• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Higher-Order Rogue Wave Pairs in the Coupled Cubic-Quintic Nonlinear Schr?dinger Equations?

    2018-08-02 07:35:36TaoXu徐濤WaiHongChan陳偉康andYongChen陳勇
    Communications in Theoretical Physics 2018年8期
    關鍵詞:陳勇

    Tao Xu(徐濤),Wai-Hong Chan(陳偉康),and Yong Chen(陳勇),4,?

    1Shanghai Key Laboratory of Trustworthy Computing,East China Normal University,Shanghai 200062,China

    2MOE International Joint Lab of Trustworthy Software,East China Normal University,Shanghai 200062,China

    3Department of Mathematics and Information Technology,The Education University of Hong Kong,Hong Kong,China

    4Department of Physics,Zhejiang Normal University,Jinhua 321004,China

    AbstractWe study some novel patterns of rogue wave in the coupled cubic-quintic nonlinear Schr?dinger equations.Utilizing the generalized Darboux transformation,the higher-order rogue wave pairs of the coupled system are generated.Especially,the first-and second-order rogue wave pairs are discussed in detail.It demonstrates that two classical fundamental rogue waves can be emerged from the first-order case and four or six classical fundamental rogue waves from the second-order case.In the second-order rogue wave solution,the distribution structures can be in triangle,quadrilateral and ring shapes by fixing appropriate values of the free parameters.In contrast to single-component systems,there are always more abundant rogue wave structures in multi-component ones.It is shown that the two higher-order nonlinear coefficients ρ1and ρ2make some skews of the rogue waves.

    Key words:higher-order rogue wave pairs,coupled cubic-quintic nonlinear Schr?dinger equations,generalized Darboux transformation

    1 Introduction

    Rogue waves(RWs)are modeled as a unique phenomenon that seems to appear from nowhere and disappear without a trace,[1]and can appear in a variety of fields,such as atmosphere,[2]super fluidity,[3]Bose-Einstein condensates,[4]nonlinear optics[5]and finance[6]and so on.These kinds of waves are characterized as being localized in both space and time,and are always written as rational form solutions in mathematics.It is well known that the standard nonlinear Schr?dinger(NLS)equation is an ideal model that describes the RW phenomenon.Besides,various types of rogue wave solutions associated with the NLS equation have been widely reported by many authors.[7?9]

    There have been many articles on rogue waves of other single-component systems besides the standard NLS equation,such as the derivative NLS equation,[10?11]the Hirota equation,[12]the Kundu-Eckhaus equation,[13?14]the(3+1)-dimensional Jimbo-Miwa equation[15]and so on.Based on the fact that a variety of complex systems usually involve more than one component,such as nonlinear optical fibers and Bose-Einstein condensates,etc.,recent studies were extended to multi-component systems.[16?18]Cross-phase modulation effects are usually included in the coupled system,and the cross-phase modulation term can vary the instability regime.[19]For single-component systems,the RW solutions can be always correlated by Galileo transformation.Thus,the velocity of the background has no real effect of RWs’structures.For multicomponent coupled models,the relative velocity between different components cannot be annihilated by some special Galileo transformations,and this kind of velocity plays an important role in controlling various structures of RW solutions.[19?21]

    Compared to single-component systems,a variety of novel and interesting results appeared in multi-component systems.[22?23]The four-petaled flower structure RWs were constructed in the three-component NLS equations through the Darboux transformation(DT).[20]The W-shaped soliton complexes and RWs were obtained in AB system.[21]Recently,various types interactional solutions were constructed in many different multi-component systems.[24?25]Bright-dark-rogue solutions were constructed in two-component NLS equations[26]and Hirota equations[27]by DT,respectively. Besides,the hybrid solutions that higher-order RWs interacting with multisoliton(or multi-breather)were constructed in various multi-component systems.[28?30]

    In recent years,there have been several studies on RW pairs in multi-component coupled systems,[19,31?32]in which this kind of first-order RW pair solutions can include two first-order classical RWs.In this paper,we focus on constructing higher-order RW pairs of the following coupled cubic-quintic nonlinear Schr?dinger(CCQNLS)equations,which describe the effects of quintic nonlinearity on the ultrashort optical pulse propagation in non-Kerr media,[33?40]

    Here,q1and q2are the components of the electromagnetic fields along the coordinate x and t is the time.The parameters ρ1and ρ2are all real constants and the asterisk denotes complex conjugation.In the regime of ultrashort pulses,the standard NLS equation is less accurate.To meet this condition,the cubic and quintic nonlinear terms were added on the standard coupled NLS equations and formed the CCQNLS system(1).[34]Additionally,it is very necessary to construct some new RW pattern structures of the coupled system(1).

    When q1=u,q2=0,and ρ1=2β,the CCQNLS system(1)can be reduced to the Kundu-Eckhaus equation.[13?14,41]In Refs.[35]and[42],the multi-soliton and bounded states of the CCQNLS equations(1)were obtained.Bright-bright,bright-dark and dark-dark solitons for the coupled system(1)were generated through Hirota bilinear method.[38?40]Besides,the multi-component generalization of the CCQNLS system(1)were investigated by DT.[43]Recently,the higher-order RWs of Eq.(1)were constructed through the generalized DT[37]and the authors considered the case that there is a double root in the characteristic equation.Motivated by the work in Refs.[19,32–33],we consider that the characteristic equation possesses a triple root,then some novel and interesting RW patterns of the CCQNLS system(1)can be generated through the generalize DT.Here,some dynamics of the RW pairs in the CCQNLS system(1)are exhibited.Besides,it is shown that some skews of RWs can be caused by two higher-order nonlinear coefficients ρ1and ρ2.

    This article is organized as follows.In Sec.2,the generalized DT of the coupled cubic-quintic nonlinear Schr?dinger equations is constructed.In Sec.3,higherorder RW pairs are obtained and some dynamics structures are discussed in detail.The last section contains several conclusions and discussions.

    2 Generalized Darboux Transformation for the CCQNLS System

    The Lax pair of the CCQNLS system(1)can be expressed as[35,37,43]

    where Ψ =(ψ(x,t), ?(x,t), χ(x,t))T,T denotes the transpose of the vector,while U and V are all 3×3 matrices and they can be given as

    where

    here,λ is the spectral parameter.Additionally,the CCQNLS system(1)can be directly derived from the compatibility condition Ut?Vx+[U,V]=0.

    In what follows,based on the DT of the CCQNLS system(1)constructed in Refs.[35,37,43],the generalized DT of Eqs.(1)can be constructed.[9]Letbe a special vector solution of the Lax pair(2)with q1=q1[0],q2=q2[0],λ = λ1+δ and δ being a small parameter.It shows that Ψ1can be expanded as the Taylor series at δ=0

    where

    The N-step generalized DT of the CCQNLS system(1)can be written as follows

    where I is 3×3 identity matrix and j=1,2,3,...,N.

    3 Higher-Order Rogue Wave Pairs

    In the following,we choose a nontrivial seed solution of Eq.(1)

    where

    with di,mi,and li(i=1,2)being arbitrary constants.Besides,we need to convert the variable coefficient differential equations of Eq.(2)into constant coefficient ones by a gauge transformation.Setting ? =Mψ,the transformed Lax pair can be written as[26]

    where

    In Ref.[37],the authors constructed the RW solutions of Eq.(1)in the case that the characteristic equation of U0has a double root.Here,we hope to look for the higherorder RW pairs of Eq.(1)with the assumption that the characteristic equation of U0owns a triple root.In order to obtain the triple root,we choose the relevant free parameters in the seed solution Eq.(12)and the spectral parameter λ to admit the following conditions

    Without loss of generality,the parameter d1can be chosen as d1=1,then the above conditions can be rewritten as

    In order to utilize the limiting process,we set the spectral parameter

    and ? be a small parameter,besides,the seed solution of Eq.(1)can be chosen as q1[0]=eiγ1,q2[0]= ? eiγ2.At this point,the fundamental solution of the Lax pair(2)can be expressed as

    where

    and ξjadmits the following cubic algebraic equation

    In order to construct the higher-order RW pairs of the CCQNLS Eq.(1)withandfor the above triple root case,the following special solution of the Lax pair(2)[19,33]can be given

    where

    and

    Here w=e2πi/3,and fj,gj,hj(j=1,2,3,...,N)are all real constants.Besides,the vector function Ψ1(?)in Eq.(11)can be expanded as the following Taylor series around ?=0

    and

    In order to avoid the complicated integral operation in the expressions ofwe give the following expressions of modules of qj[1]and qj[2](j=1,2)through the first-and second-step generalized DT

    Through the formula(11),we can get the first-order RW pair of the CCQNLS system(1),see Figs.1–3.When f1=g1=h1=0,the first-order fundamental RW can appear in both components q1and q2.Besides,this kind of fundamental RW including more than one peak above the background plane is greatly different from the classical first-order fundamental one,see Fig.1.Whenthe first-order fundamental RW splits into two standard first-order fundamental RW,see Fig.2.Interestingly,a high RW comes before a low one in Fig.2(a);and a low RW comes before a high one in Fig.2(b).In conclusion,we find that the above kind of RW pair can not be derived in single-component systems.[9?10,12?14]For two-component systems,[37,43]we can also conclude that the RW pair cannot be obtained when there is a double root in the characteristic equation of the transformed matrix in the x-part of the Lax pair.

    Fig.1 Evolution plot of the first-order fundamental RW in the CCQNLS equations by choosing ρ1=1/3,ρ2=1/4,f1=g1=0,h1=1:(a)q1;(b)q2.

    Fig.2 Evolution plot of the first-order RW pair in the CCQNLS equations by choosing ρ1=1/3,ρ2=1/4,f1=100,g1=0,h1=1:(a)q1;(b)q2.

    Fig.3 Evolution density plot of the first-order RW pair of the q1component in the CCQNLS equations by choosing f1=100,g1=h1=0:(a) ρ1= ρ2=0;(b) ρ1=1/3,ρ2=1/4;(c)ρ1=1/2,ρ2=1;(d) ρ1= ?1/3,ρ2= ?1/4;(e)ρ1= ?1/2,ρ2= ?1.

    In order to investigate the effects of higher-order nonlinear terms in constructing the dynamics of RW in the CCQNLS equations,the density plots of q1component are given in Fig.3 after choosing different values of higherorder nonlinear coefficients ρ1and ρ2.From Figs.3(a)–3(e),it can be found that the higher-order nonlinear terms make an important skew angle relative to the ridge of the RW in counter-clockwise if ρ1>0,ρ2>0 and in clockwise if ρ1<0,ρ2<0 by increasing the absolute values of ρ1and ρ2.[13]The same dynamic structure can be also demonstrated in q2component and we omit these figures here.

    In a similar way,the second-order RW pairs of the CCQNLS equations(12)can be derived through the related formula(1).Compared to the first-order case,the distributions of second-order one have more different patterns.There are six free parameters in the expressions of the second-order RW solution including fj,gj,and hj(j=1,2),which can be assigned to different values to obtain various patterns.Similarly to the first-order case,the higher-order nonlinear coefficients ρ1and ρ2can also make an important skew angle relative to the ridge of the RWs.Through either choosingor g1=0,[19]we can respectively construct two types of second-order RW pairs including four or six fundamental RWs.

    Fig.4 Evolution plot of the second-order RW pairs of triangular pattern in the CCQNLS equations by choosing f1=0,g1=1,h1=0,f2=g2=0,h2=100,ρ1=1/3,ρ2=1/4:(a)q1;(b)q2.

    Fig.5 Evolution plot of the second-order RW pairs of line pattern in the CCQNLS equations by choosing f1=0,g1=1,h1=0,f2=g2=0,h2=100,ρ1=1/2,ρ2=1:(a)q1;(b)q2.

    Fig.6 Evolution plot of the second-order RW pais of quadrilateral pattern 1 in the CCQNLS equations by choosing f1=0,g1=1,h1=0,f2=10000,g2=0,h2=0,ρ1=1/3,ρ2=1/4:(a)q1;(b)q2.

    Fig.7 Evolution plot of the second-order RW pais of quadrilateral pattern 2 in the CCQNLS equations by choosing f1=0,g1=1,h1=0,f2=10000,g2=0,h2=0,ρ1=1/2,ρ2=1:(a)q1;(b)q2.

    Fig.8 Evolution plot of the second-order RW pairs of ring pattern 1 in the CCQNLS equations by choosing f1=g1=0,h1=1/100,f2=0,g2=1000,h2=0,ρ1=1/3,ρ2=1/4:(a)q1;(b)q2.

    Fig.9 Evolution plot of the second-order RW pairs of ring pattern 1 in the CCQNLS equations by choosing f1=g1=0,h1=1/100,f2=10000,g2=h2=0,ρ1=1/3,ρ2=1/4:(a)q1;(b)q2.

    When g1=0,the second-order RW pairs including six fundamental RWs are shown in Figs.8 and 9.These kinds of second-order RW structures are novel and interesting,which are not possible to emerge from the second-order ones in the single-component systems.In Fig.8,four classical first-order fundamental RWs distribute around one classical second-order fundamental RW,which constructs the ring pattern 1.It shows that five standard first-order RWs distribute around one classical first-order fundamental RW in Fig.9.Here,the higher-order nonlinear terms also make some skew angle relative to the ridge of the RWs.Changing the values of higher-order nonlinear coefficients ρ1and ρ2,the different patterns corresponding to ring pattern 1 and pattern 2 will be exhibited,respectively.As some detailed discussion has been made before,we omit these figures after changing ρ1and ρ2.Ulteriorly,a lot of other higher-order RW pairs can be constructed through iterating the generalized DT of the CCQNLS equations.

    4 Conclusion

    In this paper,we devote to investigate some novel patterns of RWs in the CCQNLS system(1).Based on the condition that the characteristic equation of the constant coefficient transformed matrix of U in the Lax pair(2)owing a double root,the authors[37]constructed the classical higher-order RWs of the CCQNLS system(1).Through considering that the characteristic equation of the transformed matrix U0of x-part of the Lax pair(2)owning a triple root,the higher-order RW pairs of the CCQNLS equations are constructed by the generalized DT.Besides,these kinds of RW pairs are greatly different from classical RWs in the CCQNLS system(1),for example,the first-order RW pair can include two classical first-order RWs,see Fig.2.These kinds of RW pairs were also constructed in some other systems,such as the coupled NLS equations,[19]the Sasa-Satsuma equation[31]and the three-wave resonant interaction equations.[32]

    In Ref.[31],the RW pairs can be obtained in singlecomponent Sasa-Satsuma equation,because the Lax pair of the Sasa-Satsuma equation owns 3×3 matrices and the characteristic equation of the corresponding matrice can own a triple root under some special conditions.We can draw a conclusion that these kinds of RW pairs may be obtained through the generalized DT in the nonlinear systems whose Lax pair including the matrices larger than 2×2.

    Especially,the first-and second-order RW pairs are discussed in detail.It demonstrates that two classical fundamental RWs can be emerged from the first-order RW.Besides,four or six classical fundamental RWs can exist in the second-order case,respectively.For the secondorder RW pairs,the distribution shape can be triangle,quadrilateral and ring structures.Besides,the higherorder nonlinear terms in the CCQNLS system(1)can affect the dynamic of the RWs.Increasing the absolute values of ρ1and ρ2,an important skew angle relative to the ridge of the RW can be shown in Figs.3,5,and 7.If ρ1>0,ρ2>0,with these two parameters getting larger,a larger movement for the humps in the counter-clockwise direction on the x-t plane is produced by the higher-order nonlinear terms;on the other hand if ρ1>0,ρ2>0,a larger movement for the humps in clockwise on the x-t plane is shown with the absolute values of the two parameters being larger.Our results further reveal the dynamic structures of RWs in a coupled system,and we hope these kinds of higher-order RW pairs presented in this paper could be verified in physical experiments in the future.

    Acknowledgment

    We would like to express our sincere thanks to other members of our discussion group for their valuable comments.

    猜你喜歡
    陳勇
    信陽市審計局 開展“我們的節(jié)日·清明”主題活動
    Soliton,breather,and rogue wave solutions for solving the nonlinear Schr¨odinger equation using a deep learning method with physical constraints?
    A physics-constrained deep residual network for solving the sine-Gordon equation
    High-order rational solutions and resonance solutions for a(3+1)-dimensional Kudryashov–Sinelshchikov equation*
    The impact of spatial autocorrelation on CPUE standardization between two different fi sheries*
    A Direct Algorithm Maple Package of One-Dimensional Optimal System for Group Invariant Solutions?
    Lump Solutions and Interaction Phenomenon for(2+1)-Dimensional Sawada–Kotera Equation?
    苗嶺花山謠
    歌海(2017年2期)2017-05-30 22:22:10
    Symmetry Analysis and Exact Solutions of the 2D Unsteady Incompressible Boundary-Layer Equations?
    In fluence of Cell-Cell Interactions on the Population Growth Rate in a Tumor?
    男女免费视频国产| 国产精品一区二区免费欧美 | 久久 成人 亚洲| 一区二区三区乱码不卡18| a 毛片基地| 十八禁高潮呻吟视频| 在线天堂中文资源库| 久久久久久久久久久久大奶| 午夜久久久在线观看| 天天躁日日躁夜夜躁夜夜| 少妇粗大呻吟视频| 人妻一区二区av| 啪啪无遮挡十八禁网站| av片东京热男人的天堂| av在线播放精品| 秋霞在线观看毛片| 美女中出高潮动态图| 成人亚洲精品一区在线观看| 欧美成狂野欧美在线观看| 夫妻午夜视频| 91精品国产国语对白视频| 狂野欧美激情性bbbbbb| 丁香六月天网| 女人久久www免费人成看片| 国产黄色免费在线视频| 日本撒尿小便嘘嘘汇集6| 这个男人来自地球电影免费观看| 97人妻天天添夜夜摸| 两性午夜刺激爽爽歪歪视频在线观看 | 99热全是精品| 1024视频免费在线观看| 成人手机av| 一区二区av电影网| 大码成人一级视频| 夫妻午夜视频| 亚洲国产精品一区三区| 国产1区2区3区精品| 丝袜美足系列| 又黄又粗又硬又大视频| 777米奇影视久久| 国产精品1区2区在线观看. | 麻豆乱淫一区二区| 一级毛片女人18水好多| 国产日韩一区二区三区精品不卡| 热re99久久国产66热| 麻豆乱淫一区二区| av在线老鸭窝| 亚洲精品美女久久久久99蜜臀| 国产成人精品在线电影| 男女之事视频高清在线观看| 国产av又大| 免费不卡黄色视频| 亚洲avbb在线观看| 国产亚洲午夜精品一区二区久久| 日日夜夜操网爽| 色播在线永久视频| 日本av手机在线免费观看| 免费在线观看日本一区| 人妻人人澡人人爽人人| 亚洲精品第二区| 天天躁夜夜躁狠狠躁躁| 在线观看免费视频网站a站| 99精品欧美一区二区三区四区| 一个人免费在线观看的高清视频 | av又黄又爽大尺度在线免费看| 成人18禁高潮啪啪吃奶动态图| 国产免费视频播放在线视频| 亚洲成人免费电影在线观看| www.999成人在线观看| 香蕉国产在线看| 国产精品一区二区免费欧美 | 精品国产一区二区久久| 美国免费a级毛片| 乱人伦中国视频| 一个人免费在线观看的高清视频 | 妹子高潮喷水视频| 欧美日本中文国产一区发布| 热99re8久久精品国产| 真人做人爱边吃奶动态| 少妇精品久久久久久久| 亚洲黑人精品在线| 制服人妻中文乱码| 亚洲精品国产区一区二| 国产成人精品在线电影| 午夜久久久在线观看| 曰老女人黄片| 亚洲男人天堂网一区| 青草久久国产| 亚洲中文日韩欧美视频| 波多野结衣av一区二区av| 久久中文字幕一级| 国产男女内射视频| 国产视频一区二区在线看| 18禁国产床啪视频网站| 欧美精品一区二区免费开放| 日日摸夜夜添夜夜添小说| 久久久久久久国产电影| 国产欧美亚洲国产| 成年人黄色毛片网站| 国产精品一区二区在线不卡| 三上悠亚av全集在线观看| 午夜福利在线免费观看网站| 亚洲综合色网址| 男人爽女人下面视频在线观看| 久久精品熟女亚洲av麻豆精品| 亚洲一码二码三码区别大吗| 亚洲国产精品一区三区| 十八禁高潮呻吟视频| 久久国产精品大桥未久av| 日韩制服骚丝袜av| 午夜91福利影院| 男女午夜视频在线观看| 99精国产麻豆久久婷婷| 国产高清国产精品国产三级| 亚洲国产成人一精品久久久| 亚洲七黄色美女视频| 国产精品免费大片| 国产无遮挡羞羞视频在线观看| 岛国毛片在线播放| av又黄又爽大尺度在线免费看| 午夜激情av网站| 宅男免费午夜| 极品人妻少妇av视频| 又黄又粗又硬又大视频| 国产91精品成人一区二区三区 | 日日夜夜操网爽| 午夜免费成人在线视频| 亚洲欧美一区二区三区黑人| 高潮久久久久久久久久久不卡| 午夜视频精品福利| 国产成人精品无人区| 2018国产大陆天天弄谢| 欧美亚洲日本最大视频资源| 1024香蕉在线观看| 免费人妻精品一区二区三区视频| 久久影院123| 我要看黄色一级片免费的| 国产精品久久久av美女十八| 中文欧美无线码| 啦啦啦在线免费观看视频4| 丁香六月天网| 国产精品成人在线| 美国免费a级毛片| 999精品在线视频| 欧美在线黄色| 免费观看a级毛片全部| 国产99久久九九免费精品| 日韩 亚洲 欧美在线| 亚洲国产精品成人久久小说| 操出白浆在线播放| svipshipincom国产片| 免费在线观看视频国产中文字幕亚洲 | 亚洲欧美清纯卡通| 91字幕亚洲| 欧美激情高清一区二区三区| 国产日韩一区二区三区精品不卡| tube8黄色片| a级毛片在线看网站| 黄片播放在线免费| 亚洲第一av免费看| 久9热在线精品视频| 亚洲av片天天在线观看| 午夜免费观看性视频| 久久性视频一级片| 亚洲欧美清纯卡通| 久久久久精品人妻al黑| 两人在一起打扑克的视频| 亚洲国产精品成人久久小说| 成年人免费黄色播放视频| 成人国语在线视频| 999久久久精品免费观看国产| 精品久久久久久久毛片微露脸 | 丝瓜视频免费看黄片| 国产免费福利视频在线观看| 精品国产乱子伦一区二区三区 | 国产人伦9x9x在线观看| 亚洲少妇的诱惑av| 在线观看免费日韩欧美大片| 久久精品亚洲熟妇少妇任你| www.999成人在线观看| 日韩大片免费观看网站| 另类精品久久| 国产成人精品久久二区二区91| 中国国产av一级| 亚洲精品一区蜜桃| 欧美精品一区二区免费开放| 国产精品久久久久久精品电影小说| 男女床上黄色一级片免费看| av网站在线播放免费| 久久久久久免费高清国产稀缺| 午夜福利免费观看在线| 久久ye,这里只有精品| 婷婷成人精品国产| av网站免费在线观看视频| 黄色怎么调成土黄色| tube8黄色片| 国产精品成人在线| 老司机在亚洲福利影院| 黄色视频,在线免费观看| 欧美中文综合在线视频| 人人妻,人人澡人人爽秒播| 日韩人妻精品一区2区三区| 啦啦啦视频在线资源免费观看| 久久狼人影院| 免费在线观看黄色视频的| 色老头精品视频在线观看| 亚洲国产日韩一区二区| 久久久精品94久久精品| 国产精品麻豆人妻色哟哟久久| 国产精品成人在线| 国产精品1区2区在线观看. | 国产淫语在线视频| 桃花免费在线播放| 悠悠久久av| 成年美女黄网站色视频大全免费| 久久午夜综合久久蜜桃| 久久精品熟女亚洲av麻豆精品| 精品熟女少妇八av免费久了| 97精品久久久久久久久久精品| 一个人免费在线观看的高清视频 | 男女无遮挡免费网站观看| 欧美日韩一级在线毛片| 99热全是精品| 国产精品久久久久久人妻精品电影 | 亚洲成人手机| 免费在线观看完整版高清| 亚洲免费av在线视频| 国产亚洲一区二区精品| 人成视频在线观看免费观看| 在线观看舔阴道视频| 欧美午夜高清在线| 亚洲精品乱久久久久久| 嫩草影视91久久| 亚洲激情五月婷婷啪啪| 亚洲va日本ⅴa欧美va伊人久久 | 黄色怎么调成土黄色| 亚洲国产看品久久| 国产97色在线日韩免费| 欧美+亚洲+日韩+国产| 色精品久久人妻99蜜桃| 在线观看舔阴道视频| 美女高潮喷水抽搐中文字幕| 18禁裸乳无遮挡动漫免费视频| 老汉色∧v一级毛片| 日本a在线网址| 日日夜夜操网爽| 人妻 亚洲 视频| 精品久久久久久久毛片微露脸 | 日韩大片免费观看网站| 久久人人97超碰香蕉20202| 99精国产麻豆久久婷婷| 色综合欧美亚洲国产小说| 精品久久久精品久久久| 男人舔女人的私密视频| 亚洲精品中文字幕一二三四区 | 黄片播放在线免费| 亚洲专区中文字幕在线| 成人免费观看视频高清| 亚洲av男天堂| 免费在线观看日本一区| 亚洲成人免费电影在线观看| 80岁老熟妇乱子伦牲交| 日韩制服骚丝袜av| 欧美日韩亚洲高清精品| 亚洲五月婷婷丁香| 色老头精品视频在线观看| 亚洲av电影在线进入| 两个人看的免费小视频| 一区二区日韩欧美中文字幕| 美女主播在线视频| 欧美久久黑人一区二区| 亚洲性夜色夜夜综合| 日韩欧美免费精品| 久久香蕉激情| 成人三级做爰电影| 91大片在线观看| 丁香六月天网| 精品久久久久久电影网| 91字幕亚洲| 免费人妻精品一区二区三区视频| 久热爱精品视频在线9| 久久中文字幕一级| 搡老熟女国产l中国老女人| 91精品三级在线观看| 日本猛色少妇xxxxx猛交久久| 久久精品国产a三级三级三级| 欧美日韩视频精品一区| 999久久久精品免费观看国产| 亚洲av日韩在线播放| 丝袜美足系列| 黄色视频不卡| 欧美大码av| 欧美精品高潮呻吟av久久| 亚洲欧美成人综合另类久久久| 国产精品国产三级国产专区5o| 人成视频在线观看免费观看| 亚洲国产精品成人久久小说| 永久免费av网站大全| 精品国产国语对白av| 亚洲国产日韩一区二区| av国产精品久久久久影院| 另类亚洲欧美激情| 亚洲综合色网址| 国产日韩欧美亚洲二区| 午夜老司机福利片| 久久久久久免费高清国产稀缺| 一级,二级,三级黄色视频| www日本在线高清视频| 午夜福利在线免费观看网站| 大片免费播放器 马上看| 人人妻人人爽人人添夜夜欢视频| 欧美少妇被猛烈插入视频| 啦啦啦免费观看视频1| 亚洲av男天堂| 91字幕亚洲| 国产熟女午夜一区二区三区| 一边摸一边做爽爽视频免费| 午夜福利在线观看吧| a级毛片黄视频| 99国产综合亚洲精品| 啦啦啦在线免费观看视频4| 一本一本久久a久久精品综合妖精| 久久久精品94久久精品| 国产欧美日韩一区二区三 | 午夜福利影视在线免费观看| 亚洲精品美女久久av网站| 国产高清国产精品国产三级| 我的亚洲天堂| 亚洲国产欧美一区二区综合| 青春草亚洲视频在线观看| 亚洲国产毛片av蜜桃av| 麻豆国产av国片精品| 咕卡用的链子| 久久久精品免费免费高清| 1024视频免费在线观看| 国产1区2区3区精品| 他把我摸到了高潮在线观看 | 女人久久www免费人成看片| 久久香蕉激情| 国产成人免费无遮挡视频| 波多野结衣av一区二区av| 亚洲精品日韩在线中文字幕| 麻豆乱淫一区二区| 精品人妻一区二区三区麻豆| 一级片免费观看大全| 久久久久久久精品精品| 国产日韩欧美亚洲二区| 汤姆久久久久久久影院中文字幕| 亚洲精品av麻豆狂野| 精品视频人人做人人爽| 日本一区二区免费在线视频| 下体分泌物呈黄色| 人成视频在线观看免费观看| 国产精品99久久99久久久不卡| 69av精品久久久久久 | 欧美av亚洲av综合av国产av| 国产成人欧美在线观看 | 亚洲国产欧美日韩在线播放| 免费观看a级毛片全部| 另类精品久久| 午夜精品久久久久久毛片777| 美女视频免费永久观看网站| 一区在线观看完整版| 妹子高潮喷水视频| 别揉我奶头~嗯~啊~动态视频 | 久久久精品国产亚洲av高清涩受| 日韩制服丝袜自拍偷拍| 少妇人妻久久综合中文| 91成人精品电影| 亚洲免费av在线视频| 97在线人人人人妻| 亚洲精品乱久久久久久| 三上悠亚av全集在线观看| 天天添夜夜摸| 国产欧美日韩一区二区三 | 搡老乐熟女国产| 免费在线观看影片大全网站| 亚洲人成77777在线视频| 久久99热这里只频精品6学生| 国产精品二区激情视频| 黄色毛片三级朝国网站| 19禁男女啪啪无遮挡网站| 久久99热这里只频精品6学生| 啦啦啦 在线观看视频| 丁香六月欧美| 国产精品一区二区在线观看99| 少妇猛男粗大的猛烈进出视频| 午夜福利免费观看在线| 亚洲精品国产av成人精品| 国内毛片毛片毛片毛片毛片| 热99国产精品久久久久久7| 51午夜福利影视在线观看| 成年人午夜在线观看视频| 美女大奶头黄色视频| 欧美日韩精品网址| 国产黄频视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 日韩一卡2卡3卡4卡2021年| 99国产极品粉嫩在线观看| 一级黄色大片毛片| 超色免费av| 建设人人有责人人尽责人人享有的| 超色免费av| 久久久久久免费高清国产稀缺| 一区在线观看完整版| 午夜精品国产一区二区电影| 老司机午夜十八禁免费视频| av在线老鸭窝| 丰满人妻熟妇乱又伦精品不卡| 热99久久久久精品小说推荐| 青青草视频在线视频观看| 在线天堂中文资源库| 中文字幕av电影在线播放| 亚洲精品国产精品久久久不卡| 丝袜美足系列| 亚洲国产精品一区二区三区在线| 亚洲精品第二区| 如日韩欧美国产精品一区二区三区| 婷婷成人精品国产| 亚洲伊人久久精品综合| 青春草视频在线免费观看| 丰满人妻熟妇乱又伦精品不卡| 国产伦理片在线播放av一区| 午夜福利视频精品| 成年美女黄网站色视频大全免费| 国产老妇伦熟女老妇高清| cao死你这个sao货| 一区二区三区激情视频| 精品熟女少妇八av免费久了| 免费黄频网站在线观看国产| 多毛熟女@视频| 亚洲,欧美精品.| 久久久国产欧美日韩av| av网站在线播放免费| 两个人免费观看高清视频| 久久ye,这里只有精品| 十八禁网站网址无遮挡| 天天躁日日躁夜夜躁夜夜| 在线看a的网站| 精品福利观看| 欧美日韩视频精品一区| 新久久久久国产一级毛片| 亚洲综合色网址| 亚洲视频免费观看视频| 免费一级毛片在线播放高清视频 | av片东京热男人的天堂| 精品视频人人做人人爽| 久久久久久久久免费视频了| 亚洲av日韩精品久久久久久密| 日韩免费高清中文字幕av| 久久精品国产亚洲av高清一级| 久热爱精品视频在线9| 亚洲色图 男人天堂 中文字幕| 国产深夜福利视频在线观看| 亚洲综合色网址| 亚洲精品一二三| 50天的宝宝边吃奶边哭怎么回事| 狂野欧美激情性xxxx| 国产在线观看jvid| 男女国产视频网站| 国产欧美亚洲国产| 超碰成人久久| 亚洲五月婷婷丁香| 99国产极品粉嫩在线观看| 国产男人的电影天堂91| 亚洲av美国av| 久久精品国产综合久久久| 满18在线观看网站| 热re99久久精品国产66热6| 三级毛片av免费| 少妇精品久久久久久久| 中国国产av一级| 性高湖久久久久久久久免费观看| 高清欧美精品videossex| 国产精品久久久久久人妻精品电影 | 欧美日韩亚洲高清精品| 中文字幕色久视频| 午夜福利,免费看| 国产成人免费无遮挡视频| 男女之事视频高清在线观看| 亚洲中文字幕日韩| 极品人妻少妇av视频| 精品一品国产午夜福利视频| 青青草视频在线视频观看| 天天添夜夜摸| 国产精品免费视频内射| 女警被强在线播放| 成年动漫av网址| 黑人欧美特级aaaaaa片| 美女脱内裤让男人舔精品视频| 九色亚洲精品在线播放| 国产极品粉嫩免费观看在线| 天天影视国产精品| 我的亚洲天堂| 黄频高清免费视频| 一区二区三区激情视频| 两人在一起打扑克的视频| 80岁老熟妇乱子伦牲交| 99国产精品99久久久久| 亚洲黑人精品在线| 亚洲国产成人一精品久久久| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产欧美网| av网站免费在线观看视频| 12—13女人毛片做爰片一| 少妇的丰满在线观看| 欧美激情 高清一区二区三区| 亚洲av片天天在线观看| 久久免费观看电影| 嫩草影视91久久| 午夜久久久在线观看| 成年人免费黄色播放视频| 国产精品熟女久久久久浪| 两性夫妻黄色片| 国产亚洲av片在线观看秒播厂| 国产精品一区二区在线不卡| 99国产综合亚洲精品| 国产亚洲av高清不卡| 视频区图区小说| 一区二区日韩欧美中文字幕| 国产成人a∨麻豆精品| 男女免费视频国产| 亚洲国产欧美日韩在线播放| 人妻久久中文字幕网| 一二三四社区在线视频社区8| 亚洲自偷自拍图片 自拍| 亚洲五月婷婷丁香| 在线观看人妻少妇| 黄片播放在线免费| 欧美xxⅹ黑人| 亚洲精品国产区一区二| 婷婷丁香在线五月| 日本黄色日本黄色录像| 男人爽女人下面视频在线观看| 美女主播在线视频| 精品一品国产午夜福利视频| 少妇猛男粗大的猛烈进出视频| 久久久久久久久久久久大奶| 黑人巨大精品欧美一区二区蜜桃| 伦理电影免费视频| 国产精品自产拍在线观看55亚洲 | 王馨瑶露胸无遮挡在线观看| 一级,二级,三级黄色视频| 狠狠精品人妻久久久久久综合| 国产亚洲欧美精品永久| av有码第一页| 久久久久国产精品人妻一区二区| 黄色片一级片一级黄色片| 两个人免费观看高清视频| 丝袜美足系列| 欧美亚洲 丝袜 人妻 在线| 91字幕亚洲| 午夜激情久久久久久久| 在线天堂中文资源库| 丝袜脚勾引网站| 最黄视频免费看| 久久狼人影院| 热re99久久国产66热| 国产黄色免费在线视频| 午夜免费成人在线视频| 9色porny在线观看| 在线看a的网站| 999久久久国产精品视频| 免费av中文字幕在线| 久久久国产精品麻豆| 久久久久国产精品人妻一区二区| 亚洲av男天堂| www.999成人在线观看| 男人爽女人下面视频在线观看| 18禁黄网站禁片午夜丰满| 久久毛片免费看一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 国产色视频综合| 欧美97在线视频| 91精品伊人久久大香线蕉| 日韩大码丰满熟妇| 国产精品久久久av美女十八| 日日爽夜夜爽网站| 中国美女看黄片| 在线观看人妻少妇| 脱女人内裤的视频| 日韩人妻精品一区2区三区| 亚洲少妇的诱惑av| 精品国产乱子伦一区二区三区 | 久久久久久久大尺度免费视频| 国产精品欧美亚洲77777| 国产精品自产拍在线观看55亚洲 | 狂野欧美激情性bbbbbb| 亚洲av男天堂| 国产一区二区三区综合在线观看| 国产精品99久久99久久久不卡| 色婷婷av一区二区三区视频| 亚洲久久久国产精品| 老司机影院成人| 国产国语露脸激情在线看| 日韩 欧美 亚洲 中文字幕| 国产成人精品久久二区二区免费| 大香蕉久久成人网| 国产一区有黄有色的免费视频| 亚洲情色 制服丝袜| 交换朋友夫妻互换小说| 极品少妇高潮喷水抽搐| 久久青草综合色| 中国美女看黄片| 国产精品久久久av美女十八| 日日摸夜夜添夜夜添小说| 欧美亚洲 丝袜 人妻 在线| 国产又爽黄色视频| 中文字幕高清在线视频| 成人手机av| 日韩欧美一区视频在线观看| 99久久综合免费| 久久性视频一级片| 国产真人三级小视频在线观看| 亚洲av片天天在线观看|