• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Numerical Investigation of Nanocomposite of Copper and Titanium Dioxide in Water Based Fluid Influenced by Instigated Magnetic Region

    2018-08-02 07:36:18IqbalEhtshamAzharMarajandZaffarMehmood
    Communications in Theoretical Physics 2018年8期

    Z.Iqbal,Ehtsham Azhar,E.N.Maraj,and Zaffar Mehmood

    Department of Mathematics,Faculty of Sciences,HITEC University,Taxila 44700,Pakistan

    AbstractPresence of external electrical field plays a vital role in heat transfer and fluid flow phenomena.Keeping this in view present article is a numerical investigation of stagnation point flow of water based nanoparticles suspended fluid under the influence of induced magnetic field.A detailed comparative analysis has been performed by considering Copper and Titanium dioxide nanoparticles.Utilization of similarity analysis leads to a simplified system of coupled nonlinear differential equations,which has been tackled numerically by means of shooting technique followed by Runge-Kutta of order 5.The solutions are computed correct up to 6 decimal places.Influence of pertinent parameters is examined for fluid flow,induced magnetic field,and temperature profile.One of the key findings includes that magnetic parameter plays a vital role in directing fluid flow and lowering temperature profile.Moreover,it is concluded that Cu-water based nanofluid high thermal conductivity contributes in enhancing heat transfer efficiently.

    Key words:water based fluid,instigated magnetic region,nanoscale particles,Copper and titanium dioxide,stagnation point flow,numerical solutions

    1 Introduction

    In nature poor heat conductivity of typical fluids e.g.water,ethylene glycol,kerosene oil concoction has turned out to vital restriction in improvement heat exchange forms including traditional fluids.On contrast to fluids some metals such as silver,copper and gold ordinarily have higher heat conductivity.Exploiting high heat conductivity of metals to improve heat conductivity of customary fluids prompted possibility of nanofluids.Suspensions of nanometer measured metal particles in the base fluid concoct such fluids.As a result,the efficient thermal conductivity of nanofluids improves drastically as com-pared to the traditional base fluid.The term nanofluid was at first presented by Choi.[1]Most regularly utilized nanoparticles are prepared from metal oxides like CuO,Al2O3,and TiO2,metals such as Cu,Ag,and Au along with nitride/carbide earthenware production for example AlN,SiN,SiC,and TiC.Base fluids are normally common fluids like water,ethylene glycol,and oil.Nanofluids have ended up being extremely valuable in various mechanical and engineering appliances.Nanofluids are generally utilized as a part of various mechanical and manufacturing apparatuses such as coolants in atomic reactors,mechanical cooling,extraction of geothermal force,advanced medication conveyance frameworks,heat exchangers,indicative tests,disease treatment,and micro scale fluidic applications.[2]Depending on such wide convenience a few exploratory and hypothetical examinations were done to break down various parts of nanofluids.[3?10]

    Stagnation points exist at the surface of entity in the stream field where the fluid is conveyed to rest by the object.Stagnation stream depicts the smooth movement close to the stagnation locale where it experiences the most elevated pressure and most noteworthy rate of heat exchange and mass decay.This flow emerges in numerous applications and it has an unmistakable part particularly in transportation commercial enterprises on planning the rockets,air ships,submarines,and oil ships.The stagnation point flows over an extending surface is a traditional issue in fluid mechanics.Hiemenz[11]was the first to examine relentless flow in the vicinity of a stagnation point.From that point forward,countless and numerical studies clarifying different parts of boundary layer stagnation point flow over an extending/contracting surface have been done.[12?17]

    For flows where magnetic Reynolds number is not petite,instigated magnetic fields must be considered.[18]It is seen that there are a few astrophysical and geophysical problems in which prompted magnetic field assumes an imperative part in deciding flow features of the problem,specifically, fluid flow in earth’s inside,star arrangement,sunspots,and sunlight based flares in the Sun,turning attractive stars and planetary and sun based dynamo problems.Notwithstanding it,impelled magnetic fields assume a critical part in combination applications with plasma controls.[19]Also actuated magnetic fields could be utilized as a confirmation to anticipate the presence of salty fluid water subsurface seas in Europa and Callisto.[20]The traditional issue of Glauert[21]displayed an original examination for hydro magnetic boundary layer flow past a polarized level plate with uniform magnetic field in the flow heading at the plate.He got arrangement of development arrangements considering both huge what is more,little estimations of the electrical conductivity parameter for the speed and impelled magnetic fields.Impact of induced magnetic field on extensive scale throbbed MHD generator was analyzed by Koshiba et al.[22]Raptis and Soundalgekar[23]researched flow of an electrically directing fluid past a consistently moving unending vertical permeable plate in nearness of consistent heat flux and steady suction considering actuated magnetic field.In another study,Raptis and Masalas[24]considered impacts of impelled magnetic field on flimsy hydro magnetic stream of a thick,incompressible,electrically leading and optically thick emanating fluid past an unending vertical permeable plate.Influence of engendered magnetic field on hydro magnetic free convection flow was exposed by Ghosh et al.[25]Bég et al.[26]got environs non-likeness numerical arrangements for velocity,temperature and actuated magnetic field appropriations in constrained convection fluid metal limit layer stream past a non-leading plate for an extensive variety of attractive Prandtl numbers.Some recent attempts by means of numerical stimulations include Refs.[27–28].

    Aggravated by forward specified intriguing tries,present article is an endeavor to look at effect of actuated magnetic field on stagnation point flow of water based Copper and Titanium dioxide nanofluid.Prevailing problem is changed over to arrangement of four coupled differential equations by utilizing nonlinear similarity transformation.The very non straight arrangement of ODEs is handled by shooting technique alongside Runge-Kutta of order 5.The obtained solutions precision is up to 10?6.The impact of noteworthy parameters on velocity,induced magnetic field,nanoparticles temperature and concentration are inspected and uncovered through diagrams and tables.The fundamental accentuation is on investigating the effect of actuated magnetic field with fuse of extending proportion parameter.Moreover,a comparative analysis is carried out for the two types of particles suspended in water based nanofluids.Novel results of present investigation may be useful and beneficial in academic research and nanofluidic problems.

    2 Experimental Values and Properties of Nanocomposite Cu-TiO2/H2O

    In this investigation,we considering Copper and titanium dioxide nanoscale particles suspended in water base fluid.Moreover,thermal properties of base fluid and nanoparticles are expressed in Tables 1 and 2.

    Table 1 According to Ghadikolaei et al.[4]and Iqbal et al.,[7]expression for thermophysical characteristics for nanofluid are:

    where(ρcp)sis the volumetric heat capacity of solid nanoparticles,(ρcp)f,(ρcp)nfare volumetric heat capacity of base fluid and nanofluid,respectively.? is the particle volume fraction parameter of nanoparticles,ρfand μfare density and dynamic viscosity of base fluid,respectively.

    Table 2 Experimental values of density,specific heat and thermal conductivity for base fluids and nanoparticles(see Ref.[4]Ghadikolaei et al.and Ref.[7]Iqbal et al.)

    3 Description of Physical Proble m

    We consider steady two-dimensional stagnation point flow towards a linear stretching sheet at y=0.The fluid occupies the region y>0.The free stream velocity is assumed to be Ue(x)=ax and velocity of the stretching sheet is Uw(x)=cx,where a and c are the positive constants.Furthermore we assumed that H is induced magnetic field vector with magnetic field at free stream He(x)=H0x where H0is uniform magnetic field at infinity upstream.Present flow phenomenon is described in following physical flow diagram Fig.1.

    Fig.1(Color online)Physical flow structure.

    Governing boundary layer equations for electrically conducting viscous fluid(see Refs.[7]and[15])can be expressed as subject to boundary conditions

    where u,v,H1,and H2are velocity and magnetic components along the x-and y-directions respectively,ρnfis density of the nanofluid,μnfis dynamic viscosity of nanofluid,αnfis thermal diffusivity of nanofluid,T is the temperature of the fluid,knfis thermal conductivity of nanofluid,kfand ksare thermal conductivity of base fluid and solid nanoparticles,respectively.

    To further facilitate the present analysis,we introduce the subsequent conventional transformation and dimensionless variable η and f(η)in the following form

    Equations(1)and(2)are identically satisfied and other Eqs.(3)–(5)yield

    where prime indicates the differentiation with respect to η.Moreover Prandtl number Pr,stretching rate ratio parameter A,reciprocal magnetic Prandtl number λ and magnetic parameter β are de fined as

    Physical quantities such as skin friction and Nusselt number are given by

    where τwis wall shear stress,qwwall heat flux.Dimensionless form is

    where Rex=uwx/νfis local Reynolds number.

    4 Computational Procedure

    This segment is dedicated to tackle the solutions of system of nonlinear differential equations numerically.Thus,solution of coupled nonlinear governing boundary layer equations(9),(10),and(11)organized with boundary conditions(12)are computed by means of shooting method along Runge Kutta fifth order method.Firstly higher order nonlinear differential equations(9),(10),and(11)are transformed into a system of first order differential equations and further distorted into initial value problem by labeling the variables as

    According to the numerical procedure the above system of equations are formulated as:

    Above mentioned initial value problems have been solved numerically by RK5 method.Suitable values of the unknown and initial conditions are iteratively estimated by Newton method such that the solutions satisfy the boundary conditions at infinity with error less than 10?6.Furthermore,the existing numerical procedure is exemplified in Fig.2.

    Fig.2 (Color online)Algorithm flow chart.

    5 Theoretical Results Assessment

    The effects of several meaningful parameters on fluid flow,induced magnetic field and temperature for Cu-water and TiO2-water nanofluids are displayed and examined in this section.

    5.1 Physical Description of Velocity Field

    In this regard Figs.3–9 are portrayed to demonstrate the effect of stretching/shrinking parameter A,nanoparticles volume fraction ?,reciprocal of magnetic Prandtl number λ and magnetic parameter β for Cu-water and TiO2-water nanofluids,respectively.The analysis of Fig.3 reveals that velocity profile is concave down for A>1 and concave up for A<1 for both types of fluid.A>1 represents the scenario when stagnation velocity is greater than stretching rate whereas the alternate relation between these velocities holds for A>1.

    Fig.3 (Color online)Variation of A on f′(η);Red:f′(η):Cu-Water;Cyan:f′(η):TiO2-Water.

    Furthermore,boundary layer thickness is more for Cu-water based nanofluid as compared to TiO2-water nanofluid.Variation of nanoparticles volume fraction for two types of metals are displayed in Figs.4 and 5 respectively.It is depicted from these figures that for Cu-water based nanofluid flow reduce for increasing ? when A<1 while raising values of ? upsurges velocity for case of A>1 see Fig.4.However in case of TiO2-water nanofluid as shown in Fig.5 the rise in ? initially lessen fluid flow but latterly contributes in rising it when A<1.An opposite trend is witness for A>1 i.e.,for ?=0.05 fluid flow upsurges but for ?=0.20 it reduces.

    Figure 6 is devoted to examine the effect of λ for two classes for metal nanoparticles suspended fluids.It is observed that velocity appears to be a decreasing function of λ for A<1 and a rising function of it for A>1 for Cu as well as TiO2water based nanofluids.This happens mainly because increase in λ being the ratio of magnetic diffusivity to kinematic viscosity represents the rise in magnetic diffusivity which as a consequence results in lowering momentum boundary layer thickness and velocity for A<1.

    Fig.4 (Color online)Variation of ? on f′(η)for Cu-H2O;Red:A=0.5;Cyan:A=1.5.

    Fig.5 (Color online)Variation of ? on f′(η)for TiO2-H2O;Red:A=0.5;Cyan:A=1.5.

    Fig.6 (Color online)Variation of λ on f′(η)for Cu-H2O;Red:A=0.5;Cyan:A=1.5.

    Fig.7 (Color online)Variation of λ on f′(η)for TiO2-H2O;Red:A=0.5;Cyan:A=1.5.

    Fig.8 (Color online)Variation of β on f′(η)for Cu-H2O;Red:A=0.5;Cyan:A=1.5.

    Similar trend is witnesses for TiO2with a slight variation in magnitude see Fig.7.Influences of magnetic parameter on both types of nanofluids flow are portrayed in Figs.8 and 9.Study of these figures reveals that fluid velocity appears to be a rising relation with β.It shows that magnetic field strength contributes in rising momentum boundary layer thickness and fluid flow.

    Fig.9 (Color online)Variation of λ on f′(η)for TiO2-H2O;Red:A=0.5;Cyan:A=1.5.

    5.2 Physical Description of Induced Magnetic Field

    Induced magnetic field behavior examinations for various significant parameters in case of Cu and TiO2metallic particles are shown through Figs.10–16.It is observed that stretching parameter contributes in lowering induced magnetic field for both types of metal particles.However,this decrease is more evident for Cu-water based nanofluid as compare to TiO2-water based nanofluid see Fig.10.

    Effect of nanometal particles volume fractions are demonstrated in Figs.11 and 12 for copper and titanium dioxide nanoparticles,respectively.These graphical results reveal that the rise in ? for Cu contributes in rising induce magnetic field when A<1 and a reduction is observed for case of A>1 as displayed in Fig.11.However from Fig.12 it is concluded that TiO2nanoparticles volume fraction initially shows the similar trend as of Cu but for ?=0.20 the behavior alters for both studies i.e.,A<1 and A>1.

    Fig.10(Color online)Impact of A on g′(η);Blue:g′(η):Cu-Water;Magenta:g′(η):TiO2-water.

    Fig.11 (Color online)Variation of ? on g′(η)for Cu-H2O;Blue:A=0.5;Magenta:A=1.5.

    Fig.12(Color online)Variation of ? on g′(η)for TiO2-H2O;Blue:A=0.5;Magenta:A=1.5.

    Figure 13 illustrates the impact of reciprocal magnetic prandtl number on induced magnetic field for Cu and TiO2nano metals.It is revealed that λ contributes in rising induced magnetic field initially or both types of metals nanoparticles and afterwards a decrease in witness keeping A<1.A reverse trend is reported for the case of A>1.Furthermore,a slight change in magnitude is noticed for two types of nanoparticles in Fig.14.

    Fig.13 (Color online)Variation of λ on g′(η)for Cu-H2O;Blue:A=0.5;Magenta:A=1.5.

    Fig.14(Color online)Variation of λ on g′(η)for TiO2-H2O;Blue:A=0.5;Magenta:A=1.5.

    It happens mainly because the increase in λ indicates an increase in magnetic diffusivity as compare to viscous diffusivity,which leads to rise magnitude of induced magnetic field.Figures 15 and 16 are plotted to visualize the effect of magnetic parameter.It is seen that for both types of nanoparticle suspended fluids induced magnetic field lowers with a rise in β for A<1.This decrease is more in TiO2as compared to Cu.Moreover,it upsurges for increasing values of magnetic parameter for A>1.Notably,this increase is more significant in sense of magnitude for case of TiO2as compared to Cu.This happens due to the fact that magnetic parameter is the ratio of magnetic field magnitude to stretching velocity,thus an increase in β showed altered results for A<1 and A>1.Physically it indicates that induced magnetic field is effected by the stretching ratio.

    Fig.15 (Color online)Variation of β on g′(η)for Cu-H2O;Blue:A=0.5;Magenta:A=1.5.

    Fig.16 (Color online)Variation of β on g′(η)for TiO2-H2O;Blue:A=0.5;Magenta:A=1.5.

    5.3 Stream Pattern for Velocity and Induced Magnetic Field

    The fluid flow and induced magnetic field patterns are displayed in contour plots for Cu-water and TiO2-water nanofluids from Figs.17 and 18.It is evident that symmetry about vertical axis exists for fluid flow as well as induced magnetic field,respectively.

    Fig.17 Stream pattern for(a)velocity;(b)induced magnetic field for Cu-H2O when ?=20%.

    Fig.18 Stream pattern for(a)velocity;(b)induced magnetic field for TiO2-H2O when ?=20%.

    5.4 Physical Description of Temperature Profile

    Figures 19–21 are devoted for comparative study of temperature profiles of Copper and titanium dioxide water based nanofluids.Figure 19 exposed that temperature and thermal boundary layer thickness enhances with the usage of both types of nanofluids.Moreover,it shows that this increase in temperature is more in Cu as compared to TiO2water based nanofluid.Influence of magnetic parameter is portrayed in Fig.20,which demonstrates a temperature reduction for rising values of β.The reason behind it is the fact that β contributes in rising velocity as well as momentum boundary layer and as a consequence thermal boundary layer and temperature decreases.It is noted that temperature decreases more for titanium dioxide than copper nanoparticles.Figure 21 illustrates the effect of λ on temperature profile.Here temperature appears to be an increasing function of λ and this increase is more significant for Cu nanoparticles.Here it is worth mentioning that reciprocal of magnetic parameter acts like a resistive force,which decelerates fluid flow and upsurges fluid temperature.

    Fig.19 (Color online)Variation of ? on θ(η);Blue:TiO2-Water;Red:Cu-Water.

    Fig.20 (Color online)Variation of β on θ(η);Blue:TiO2-Water;Red:Cu-Water.

    Table 3 Influence of physical parameters on skinfriction and Nusselt number for Cu-Water.

    Fig.21(Color online)Variation of λ on θ(η);Blue:TiO2-Water;Red:Cu-Water.

    Table 4 Influence of physical parameters on skinfriction and Nusselt number for TiO2-Water.

    Tables 3 and 4 are presented to examine the effect of magnetic parameter β and reciprocal of magnetic prandtl number λ in absence and presence of Copper and titanium dioxide nanoparticles for rising values of volumetric fraction.From these tables it is evident that skin friction decreases as magnetic parameter rises while it reduces for rising values of λ.In presence of Cu and TiO2nanoparticles same trend is witness with the rise in magnitude.This rise in magnitude is increased for rising nanoparticles volumetric fraction.Moreover,magnitude of skin friction and Nusselt number is more for Cu than TiO2nanoparticles.

    Skin friction coefficient and Nusselt number are plotted for distinct values of important parameters in Figs.22–25.Figures 22 and 23 are skin friction graphs for Cu and TiO2plotted against volumetric fraction for rising values of magnetic parameter.These plots reveal that skin friction rises with the rise in ? while it lessens for rising magnetic parameter.Same trend is witness for TiO2with the only difference in raised magnitude scale.Furthermore,Nusselt number represents the heat flux at the surface.It is plotted against ? for rising values of β for the case of Cu and TiO2nanoparticles as shown in Figs.24 and 25,respectively.It is observed that Nu rises for increasing values of ? as well as magnetic parameter.Moreover this rise is more in magnitude for Cu-water based nanofluid(see Fig.25).

    Fig.22 (Color online)Variation of β on Cfagainst ? for Cu-H2O.

    Fig.23 (Color online)Variation of β on Cfagainst ? for TiO2-H2O.

    Fig.24 (Color online)Variation of β on Nuxagainst ? for Cu-H2O.

    Fig.25 (Color online)Variation of β on Nuxagainst ? for TiO2-H2O.

    6 Conclusion and Novelty of Article

    In present article comparative study was performed for two distinct metal nanoparticles namely,Copper and Titanium dioxide.These particles were chosen due to their significance in industry and manufacturing processes.Numerical investigation was performed for stagnation point flow over a linearly stretching surface in presence of induced magnetic field.Governing flow equations were reduced to system of differential equations by utilizing of similarity analysis.The reduced nonlinear coupled system was tackled numerically by means of shooting technique.Numerical analysis was performed in computational software MATLAB.From the above mentioned numerical investigation it was concluded that the usage of metallic nanoparticles in water based fluid was effective in improving thermal conductivity of the water.Cu nanoparticles were more efficient that TiO2nanoparticles.Nanoparticles volumetric fractions effected fluid flow and induced magnetic field significantly.Magnetic parameter and reciprocal of magnetic Prandtl number effected the temperature profile in an opposite manner to each other.Skin friction was an increasing function of ? and a decreasing function of magnetic parameter.Nusselt number seemed to be an increasing function of magnetic parameter and ?.Novel results of present investigation may be useful and beneficial in academic research and nanofluidic problems.

    99在线视频只有这里精品首页| or卡值多少钱| 亚洲国产欧美在线一区| 国产伦精品一区二区三区视频9| 国产精品福利在线免费观看| 亚洲av中文av极速乱| 亚洲精品亚洲一区二区| 91av网一区二区| 久久久久久久久大av| 日日撸夜夜添| 国产一区二区亚洲精品在线观看| 综合色丁香网| 一个人观看的视频www高清免费观看| 18禁在线播放成人免费| 久久6这里有精品| 99久久无色码亚洲精品果冻| 日日摸夜夜添夜夜爱| 久久精品影院6| 五月玫瑰六月丁香| 国产精品一及| 色综合亚洲欧美另类图片| 91aial.com中文字幕在线观看| 少妇人妻一区二区三区视频| 免费播放大片免费观看视频在线观看 | 九九爱精品视频在线观看| 老女人水多毛片| 国产一区有黄有色的免费视频 | 麻豆乱淫一区二区| 国产久久久一区二区三区| 国产 一区 欧美 日韩| 精品久久久久久久人妻蜜臀av| 久久久欧美国产精品| 三级男女做爰猛烈吃奶摸视频| av福利片在线观看| 亚洲中文字幕一区二区三区有码在线看| 人体艺术视频欧美日本| 国产高清不卡午夜福利| 成人午夜精彩视频在线观看| 国产免费又黄又爽又色| 国产 一区 欧美 日韩| 青春草视频在线免费观看| 啦啦啦韩国在线观看视频| 免费一级毛片在线播放高清视频| av在线亚洲专区| 欧美激情国产日韩精品一区| 老司机影院毛片| 日本黄色视频三级网站网址| 日本-黄色视频高清免费观看| 免费无遮挡裸体视频| 亚洲经典国产精华液单| 亚洲欧美日韩东京热| 亚洲经典国产精华液单| 国产午夜福利久久久久久| 一区二区三区高清视频在线| 国产极品天堂在线| 3wmmmm亚洲av在线观看| 国产私拍福利视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 亚洲av福利一区| 青春草亚洲视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 成人av在线播放网站| av线在线观看网站| 天堂av国产一区二区熟女人妻| www.av在线官网国产| 美女脱内裤让男人舔精品视频| 国产女主播在线喷水免费视频网站 | 国产精品av视频在线免费观看| 国国产精品蜜臀av免费| 国产精品一区二区三区四区久久| 欧美极品一区二区三区四区| videos熟女内射| 久久精品国产亚洲av天美| 小蜜桃在线观看免费完整版高清| 天堂av国产一区二区熟女人妻| 一个人看的www免费观看视频| 在线天堂最新版资源| 精品酒店卫生间| 久久亚洲国产成人精品v| 亚洲欧美日韩东京热| 国产精品.久久久| 国产精品久久久久久久电影| 免费观看在线日韩| 国产爱豆传媒在线观看| 亚洲乱码一区二区免费版| 成人国产麻豆网| 国产私拍福利视频在线观看| 亚洲内射少妇av| 天美传媒精品一区二区| 中文乱码字字幕精品一区二区三区 | 午夜福利高清视频| 菩萨蛮人人尽说江南好唐韦庄 | 久久久久九九精品影院| 99久久无色码亚洲精品果冻| 国产人妻一区二区三区在| 日韩欧美国产在线观看| 尾随美女入室| 日韩人妻高清精品专区| 日本黄色片子视频| 国产乱来视频区| 尤物成人国产欧美一区二区三区| 成人午夜精彩视频在线观看| 欧美+日韩+精品| 日本免费一区二区三区高清不卡| 亚洲综合色惰| 丝袜美腿在线中文| 国产69精品久久久久777片| 亚洲性久久影院| 熟女电影av网| 国产乱人视频| 91久久精品国产一区二区三区| 最后的刺客免费高清国语| 国产69精品久久久久777片| 中国美白少妇内射xxxbb| h日本视频在线播放| 日韩av在线免费看完整版不卡| 国产男人的电影天堂91| 日本欧美国产在线视频| 蜜桃久久精品国产亚洲av| 国产高清三级在线| 免费av观看视频| 色网站视频免费| 久久精品国产自在天天线| av在线播放精品| 国产精品一二三区在线看| 久久久久久久国产电影| 国产精品国产高清国产av| 欧美三级亚洲精品| 亚洲精品乱久久久久久| 久久久久九九精品影院| 干丝袜人妻中文字幕| 青春草视频在线免费观看| 亚洲av二区三区四区| 2022亚洲国产成人精品| 日韩强制内射视频| 国产乱来视频区| 特级一级黄色大片| 亚洲精品日韩av片在线观看| 最近中文字幕高清免费大全6| 六月丁香七月| 亚洲美女搞黄在线观看| 小蜜桃在线观看免费完整版高清| 国产乱人视频| or卡值多少钱| 又爽又黄无遮挡网站| 熟妇人妻久久中文字幕3abv| 免费观看在线日韩| 亚洲精品日韩av片在线观看| 天美传媒精品一区二区| 国产单亲对白刺激| 99热这里只有是精品50| 国产探花极品一区二区| 精华霜和精华液先用哪个| 久久精品综合一区二区三区| 一区二区三区乱码不卡18| 能在线免费观看的黄片| 午夜激情欧美在线| 中文字幕亚洲精品专区| 午夜激情福利司机影院| 亚洲在线观看片| 久久这里有精品视频免费| 日本免费a在线| 亚洲欧美日韩高清专用| 中文字幕人妻熟人妻熟丝袜美| 午夜视频国产福利| 91精品一卡2卡3卡4卡| 久久精品人妻少妇| 在线免费观看的www视频| 日本av手机在线免费观看| 欧美性感艳星| 精品欧美国产一区二区三| 亚洲国产成人一精品久久久| 精品国内亚洲2022精品成人| 久久久久久久久久久免费av| 国产三级在线视频| 天堂√8在线中文| 天美传媒精品一区二区| 日本欧美国产在线视频| av黄色大香蕉| 黄色一级大片看看| 3wmmmm亚洲av在线观看| 一个人免费在线观看电影| 亚洲成人久久爱视频| 高清毛片免费看| 高清午夜精品一区二区三区| 免费观看性生交大片5| 老师上课跳d突然被开到最大视频| 国产三级中文精品| 99久久精品国产国产毛片| 中文资源天堂在线| 国产一区亚洲一区在线观看| 非洲黑人性xxxx精品又粗又长| 伦理电影大哥的女人| 九色成人免费人妻av| 婷婷色av中文字幕| 精品人妻偷拍中文字幕| 一边摸一边抽搐一进一小说| av在线亚洲专区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费观看a级毛片全部| 99久久精品国产国产毛片| 色5月婷婷丁香| 久久久久久久久大av| 99热6这里只有精品| 少妇高潮的动态图| 一级二级三级毛片免费看| 国产在线一区二区三区精 | 国产亚洲精品久久久com| 亚洲性久久影院| 爱豆传媒免费全集在线观看| 午夜福利成人在线免费观看| 久久99精品国语久久久| 美女内射精品一级片tv| 国产成人一区二区在线| 变态另类丝袜制服| 高清在线视频一区二区三区 | 99在线视频只有这里精品首页| 少妇熟女aⅴ在线视频| 国产av不卡久久| 中文字幕免费在线视频6| 身体一侧抽搐| 亚洲国产最新在线播放| 亚洲在久久综合| 久久精品影院6| 久久精品久久久久久久性| 亚洲第一区二区三区不卡| 天美传媒精品一区二区| 国产成人午夜福利电影在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 搡老妇女老女人老熟妇| 秋霞伦理黄片| 美女黄网站色视频| 精品99又大又爽又粗少妇毛片| 国产极品精品免费视频能看的| 亚洲av免费在线观看| 国产精品久久久久久久久免| ponron亚洲| 亚洲婷婷狠狠爱综合网| 亚洲国产精品合色在线| 又粗又硬又长又爽又黄的视频| 欧美极品一区二区三区四区| 欧美日韩在线观看h| 亚洲va在线va天堂va国产| kizo精华| 少妇的逼好多水| 直男gayav资源| 国产精品国产三级专区第一集| 午夜免费激情av| 国产伦在线观看视频一区| 亚洲国产欧洲综合997久久,| 久久精品国产鲁丝片午夜精品| 免费看a级黄色片| 春色校园在线视频观看| 白带黄色成豆腐渣| 搡老妇女老女人老熟妇| 色5月婷婷丁香| 长腿黑丝高跟| 中文字幕人妻熟人妻熟丝袜美| 亚洲自拍偷在线| 亚洲国产色片| 你懂的网址亚洲精品在线观看 | 国产熟女欧美一区二区| 亚洲婷婷狠狠爱综合网| 人人妻人人看人人澡| av在线观看视频网站免费| 国产高清不卡午夜福利| 免费一级毛片在线播放高清视频| 在线天堂最新版资源| 国内少妇人妻偷人精品xxx网站| 日日啪夜夜撸| 久久精品久久久久久噜噜老黄 | 春色校园在线视频观看| 婷婷色av中文字幕| 亚洲精品456在线播放app| 婷婷色av中文字幕| 99久久人妻综合| 真实男女啪啪啪动态图| 国产精品永久免费网站| 99久久成人亚洲精品观看| 久久久久久久久中文| 成人亚洲欧美一区二区av| 久久久成人免费电影| 亚洲欧美一区二区三区国产| 岛国毛片在线播放| 亚洲欧洲日产国产| 建设人人有责人人尽责人人享有的 | 少妇人妻精品综合一区二区| 国产精品.久久久| 五月玫瑰六月丁香| 在线免费十八禁| 国产午夜精品一二区理论片| 亚洲真实伦在线观看| 日韩成人av中文字幕在线观看| 久久精品国产亚洲网站| 国产在线男女| 永久网站在线| 少妇被粗大猛烈的视频| 我的女老师完整版在线观看| 日韩强制内射视频| 亚洲高清免费不卡视频| 男人和女人高潮做爰伦理| 亚洲欧美一区二区三区国产| 亚洲av中文字字幕乱码综合| 男的添女的下面高潮视频| 免费看美女性在线毛片视频| 一本久久精品| 国产成人午夜福利电影在线观看| 午夜a级毛片| 麻豆成人午夜福利视频| 日日摸夜夜添夜夜添av毛片| 亚洲美女视频黄频| 插阴视频在线观看视频| 18+在线观看网站| 搡女人真爽免费视频火全软件| 国产精华一区二区三区| av在线亚洲专区| 欧美一区二区精品小视频在线| 免费看美女性在线毛片视频| 禁无遮挡网站| 久久精品夜色国产| 国内精品一区二区在线观看| 日韩精品有码人妻一区| 一个人免费在线观看电影| 天堂影院成人在线观看| 一区二区三区高清视频在线| 两个人视频免费观看高清| videos熟女内射| 久久精品人妻少妇| 丝袜美腿在线中文| 亚洲丝袜综合中文字幕| 精品久久久久久久久亚洲| 毛片女人毛片| 中国美白少妇内射xxxbb| 国产伦精品一区二区三区视频9| 水蜜桃什么品种好| 国产午夜精品论理片| 亚洲av男天堂| 三级国产精品片| 黄色配什么色好看| 高清av免费在线| 欧美成人精品欧美一级黄| 亚洲av日韩在线播放| 校园人妻丝袜中文字幕| 亚洲在线自拍视频| 国产av在哪里看| 久久久久九九精品影院| 久久精品国产亚洲av涩爱| 欧美精品国产亚洲| 又爽又黄无遮挡网站| 亚洲欧美精品自产自拍| 综合色丁香网| 一级爰片在线观看| 亚洲伊人久久精品综合 | 成人亚洲欧美一区二区av| 欧美成人a在线观看| 色综合色国产| videossex国产| 三级男女做爰猛烈吃奶摸视频| 两个人视频免费观看高清| 国产精品乱码一区二三区的特点| 丝袜美腿在线中文| kizo精华| 一边亲一边摸免费视频| 亚洲图色成人| 精品国产露脸久久av麻豆 | 精品午夜福利在线看| 亚洲久久久久久中文字幕| 久久久久久九九精品二区国产| 欧美成人a在线观看| 国产精品99久久久久久久久| 麻豆国产97在线/欧美| 国产久久久一区二区三区| 亚洲精品乱码久久久久久按摩| 一个人观看的视频www高清免费观看| a级一级毛片免费在线观看| 我的女老师完整版在线观看| 欧美另类亚洲清纯唯美| 免费观看a级毛片全部| 青春草国产在线视频| 纵有疾风起免费观看全集完整版 | 一二三四中文在线观看免费高清| 搞女人的毛片| av在线天堂中文字幕| 黄色欧美视频在线观看| 久久亚洲精品不卡| 极品教师在线视频| 国产三级在线视频| 久99久视频精品免费| av.在线天堂| 搡老妇女老女人老熟妇| 日韩在线高清观看一区二区三区| 国产精品三级大全| 国产成人精品一,二区| 99热网站在线观看| 国产91av在线免费观看| 国产高潮美女av| 18禁裸乳无遮挡免费网站照片| 大香蕉久久网| av在线播放精品| 国产免费男女视频| 亚洲欧洲日产国产| 男女那种视频在线观看| 久久国产乱子免费精品| 乱系列少妇在线播放| 在线天堂最新版资源| 六月丁香七月| 亚洲色图av天堂| 日本av手机在线免费观看| 午夜视频国产福利| 国产高清视频在线观看网站| 中文在线观看免费www的网站| 精品久久久久久久久亚洲| 麻豆乱淫一区二区| 夜夜看夜夜爽夜夜摸| 搡老妇女老女人老熟妇| 麻豆一二三区av精品| 最近最新中文字幕免费大全7| 成人二区视频| 国产乱人视频| 日本欧美国产在线视频| 久久久久久久久久久免费av| 在线观看美女被高潮喷水网站| 可以在线观看毛片的网站| 99久久中文字幕三级久久日本| 18禁动态无遮挡网站| 国产精品国产三级专区第一集| 日韩亚洲欧美综合| 岛国毛片在线播放| 久久综合国产亚洲精品| 亚洲av中文字字幕乱码综合| 亚洲国产欧美在线一区| 亚洲天堂国产精品一区在线| 久久久久精品久久久久真实原创| 麻豆av噜噜一区二区三区| 久久精品人妻少妇| 中文乱码字字幕精品一区二区三区 | 蜜桃亚洲精品一区二区三区| 欧美bdsm另类| 国产高清三级在线| 91久久精品国产一区二区三区| 久久久久久久久久成人| videossex国产| 精品一区二区三区人妻视频| 非洲黑人性xxxx精品又粗又长| 国产精品一及| 午夜精品国产一区二区电影 | 国产精品一区二区在线观看99 | 久久99热这里只有精品18| 在线免费观看不下载黄p国产| 三级国产精品欧美在线观看| 青青草视频在线视频观看| 国产午夜精品论理片| 亚洲欧洲日产国产| 观看免费一级毛片| 色5月婷婷丁香| 亚洲国产欧美人成| 天堂网av新在线| 久久久成人免费电影| 女的被弄到高潮叫床怎么办| 亚洲真实伦在线观看| 人妻少妇偷人精品九色| 高清午夜精品一区二区三区| 毛片一级片免费看久久久久| 尾随美女入室| 欧美性猛交黑人性爽| 联通29元200g的流量卡| 美女黄网站色视频| 99久久成人亚洲精品观看| 日韩精品有码人妻一区| 久久草成人影院| 久久欧美精品欧美久久欧美| 久久久国产成人免费| 国产午夜福利久久久久久| 一区二区三区乱码不卡18| 白带黄色成豆腐渣| 午夜亚洲福利在线播放| 国产精品人妻久久久久久| 综合色av麻豆| 赤兔流量卡办理| 麻豆国产97在线/欧美| 高清视频免费观看一区二区 | 亚洲不卡免费看| 亚洲国产欧洲综合997久久,| 高清视频免费观看一区二区 | 久久人妻av系列| 91久久精品国产一区二区三区| 黄色配什么色好看| 精品欧美国产一区二区三| 日本与韩国留学比较| 直男gayav资源| 麻豆国产97在线/欧美| 两性午夜刺激爽爽歪歪视频在线观看| 97热精品久久久久久| 国产乱人视频| 九九爱精品视频在线观看| 国产国拍精品亚洲av在线观看| 国产精品99久久久久久久久| 男插女下体视频免费在线播放| 日本免费一区二区三区高清不卡| 老司机福利观看| 97超视频在线观看视频| 国产伦一二天堂av在线观看| 国产在视频线精品| 欧美日本亚洲视频在线播放| 国产综合懂色| 激情 狠狠 欧美| av天堂中文字幕网| 国产中年淑女户外野战色| 久久精品国产自在天天线| 免费观看精品视频网站| 成人午夜高清在线视频| 国产高潮美女av| 老司机福利观看| 久久人人爽人人爽人人片va| 人妻制服诱惑在线中文字幕| 国产老妇伦熟女老妇高清| 哪个播放器可以免费观看大片| 国产一区有黄有色的免费视频 | 亚洲精品国产av成人精品| 日产精品乱码卡一卡2卡三| 尤物成人国产欧美一区二区三区| 亚洲最大成人av| 国产高清不卡午夜福利| 国产乱来视频区| 国产成人免费观看mmmm| 亚洲av中文字字幕乱码综合| 嫩草影院入口| 久久久午夜欧美精品| 又爽又黄a免费视频| 狂野欧美激情性xxxx在线观看| 亚洲色图av天堂| 亚洲欧美一区二区三区国产| 99久久精品热视频| 亚洲欧美成人精品一区二区| 亚洲综合精品二区| 汤姆久久久久久久影院中文字幕 | 免费av观看视频| 丰满少妇做爰视频| 日本与韩国留学比较| 男女那种视频在线观看| 搡老妇女老女人老熟妇| 国产女主播在线喷水免费视频网站 | 成人亚洲精品av一区二区| 变态另类丝袜制服| 网址你懂的国产日韩在线| 欧美xxxx性猛交bbbb| www.色视频.com| 午夜免费男女啪啪视频观看| 午夜老司机福利剧场| 日本与韩国留学比较| 又黄又爽又刺激的免费视频.| 观看美女的网站| 国产免费一级a男人的天堂| 欧美极品一区二区三区四区| 97在线视频观看| 亚洲成人av在线免费| 一级黄片播放器| 菩萨蛮人人尽说江南好唐韦庄 | 床上黄色一级片| 久久久久久久久久久免费av| 韩国av在线不卡| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 三级国产精品片| 在线免费观看的www视频| 一个人看视频在线观看www免费| 中文乱码字字幕精品一区二区三区 | 日韩三级伦理在线观看| 久久久久国产网址| 51国产日韩欧美| 99久久精品热视频| 日韩成人伦理影院| 在现免费观看毛片| 精品久久久久久久久亚洲| 亚洲av中文字字幕乱码综合| 能在线免费看毛片的网站| 欧美日韩在线观看h| 国产淫语在线视频| 色播亚洲综合网| 久久久久久九九精品二区国产| 麻豆av噜噜一区二区三区| 亚洲av成人精品一二三区| 国产91av在线免费观看| 中国美白少妇内射xxxbb| 日韩成人av中文字幕在线观看| 大香蕉久久网| 最近手机中文字幕大全| 日本免费一区二区三区高清不卡| 亚洲精品456在线播放app| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲成av人片在线播放无| 色综合站精品国产| av在线亚洲专区| 一二三四中文在线观看免费高清| 三级男女做爰猛烈吃奶摸视频| 2021少妇久久久久久久久久久| ponron亚洲| 少妇人妻精品综合一区二区| 97人妻精品一区二区三区麻豆| 直男gayav资源| 色哟哟·www| 日日摸夜夜添夜夜添av毛片| 男女视频在线观看网站免费| 精品一区二区三区人妻视频| 国产视频内射| 黄片wwwwww| 成人美女网站在线观看视频| 我要看日韩黄色一级片| 日韩,欧美,国产一区二区三区 | 国产精品电影一区二区三区| 国产精品人妻久久久影院| 国产色爽女视频免费观看| 麻豆国产97在线/欧美| 丝袜喷水一区| 久久久久久久久久黄片| 精品国内亚洲2022精品成人|