片| 久久国产乱子免费精品| 欧美潮喷喷水| 一区二区三区免费毛片| 国产精品福利在线免费观看| 日韩视频在线欧美| 色播亚洲综合网| 亚洲精品亚洲一区二区| 久久人妻av系列| а√天堂www在线а√下载| 久久久久久九九精品二区国产| 成年av动漫网址| 国产视频首页在线观看| 亚洲人成网站在线播放欧美日韩| 成人二区视频| 男女边吃奶边做爰视频| 美女脱内裤让男人舔精品视频 | 神马国产精品三级电影在线观看| 老女人水多毛片| 亚洲七黄色美女视频| 91久久精品电影网| 国内久久婷婷六月综合欲色啪| 偷拍熟女少妇极品色| 成人毛片60女人毛片免费| 国产久久久一区二区三区| 一级二级三级毛片免费看| 欧美三级亚洲精品| 成人亚洲精品av一区二区| 色综合站精品国产| 你懂的网址亚洲精品在线观看 | 国语自产精品视频在线第100页| 麻豆乱淫一区二区| 亚洲自偷自拍三级| 国产黄片美女视频| 韩国av在线不卡| 国产男人的电影天堂91| 亚洲av二区三区四区| 欧美3d第一页| 国产一区二区在线av高清观看| 夫妻性生交免费视频一级片| 国产单亲对白刺激| 一级毛片电影观看 | av天堂在线播放| 精品久久久噜噜| 精品久久久久久久末码| 中文欧美无线码| 天堂av国产一区二区熟女人妻| 日韩高清综合在线| 少妇被粗大猛烈的视频| 欧美日本视频| 精品一区二区三区视频在线|