• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Thermal Radiation on a 3D Sisko Fluid over a Porous Medium Using Cattaneo-Christov Heat Flux Model?

    2018-08-02 07:36:14DeogHeeDohMuthtamilselvanRamyaandRevathi
    Communications in Theoretical Physics 2018年8期

    Deog-Hee Doh,M.Muthtamilselvan,E.Ramya,and P.Revathi

    1Department of Mathematics,Bharathiar University,Coimbatore-641 046,Tamilnadu,India

    2Division of Mechanical Engineering,College of Engineering,Korea Maritime and Ocean University,Busan 606 791,South Korea

    AbstractThis paper investigates the three-dimensional flow of a Sisko fluid over a bidirectional stretching sheet,in a porous medium.By using the effect of Cattaneo-Christov heat flux model,heat transfer analysis is illustrated.Using similarity transformation the governing partial differential equations are transferred into a system of ordinary differential equations that are solved numerically by applying Nachtsheim-Swigert shooting iteration technique along with the 6-th order Runge-Kutta integration scheme.The effect of various physical parameters such as Sisko fluid,ratio parameter,thermal conductivity,porous medium,radiation parameter,Brownian motion,thermophoresis,Prandtl number,and Lewis number are graphically represented.

    Key words:Sisko fluid,Cattaneo-Christov heat flux model,thermal radiation,porous medium

    1 Introduction

    Most of the studies described the flow of viscous fluid by using classical Newtonian model.The greater part of the fluids in industry does not hold frequently established supposition of a linear relationship amongst stress and rate of strain and consequently described as non-Newtonian fluids. Biological fluids,Polymeric liquids,lubricating oils,liquid crystals,drilling mud and paints are the rheological complex fluids,which has vescoelastic manner and cannot be represented just as Newtonian fluids.The non-Newtonian fluid flow is usually more complex and particularly non-linear,this may get more troubles utilizing numerical methods to concentrate on such flows are investigated by Neofytou.[1]Nadeem et al.[2]studied the cause of nanoparticles for Jeffrey fluid flow over a stretching sheet.Sajid and Hayat[3]exhibited an examination to research the wire covering investigation of Siskofluid withdrawal from a bath.Wang et al.[4]discussed for the MHD peristaltic flow qualities of a Sisko fluid in a symmetric or asymmetric channel.

    Khan et al.[5]investigated the 3-D Sisko fluid flow over a bidirectional stretching surface with Cattaneo-Christov heat flux model.They concluded that the concentration dissemination was reduced with the improvement of the heterogeneous and homogeneous reactions in both case of shear thickening and shear thinning fluids.Molati et al.[6]discussed on the unidirectional incompressible MHD flow of a Sisko fluid.Akyildiz et al.[7]focussed the thin film flow of a Sisko fluid on a moving belt.The outcomes obtained reveals many interesting conducts that warrant investigation of the conditions identified with non-Newtonian fluid phenomena,particularly the shear-thinning phenomena.Shear-thinning lessens the wall shear stress.Hayat et al.[8]investigated the effect of nanoparticles and magnetic field in the 3D flow of Sisko fluid.The flow is caused by a bidirectional stretching sheet.Valipoura et al.[9]examined the Buongiorno Model is applied for melting heat transfer effect on nanofluid heat transfer intensification between two horizontal parallel plates in a rotating system.

    Many applications in engineering disciplines involve high permeability porous media.In such situation,Darcy equation fails to give satisfactory results.Therefore,use of non-Darcy models,which takes care of boundary and inertia effects,is of fundamental and practical interest to obtain accurate results for high permeability porous media.Khan et al.[10]presented the numerical solutions for the flow of an MHD Sisko fluid past a porous medium.A hypothetical non-linear model for the move through a porous medium has been produced by utilizing modified Darcy’s law.Sheikholeslami and Ganji[11]exhibited twodimensional laminar constrained convection nanofluid flow through a stretching porous surface.Doh et al.[12]studied the transient heat and mass transfer flow of a micropolar fluid between porous vertical channel with boundary conditions of third kind.Recently,various researcher published papers about the nanofluid flow through a porous mediam.[13?20]

    In matter thermal motion of charge particles generate an electromagnetic radiation is denoted as thermal radiation.Some fields of applications are Medicine,X-ray,radiography,food safety and smoke detector.Hayat et al.[21]examined the effect of warm radiation on peristaltic transport of nanofluid in a channel with convective limit conditions.Zeeshan et al.[22]investigated the effects of heat transfer and thermal radiation on the flow of ferro-magnetic fluid on a stretching surface.Bhatti and Rashidi[23]acquired the impact of thermo-diffusion and thermal radiation on Williamson nanofluid past a permeable stretching/shrinking surface.Majeed et al.[24]considered two-dimensional heat transfer of unsteady ferromagnetic liquid and boundary layer flow of magnetic dipole with given heat flux.Akbar et al.[25]analyzed the peristaltic consistent of three diverse nanoparticles with water as base liquid affected by slip boundary conditions through a vertical asymmetric porous channel within the presence of MHD.Waqas et al.[26]studied the characteristics of generalized Burgers fluid over a stretched surface by using Cattaneo-Christov heat flux model.Malik et al.[27]investigated the convective flow of Sisko fluid with the thought of Cattaneo-Christov heat flux model and thermal relaxation time.Liu et al.[28]explored the time and space partial Cattaneo-Christov constitutive model to portray heat conduction.Hayat et al.[29]addressed about the stagnation point stream of Jeffrey liquid towards a stretching cylinder.

    In the current study,the flow of three-dimensional Sisko fluid past in a porous medium is considered.Here the Brownian motion and thermophoresis are taken into account. By using the similarity transformation,the partial differential equations are reduced to ordinary differential equations are solved numerically by applying Nachsheim-swigert shooting iteration technique along with the 6-th order Runge-Kutta integration scheme.The effects of various physical parameters on the velocity,temperature and concentration are graphically represented.

    2 Mathematical Formulatio n

    We consider the steady three-dimentional layer flow of an incompressible Sisko fluid past a porous medium which is outlined in Fig.1.The sheet is thought to be stretched along x and y-directions with linear velocities u=cx and v=dy respectively,where c,d>0 are the stretching rates and flow happens in the space z>0.Radiation,Brownian motion and thermophoresis effects are also there.The boundary layer equations governing the three dimensional Sisko fluid with heat and mass transfer are expressed below,[5]

    where u=Uw(x),v=Vw(y)=dy,w=0,T=Tw,

    then

    where the velocity components are(u,v,w)in the x,y,and z directions respectively,the material constant of the Sisko fluid is(a,b,n≥0)represents the shear rate viscosity,consistency index and power-law index respectively.Involvement of power index n provides an edge to Siskofluid as shear thinning(n<1),shear thickening(n>1),the temperature T,the ratio diffusion coefficient δE,the density of the base fluid ρfwith the specific heat of fluid at constant temperature cf.

    Fig.1 Schematic diagram of the problem.

    The thermal conductivity of the fluid is assumed to vary linearly with temperature as,

    where k∞signifies the thermal conductivity of the fluid far from the sheet surface and ε is a small parameter known as the thermal conductivity parameter.

    We now use the following dimensionless variables

    Making use of the transformations(Eq.(9)),(Eq.(1))is identically satisfied and Eqs.(2)–(7),having in mind Eq.(8),leads to the following forms

    From the above equations,prime denotes the differentiation with respect to η,the material parameter of Siskofluid is A,the porous medium is K,the local Reynolds numbers are denoted as Reaand Reb,the radiation parameter is denoted as R,the generalized Prandtl number is Pr,the stretching ratio parameter is α,the relaxation time of the heat flux is denoted as λE,the thermophorosis parameter is denoted as Nt,the Brownian motion is de-noted as Nb,the Lewis number is denoted as Le.These parameters are stated as follows,

    Local Nusselt number and skin friction coefficients are given by,

    It is noted that the dimensionless mass flux represented by the Sherwood number Shxis identically zero.

    3 Numerical Solution

    The nonlinear ordinary differential Eqs.(10)–(13)with the boundary conditions in Eqs.(14)–(15)are solved numerically by using Runge-kutta method along with Nachtheim-Swigert shooting iteration technique.According to the major requirements of this numerical method,the main steps of the technique are given as follows.[5]

    Let,

    and the boundary conditions become

    4 Numerical Results and Discussion

    The predominant focus of this article is to analyze the characteristics of Cattaneo-Christov heat flux model for the Sisko fluid flow past a porous medium.The effect of various physical parameters like stretching ratio parameter(α =0.0 to 1.5)taken as α =0 and α =1 that represent the unidirectional and axisymmetric stretching,Sisko fluid(A=0.0 to 1.5),thermal conductivity parameter(?=0.0 to 1.5),porous medium(K=0.0 to 1.5),radiation parameter(R=0.0 to 1.5),Brownian motion(Nb=0.1 to 1.5),thermophoresis parameter(Nt=0.1 to 1.5)chosen as Nt<0 and Nt>0 that physically represent the heated and cold surface respectively,Prandtl number(Pr=0.1 to 1.7)taken as Pr>0 that represent the oils,relaxation time of the heat transfer(λE=0.0 to 0.3)and Lewis number(Le=0.1 to 1.5)on a dimensionless velocities f′(η),g′(η),temperature distribution θ(η)and concentration distribution ?(η)are studied numerically.

    Fig.2 Comparative study of velocity profiles for different values of Sisko fluid A.

    The effect of different values of Sisko fluid A is compared with the present study and the previous study of Khan et al.[5]and better agreement is found. This is shown in Fig.2.Effect of Sisko fluid parameter A on the velocity profiles f′(η),g′(η),temperature θ(η)and concentration ?(η)distributions are plotted in Figs.3–6 respectively.Here the velocity profiles f′(η),g′(η)are increased,at the same time the temperature and concentration profiles are decreased,when the Sisko fluid parameter A is increased.Here increment in Sisko fluid parameter towards a low viscosity at high shear rate,leads to a decline in both temperature and concentration profiles and the related boundary layer thickness.

    Fig.3 Velocity profile f′(η)for different value of Siskofluid A.

    Fig.4 Velocity profile g′(η)for different value of Siskofluid A.

    Fig.5 Temperature profile θ(η)for different values of Sisko fluid A.

    Figures 7–10 present the variations in the velocities f′(η),g′(η),temperature θ(η)and concentration ?(η)distributions for different values of ratio parameter α.When the ratio parameter α is increased,the velocity profiles increases and temperature and concentration profiles decreases.

    Fig.6 Concentration profile ?(η)for different values of Sisko fluid A.

    Fig.7 Velocity profile f′(η)for different values of the stretching ratio parameter α.

    Fig.8 Velocity profile g′(η)for different values of the stretching ratio parameter α.

    Through Figs.11–12,the enhancement of temperature θ(η)and concentration ?(η)profiles are shown for the higher values of thermal conductivity parameter ?.This increase is a direct result of thermal conductivity of the fluids for higher values of the small scalar parameter ? arisen in the variable thermal conductivity.In addition,more heat is transferred from sheet to the liquid and eventually the temperature dispersion is expanded.

    Fig.9 Temperature profile θ(η)for different values of stretching ratio parameter α.

    Fig.10 Concentration profile ?(η)for the different values of stretching ratio parameter α.

    Fig.11 Temperature profile θ(η)for different values of thermal conductivity parameter ?.

    The porous medium K on the velocity,temperature θ(η)and concentration ?(η)distributions are plotted in Figs.13–16 respectively.The increment of the porous medium give rise to the increment in the temperature,concentration and boundary layer thickness,but the velocity profiles f′(η)and g′(η)are reduced.Figures 17–18 depict an enhancement behaviour of the temperature and concentration profiles and their boundary layer,for larger values of the radiation parameter R.For large values of radiation parameter,generates a significant amount of heating to the Sisko fluid,which enhances the Sisko fluid temperature and concentration boundary layer thickness.Figures 19–20 display that the temperature θ(η),concentration ?(η)and boundary layer thickness drops when the Prandtl number is increased.

    Fig.12 Concentration profile ?(η)for the different values of thermal condutivity parameter ?.

    Fig.13 Velocity profile f′(η)for different values of the porous medium K.

    Fig.14 Velocity profile g′(η)for different values of the porous medium K.

    The temperature and concentration profiles of the Sisko fluid flow are seen to decrease with the addition of thermal relaxation parameter λEas depicted in Figs.21–22.In a physical sense,additional time is important for the heat transfer for molecule to molecule of the liquid.In the result,the temperature and concentration boundary layer are diminished in the Sisko fluids.Moreover,for λE=0,that is for traditional Fourier’s law,where the temperature is higher when contrasted with the Cattaneo-Christov model.This is because of heat transfer through material right away.

    Fig.15 Temperature profile θ(η)for different values of porous medium K.

    Fig.16 Concentration profile ?(η)for different values of porous medium K.

    Fig.17 Temperature profile θ(η)for different values of radiation parameter R.

    Figure 23 shows the effect of the Brownian motion parameter Nb on the concentration ?(η)profile.Here increase in the Brownian motion parameter leads to the decrease in the concentration profile.Generally,for higher values of Brownian motion have a tendency to heat the fluid in the boundary layer,due to this seen that declines in the concentration profile.

    Fig.18 Concentration profile ?(η)for different values of radiation parameter R.

    Fig.19 Temperture profile θ(η)for different values of Prandtl number Pr

    Fig.20 Concentration profile ?(η)for different values of Prandtl number Pr.

    Figure 24 describes the influence of thermophoresis parameter Nt on the concentration profile ?(η).When the thermophoresis parameter increases,the concentration profile is also increases.Generally,improving the values of thermophoresis parameter generates a force leads to move the particles from the hotter region to the colder regions for which there is a gain in the heat transfer rates.

    Fig.21 Temperture profile θ(η)for different values of the relaxation time parameter λE.

    Fig.22 Concentration profile ?(η)for different values of the relaxation time parameter λE.

    Fig.23 Concentration profile ?(η)for different values of Brownian motion Nb.

    Figure 25 describes the impact of Lewis number Le on the concentration profile ?(η).It shows that the higher values of Lewis number Le causes a decrease in the concentration distribution ?(η).

    Fig.24 Concentration profile ?(η)for different values of thermophoresis parameter Nt.

    Fig.25 Concentration profile ?(η)for different values of Lewis number Le.

    5 Conclusion

    The steady three-dimensional flow of Sisko fluid past a porous medium is investigated numerically.The main results of the current work are listed below,

    (i)Increase in the Sisko fluid A tends to the increment in the velocity profiles f′(η)and g′(η)and reduction in the temperature and concentration distributions.

    (ii)Higher values of the ratio parameter α increases the magnitude of the velocity f′(η),g′(η)and decreases the temperature and concentration profiles.

    (iii)The temperature and concentration distributions are increased for the higher thermal conductivity ?,radiation R and it is decreased for the larger values of Prandtl number Pr.

    (vi)Increment in the porous medium K creates the reduction in the velocity and rise in the temperature and concentration.

    (v)Concentration profile is reduced for the increasing values of the Brownian motion Nb and Lewis number Le respectively.

    (vi)Large values of the thermophoresis parameter Nt tends to the enhancement in concentration field.

    亚州av有码| 九九热线精品视视频播放| 精品久久久久久,| 国产老妇女一区| 久久99热6这里只有精品| 97超级碰碰碰精品色视频在线观看| 麻豆av噜噜一区二区三区| 国产午夜精品久久久久久一区二区三区 | 欧美+亚洲+日韩+国产| 99久国产av精品| 日韩欧美精品v在线| 一卡2卡三卡四卡精品乱码亚洲| 动漫黄色视频在线观看| 国内揄拍国产精品人妻在线| 男插女下体视频免费在线播放| 少妇熟女aⅴ在线视频| 51午夜福利影视在线观看| 一进一出抽搐gif免费好疼| 婷婷亚洲欧美| 亚洲一区二区三区不卡视频| 午夜精品一区二区三区免费看| 美女 人体艺术 gogo| 91在线精品国自产拍蜜月| 国产高清视频在线观看网站| 久久欧美精品欧美久久欧美| 国内精品一区二区在线观看| 小蜜桃在线观看免费完整版高清| 国产精品久久久久久久久免 | 久久久精品欧美日韩精品| 九九久久精品国产亚洲av麻豆| 日本黄色视频三级网站网址| 欧美高清成人免费视频www| 欧美一级a爱片免费观看看| 99热这里只有精品一区| 欧美色欧美亚洲另类二区| 青草久久国产| 天天躁日日操中文字幕| 国内毛片毛片毛片毛片毛片| 亚洲精品成人久久久久久| 三级国产精品欧美在线观看| 在线十欧美十亚洲十日本专区| 91久久精品国产一区二区成人| АⅤ资源中文在线天堂| 男女下面进入的视频免费午夜| 成人国产综合亚洲| 日韩欧美在线乱码| 99热这里只有精品一区| 国产真实乱freesex| 久久6这里有精品| 国产精品三级大全| 久久精品国产清高在天天线| 午夜影院日韩av| 欧美日韩黄片免| 国产精品不卡视频一区二区 | 伊人久久精品亚洲午夜| 国产aⅴ精品一区二区三区波| 高清毛片免费观看视频网站| a级毛片a级免费在线| 五月玫瑰六月丁香| 久久婷婷人人爽人人干人人爱| 又黄又爽又免费观看的视频| 脱女人内裤的视频| 99久国产av精品| 国产精品嫩草影院av在线观看 | 欧美中文日本在线观看视频| 免费电影在线观看免费观看| 成人国产综合亚洲| 欧美日韩亚洲国产一区二区在线观看| 男人舔奶头视频| 99热精品在线国产| 99在线视频只有这里精品首页| 国产精品一区二区性色av| 搡女人真爽免费视频火全软件 | 亚洲 国产 在线| 国产精品亚洲一级av第二区| 欧美精品啪啪一区二区三区| 国产成+人综合+亚洲专区| 看黄色毛片网站| 欧美+日韩+精品| 亚洲,欧美,日韩| 免费av不卡在线播放| 亚洲欧美日韩东京热| 国产成+人综合+亚洲专区| 一个人看视频在线观看www免费| 亚洲不卡免费看| 欧美高清性xxxxhd video| 黄色丝袜av网址大全| 国产亚洲欧美98| 三级毛片av免费| 国产成人aa在线观看| 中文字幕精品亚洲无线码一区| 国产成人影院久久av| 久久天躁狠狠躁夜夜2o2o| 黄色丝袜av网址大全| 俺也久久电影网| 亚洲成av人片免费观看| 一进一出抽搐动态| 国内精品久久久久久久电影| 能在线免费观看的黄片| 特大巨黑吊av在线直播| 日本一本二区三区精品| 熟妇人妻久久中文字幕3abv| 91在线观看av| 日日摸夜夜添夜夜添小说| 免费在线观看日本一区| 中文在线观看免费www的网站| 国产69精品久久久久777片| 97超级碰碰碰精品色视频在线观看| 亚洲最大成人手机在线| 岛国在线免费视频观看| 国产精品女同一区二区软件 | 国产野战对白在线观看| 亚洲电影在线观看av| 日韩精品中文字幕看吧| 婷婷精品国产亚洲av| 白带黄色成豆腐渣| 国产视频一区二区在线看| 日本熟妇午夜| h日本视频在线播放| 欧美三级亚洲精品| 午夜福利高清视频| 午夜福利在线在线| 国产野战对白在线观看| 在线观看一区二区三区| 欧美bdsm另类| 久久久久久久久大av| 五月玫瑰六月丁香| 色综合站精品国产| 欧美性猛交╳xxx乱大交人| а√天堂www在线а√下载| 亚洲七黄色美女视频| 夜夜爽天天搞| www.www免费av| 久久午夜福利片| 久久人妻av系列| 国产高清有码在线观看视频| 51午夜福利影视在线观看| 少妇裸体淫交视频免费看高清| 色吧在线观看| 国产一区二区在线av高清观看| 在线免费观看的www视频| 国产高清视频在线观看网站| 噜噜噜噜噜久久久久久91| 精品免费久久久久久久清纯| 啪啪无遮挡十八禁网站| 国产精品久久久久久人妻精品电影| av在线天堂中文字幕| 成人午夜高清在线视频| 一夜夜www| 最后的刺客免费高清国语| 在现免费观看毛片| 一级作爱视频免费观看| 国产中年淑女户外野战色| 国产精品伦人一区二区| 尤物成人国产欧美一区二区三区| 老司机午夜十八禁免费视频| 老司机午夜福利在线观看视频| 婷婷丁香在线五月| 乱码一卡2卡4卡精品| 99久久99久久久精品蜜桃| 国产精品99久久久久久久久| 欧美绝顶高潮抽搐喷水| 婷婷亚洲欧美| 中文亚洲av片在线观看爽| 国产一级毛片七仙女欲春2| av天堂在线播放| 久久国产乱子免费精品| 3wmmmm亚洲av在线观看| 国产欧美日韩一区二区三| 九色成人免费人妻av| 日本a在线网址| 国产精品嫩草影院av在线观看 | .国产精品久久| av天堂中文字幕网| 国内精品美女久久久久久| 亚洲精品亚洲一区二区| 深夜a级毛片| 亚洲国产欧洲综合997久久,| 性色av乱码一区二区三区2| 午夜精品在线福利| 欧美xxxx黑人xx丫x性爽| 久久久久九九精品影院| 两人在一起打扑克的视频| 欧美成人免费av一区二区三区| 久久精品国产清高在天天线| 婷婷六月久久综合丁香| 日本精品一区二区三区蜜桃| 欧美黑人欧美精品刺激| 69人妻影院| 别揉我奶头~嗯~啊~动态视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品不卡视频一区二区 | 999久久久精品免费观看国产| 人人妻人人澡欧美一区二区| 欧美在线黄色| 黄色女人牲交| 欧美精品国产亚洲| 久久精品综合一区二区三区| 国产黄色小视频在线观看| 亚洲成人久久爱视频| 成人鲁丝片一二三区免费| 国产综合懂色| 国产精品亚洲美女久久久| 夜夜看夜夜爽夜夜摸| 又粗又爽又猛毛片免费看| 亚洲片人在线观看| 国产精品一区二区三区四区久久| 九九久久精品国产亚洲av麻豆| 精品午夜福利在线看| 天美传媒精品一区二区| 亚洲精品影视一区二区三区av| 岛国在线免费视频观看| 男人的好看免费观看在线视频| 麻豆成人午夜福利视频| 特大巨黑吊av在线直播| 免费人成在线观看视频色| 国产乱人伦免费视频| 久久久久亚洲av毛片大全| 色吧在线观看| 精品久久久久久久末码| aaaaa片日本免费| 欧美国产日韩亚洲一区| av专区在线播放| 国产精品1区2区在线观看.| 国产精品影院久久| 亚洲美女视频黄频| 久久久久久大精品| 国产成人影院久久av| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕免费在线视频6| 亚洲中文日韩欧美视频| 成人国产综合亚洲| 成年免费大片在线观看| 99热6这里只有精品| 久久久久精品国产欧美久久久| 国产精品一区二区免费欧美| 日日摸夜夜添夜夜添小说| 真人做人爱边吃奶动态| 日本成人三级电影网站| 亚洲成人中文字幕在线播放| 国产免费av片在线观看野外av| 久久中文看片网| 男女之事视频高清在线观看| 三级毛片av免费| 中文字幕高清在线视频| 国产免费一级a男人的天堂| 免费av毛片视频| 嫩草影院精品99| 欧美3d第一页| 91九色精品人成在线观看| 夜夜看夜夜爽夜夜摸| 2021天堂中文幕一二区在线观| 九九久久精品国产亚洲av麻豆| 91麻豆精品激情在线观看国产| 床上黄色一级片| 18禁裸乳无遮挡免费网站照片| 美女高潮的动态| 99久久99久久久精品蜜桃| 午夜福利高清视频| 免费高清视频大片| 丝袜美腿在线中文| 亚洲欧美激情综合另类| av黄色大香蕉| 亚洲中文日韩欧美视频| 日本熟妇午夜| 亚洲av成人不卡在线观看播放网| 久久精品国产自在天天线| 国产av不卡久久| 一个人观看的视频www高清免费观看| 精品一区二区三区视频在线| 99热这里只有是精品50| 一级黄色大片毛片| 精品人妻1区二区| 久久精品人妻少妇| 成人一区二区视频在线观看| 成人高潮视频无遮挡免费网站| 在线a可以看的网站| 婷婷精品国产亚洲av在线| 国产一区二区在线av高清观看| 欧美zozozo另类| 俺也久久电影网| 久久国产精品人妻蜜桃| 18+在线观看网站| 成人av一区二区三区在线看| 免费av毛片视频| 久久天躁狠狠躁夜夜2o2o| 亚洲美女搞黄在线观看 | 91av网一区二区| 精品久久久久久久久av| 欧美一区二区亚洲| 久久久色成人| 一本精品99久久精品77| 波野结衣二区三区在线| av国产免费在线观看| 综合色av麻豆| 国模一区二区三区四区视频| 国产成人啪精品午夜网站| .国产精品久久| 男女床上黄色一级片免费看| 成人午夜高清在线视频| 宅男免费午夜| 99热6这里只有精品| 精品久久久久久久久久免费视频| 人人妻人人看人人澡| 精品一区二区三区人妻视频| 九九久久精品国产亚洲av麻豆| 90打野战视频偷拍视频| 日本一二三区视频观看| 亚洲不卡免费看| 精品福利观看| 国产不卡一卡二| 男女视频在线观看网站免费| 中文字幕免费在线视频6| 在线十欧美十亚洲十日本专区| 老熟妇仑乱视频hdxx| 国产国拍精品亚洲av在线观看| 亚洲精华国产精华精| 内地一区二区视频在线| 欧美日韩瑟瑟在线播放| 国产不卡一卡二| 欧美成人一区二区免费高清观看| 亚洲av电影不卡..在线观看| 国产伦一二天堂av在线观看| 人人妻,人人澡人人爽秒播| 欧美日韩中文字幕国产精品一区二区三区| 青草久久国产| 日本一本二区三区精品| 国产亚洲av嫩草精品影院| 老司机福利观看| 国产黄片美女视频| 我的女老师完整版在线观看| 毛片女人毛片| 亚洲在线自拍视频| 亚洲成人免费电影在线观看| 久久久久久久久大av| 久久久久九九精品影院| 欧美一级a爱片免费观看看| 自拍偷自拍亚洲精品老妇| 嫩草影院入口| 尤物成人国产欧美一区二区三区| 午夜日韩欧美国产| 亚洲精品一区av在线观看| 国产亚洲欧美在线一区二区| 久99久视频精品免费| 免费在线观看日本一区| 看十八女毛片水多多多| 91麻豆精品激情在线观看国产| 欧美成人a在线观看| 欧美一级a爱片免费观看看| 波多野结衣高清无吗| 露出奶头的视频| 热99re8久久精品国产| 韩国av一区二区三区四区| 91午夜精品亚洲一区二区三区 | 久久中文看片网| 欧美成人免费av一区二区三区| 国产av麻豆久久久久久久| 久久久久久九九精品二区国产| 一二三四社区在线视频社区8| 精品不卡国产一区二区三区| 自拍偷自拍亚洲精品老妇| 国产三级黄色录像| 老司机午夜十八禁免费视频| 熟妇人妻久久中文字幕3abv| 在线观看一区二区三区| 亚洲精品久久国产高清桃花| 精品一区二区三区av网在线观看| 又紧又爽又黄一区二区| 永久网站在线| 麻豆国产97在线/欧美| 亚洲av免费高清在线观看| 国产成人啪精品午夜网站| 伦理电影大哥的女人| 99久久精品热视频| 麻豆成人午夜福利视频| 国产精品乱码一区二三区的特点| 国产中年淑女户外野战色| 久久人妻av系列| 国产乱人伦免费视频| 深夜精品福利| 亚洲人成电影免费在线| 99热精品在线国产| 成人毛片a级毛片在线播放| 国产三级黄色录像| 一级作爱视频免费观看| 日日摸夜夜添夜夜添小说| 国产野战对白在线观看| 国产黄色小视频在线观看| 别揉我奶头 嗯啊视频| 亚洲av二区三区四区| 少妇的逼好多水| 少妇人妻精品综合一区二区 | 露出奶头的视频| 高清毛片免费观看视频网站| 国产av一区在线观看免费| 亚洲中文字幕一区二区三区有码在线看| 久久精品夜夜夜夜夜久久蜜豆| 一区二区三区四区激情视频 | 欧美丝袜亚洲另类 | 成年免费大片在线观看| 国产精品乱码一区二三区的特点| 中文字幕人成人乱码亚洲影| 禁无遮挡网站| 国产精品不卡视频一区二区 | 久久久国产成人免费| 日日摸夜夜添夜夜添av毛片 | 99久久久亚洲精品蜜臀av| 狠狠狠狠99中文字幕| 一级av片app| 国产老妇女一区| 露出奶头的视频| 亚洲不卡免费看| 97碰自拍视频| 亚洲精品久久国产高清桃花| 精品久久久久久久久久免费视频| ponron亚洲| 中亚洲国语对白在线视频| 高清在线国产一区| 男人狂女人下面高潮的视频| 18+在线观看网站| 成人国产综合亚洲| 女生性感内裤真人,穿戴方法视频| 午夜老司机福利剧场| 精品国内亚洲2022精品成人| 久久国产乱子伦精品免费另类| 99久久精品国产亚洲精品| 国产探花在线观看一区二区| 日韩欧美 国产精品| 我要搜黄色片| 日本一本二区三区精品| 亚洲男人的天堂狠狠| 少妇的逼水好多| 黄色女人牲交| bbb黄色大片| 亚洲av二区三区四区| 麻豆国产97在线/欧美| 日韩欧美在线二视频| 日本免费一区二区三区高清不卡| 久久久精品欧美日韩精品| 黄色丝袜av网址大全| 老熟妇仑乱视频hdxx| 亚洲aⅴ乱码一区二区在线播放| 99久久成人亚洲精品观看| 久久欧美精品欧美久久欧美| 国模一区二区三区四区视频| 欧美日韩国产亚洲二区| 精品国产三级普通话版| 狠狠狠狠99中文字幕| 18禁在线播放成人免费| 亚洲欧美日韩无卡精品| 亚洲国产色片| 三级男女做爰猛烈吃奶摸视频| 亚洲av美国av| 久久久久性生活片| 在线观看免费视频日本深夜| 欧美丝袜亚洲另类 | 老司机深夜福利视频在线观看| 如何舔出高潮| 两性午夜刺激爽爽歪歪视频在线观看| 国产午夜精品久久久久久一区二区三区 | 9191精品国产免费久久| 久久精品久久久久久噜噜老黄 | 亚洲国产高清在线一区二区三| 少妇的逼好多水| 直男gayav资源| 日韩精品青青久久久久久| 中国美女看黄片| 久久久久久久久久成人| 黄片小视频在线播放| 亚洲人与动物交配视频| 少妇高潮的动态图| 久久久久久大精品| 又黄又爽又刺激的免费视频.| 午夜福利在线观看免费完整高清在 | 日日摸夜夜添夜夜添小说| 3wmmmm亚洲av在线观看| 日韩亚洲欧美综合| 亚洲最大成人中文| 久久久久久大精品| 免费观看精品视频网站| 草草在线视频免费看| 亚洲激情在线av| 嫁个100分男人电影在线观看| 国产av一区在线观看免费| 国产野战对白在线观看| 能在线免费观看的黄片| 在线a可以看的网站| 深爱激情五月婷婷| 国产 一区 欧美 日韩| 亚洲国产精品sss在线观看| 亚洲国产色片| 成人特级黄色片久久久久久久| 国产亚洲欧美在线一区二区| 乱码一卡2卡4卡精品| 精品国产三级普通话版| 特大巨黑吊av在线直播| 人人妻人人澡欧美一区二区| 国产真实乱freesex| 亚洲国产高清在线一区二区三| 一个人免费在线观看电影| 久久久精品大字幕| 黄色女人牲交| 99久国产av精品| 大型黄色视频在线免费观看| 高清毛片免费观看视频网站| 又黄又爽又免费观看的视频| 亚洲狠狠婷婷综合久久图片| 日本一本二区三区精品| 黄色女人牲交| 色综合欧美亚洲国产小说| 久久久国产成人免费| 舔av片在线| av在线老鸭窝| 久久精品国产自在天天线| 国产单亲对白刺激| 日本与韩国留学比较| 狂野欧美白嫩少妇大欣赏| 亚洲电影在线观看av| 在线观看免费视频日本深夜| 免费大片18禁| 国产激情偷乱视频一区二区| 欧美黑人欧美精品刺激| www.熟女人妻精品国产| 又粗又爽又猛毛片免费看| or卡值多少钱| 99精品在免费线老司机午夜| 亚州av有码| 国产精品久久电影中文字幕| 99国产极品粉嫩在线观看| 国产成人aa在线观看| 两个人的视频大全免费| 日本一二三区视频观看| 国产黄片美女视频| 丝袜美腿在线中文| 国内精品一区二区在线观看| 极品教师在线免费播放| 国产精品人妻久久久久久| 国产三级黄色录像| 亚洲人成网站高清观看| 我的女老师完整版在线观看| 中文在线观看免费www的网站| 日本免费一区二区三区高清不卡| 女人十人毛片免费观看3o分钟| a级一级毛片免费在线观看| 国产av不卡久久| 看免费av毛片| 国产黄a三级三级三级人| 日本一本二区三区精品| 亚洲,欧美精品.| 又黄又爽又刺激的免费视频.| 一区福利在线观看| 精品午夜福利视频在线观看一区| 欧美日本亚洲视频在线播放| 国产69精品久久久久777片| 国产精品影院久久| 亚洲国产欧美人成| 毛片女人毛片| 国产探花极品一区二区| 久久久久久大精品| 欧美高清成人免费视频www| 欧美性猛交黑人性爽| 成人欧美大片| 少妇的逼好多水| 免费观看精品视频网站| 少妇的逼好多水| 成人精品一区二区免费| 色哟哟·www| 成人精品一区二区免费| 中文字幕熟女人妻在线| 亚洲中文日韩欧美视频| 久久精品综合一区二区三区| 精品欧美国产一区二区三| 人妻丰满熟妇av一区二区三区| 久久人人精品亚洲av| 国产亚洲欧美98| 亚洲乱码一区二区免费版| 日本黄色片子视频| 日韩成人在线观看一区二区三区| 久久久久国内视频| 波野结衣二区三区在线| 欧美在线一区亚洲| 黄色一级大片看看| 夜夜爽天天搞| 国产精品亚洲一级av第二区| 亚洲五月婷婷丁香| 午夜福利在线观看免费完整高清在 | 欧美绝顶高潮抽搐喷水| 性色av乱码一区二区三区2| 国产熟女xx| 变态另类成人亚洲欧美熟女| 亚洲黑人精品在线| 在线a可以看的网站| 亚洲欧美清纯卡通| 九九在线视频观看精品| 毛片女人毛片| 国产乱人视频| 日本黄色片子视频| 欧美bdsm另类| 亚洲天堂国产精品一区在线| 国产精品一区二区三区四区久久| 亚洲男人的天堂狠狠| 一a级毛片在线观看| 亚洲av电影不卡..在线观看| 国产免费av片在线观看野外av| 久久草成人影院| 久久精品国产自在天天线| 亚洲男人的天堂狠狠| 在线免费观看的www视频| 国产探花在线观看一区二区| 亚洲av日韩精品久久久久久密| av专区在线播放| 久久精品综合一区二区三区| 亚洲一区二区三区不卡视频| 欧美成人性av电影在线观看| 内射极品少妇av片p|