• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Perturbative Treatment for Stationary State of Local Master Equation?

    2018-07-09 06:46:30JianYingDu杜建迎andFuLinZhang張福林
    Communications in Theoretical Physics 2018年7期
    關(guān)鍵詞:福林

    Jian-Ying Du(杜建迎)and Fu-Lin Zhang(張福林)

    Department of Physics,School of Science,Tianjin University,Tianjin 300072,China

    1 Introduction

    It is generally impossible to isolate a quantum system from its surroundings,which is referred to an open quantum system.Studying open quantum systems has both theoretical and practical significance,such as in quantum thermodynamics[1?2]and quantum information.[3]However,only few system-environment models can be solved exactly.For most cases,the effects of environment are treated by employing various effective models,e.g.,time dependent Hamiltonian,quantum Langevin and stochastic Schr?dinger equations,quantum state diffusion models or Hilbert-space averaging methods.[4?9]

    The most widely applied approach is the quantum master equation,[7?9]which can be derived from a quantum system-environment model by the partial trace over the environment under appropriate approximations.The most common approximations are the Born-Markov(factorization and memoryless)approximations and the rotating wave approximations,which lead to the Gorini-Kossakowski-Lindblad-Sudarshan(GKLS)quantum master equation.[10?11]

    The local approach is an approximation often invoked in building the quantum master equation of a composite open system with a weak internal coupling,whose subsystems coupled to local environments.The internal coupling is supposed to have no effect on the local dynamical generator,often in the GKLS form,of each individual component.And the master equation is constructed by simply adding the local dynamical generators.The other extreme is the global approach,in which the system with a strong internal coupling is considered as a whole,and the global dynamical generators are derived in the standard procedure to build the quantum master equation.Each of the two approaches has its own pros and cons.The local GKLS master equation is found to be thermodynamic inconsistent,which may lead to a heat current flowing against the temperature gradient.[12]But,in deriving the global one,the eigenvalue problem for the system Hamiltonian can be difficult.In addition,for a global GKLS master equation,the steady-state,which is a mixture of eigenstates of the whole system,is often far from direct product states of subsystems.This makes it to be hard to define the local temperature of a subsystem.[13]Currently,efforts are being made to study the local and global GKLS master equations and test their validity or divergence.[14?21]

    In this contribution,we are going to present a perturbative method to solve the stationary states of local master equations,with linear local dynamical generators.The steady-state is,in general,the most important solution of a master equation,e.g.it can be regarded as the quantum counterpart of classical thermodynamic cycle in the sense of self-contained quantum thermal machines.[18?19,21?30]

    On the one hand,the perturbative method further simplifies the task to derive the stationary state,which is represented by a series of the strength of weak internal interaction.And on the other hand,the recurrence relation of the steady-state clearly shows the competition between the internal interaction and the trend back to the local stationary state.Particularly,when the local dynamical generators are in the GKLS form,such competition becomes the one between incoherent operations and the unitary creating quantum coherence.[31?32]This pro-vides a possible perspective to relate the thermodynamic consistency with quantum coherence.As two examples,we study the two-qubit model analysed in Refs.[12,14–15]and the three-qubit absorption refrigerator[22,24]to demonstrate our perturbative method and discuss the relation between quantum coherence and thermodynamic consistency.

    2 Perturbative Method

    In the local approach,the master equation for an open system reads

    where H is the total Hamiltonian of the whole system,and Diis the local dynamical generator on i-th subsystem induced by the coupling with its environment.The Hamiltonian can be written as the sum of free Hamiltonian of subsystems and internal interaction as

    where we denote the interaction Hint=gX with g being a small dimensionless constant and X is a nonlocal operator specifying the couplings.

    We assume that the steady-state solution of master equation(1)exists and is unique,satisfying

    When internal interaction g=0,the solution is simply the direct product of local steady states

    Here the local state τiof a subsystem is determined by

    Similar with the perturbation theory described in every textbook on quantum mechanics,we represent the steady state by the series

    The zeroth-order term ρ(0)is given by Eq.(4),and the normalization condition requires Trρ(k)=0 for k>0.When the local dynamical generators Diare linear,one can insert the series into Eq.(3)and obtain the recurrence relation

    where H(0)=∑iHiis the free Hamiltonian and k=0,1,2,...The steady-state problem described by Eq.(5)is often trivial,e.g.τibeing a thermal state in the temperature of its bath in an equilibrium state.Then,the task becomes to derive ρ(k+1)from the commutator[X,ρ(k)]and the properties of H(0)and Di,starting with ρ(0).

    When Diare in the GKLS form,the local steady states τiare functions of free Hamiltonian Hiand thus are incoherent states with respect to the representation of Hi.And,both the two terms in the right hand of Eq.(7)correspond to the changes of ρ(k+1)under incoherent operations in an infinitesimal interval of time,in which the commutator originates from the unitary generated by H0and Difrom the transition and dephasing caused by baths.Whereas,the unitary deriving by the interaction Hintmay produce coherence,when it does not commute with the diagnalized states it acting on.In such case,the recurrence relation(7)shows the fact that,the coherence generated from ρ(k)by the internal interaction is counteracted by the decoherence of ρ(k+1).Hence,the steady-state solution is the result of competition between the internal interaction and incoherent operations.

    One can simply rewrap the density matrix ρsto a vector,and simultaneously Diand ?to matrices operating on it,as the treatments of stationary state in Ref.[18]and transient state in Ref.[29].In this way,the series ρ(k)can be derived by using the perturbation theory for algebraic eigenvalue problem.[33]In present work,we omit this standard method,but show a process for construction of the series of steady state by using two simple examples in the following parts.In these examples,the generating and destroying of coherence in Eq.(7)are shown visually.

    3 Two-Qubit Heat Transfer Network

    The first example is the simplest heat transfer network model composed of two qubits,1 and 2,each of which is coupled to a single heat bath with temperature T1andLet us denote the Pauli operators for qubit i asand=(±)/2.The free Hamiltonian is given by

    And the two subsystems are weakly coupled to each other with the bipartite operator

    The local steady state τiis a thermal state,

    where si=tanh(?βiEi/2)with βi=1/Ti.For simplify,we model the local dissipator for each bath on its corresponding qubit as[22]

    where piis the dissipation rate,depending on how well each qubit is relative to its bath.It is a modified version of the one derived from the Jaynes-Cummings(JC)model with the dephasing rate being doubled,[34]and can be rewritten explicitly in the GKLS form(pointed out in the supplementary material of Ref.[22]).

    Substituting the zero-order steady state ρ(0)= τ1? τ2and the interaction operator into Eq.(7),one can obtain

    where?s=(s1?s2)/2 and

    It is obvious that the infinitesimal interaction generates the coherence term Y. One can directly assume the first order ρ(1)consists of Y,which is suppressed by Di.In addition,the commutators[H(0),Y]∝ ?EX and[H(0),X]∝?EY,where?E=E1?E2.That is,the free Hamiltonian rotates the o ff-diagonal term in the space of{X,Y}when ?E0.Therefore,one can assume

    where m(1)and d(1)are the parameters to be determined.Inserting the form of ρ(1)into the right hand of Eq.(7),we obtain

    where q=

    Substituting the first-order term ρ(1)into the left hand of Eq.(7),the commutators[X,ρ(1)]∝?.It commutes with the free Hamiltonian H0.According with the effects of local dissipators on,we suppose

    withand b(2)to derive.It is easily to obtain

    by using the relation in Eq.(7).The left hand of Eq.(7)for k=2 is given by

    where x= ?2q2/[(q2+?E2)p1p2].The linearity of the right hand leads to

    and m(3)=xm(1),d(3)= xd(1),or in other words

    From the two steps to derive ρ(2)and ρ(3)and the linearity of the recurrence relation,one can find that the series of ρ(k)for k>0 is composed of two geometric series.That is,the steady state is given by

    where the parameters can be directly obtained by using the sum formulae of geometric series as

    4 Three-Qubit Absorption Refrigerator

    We take the three-qubit model of quantum absorption refrigerator as the second example.It is proposed in the study of the fundamental limitation on the size of thermal machines,[22]and has raised a subsequent stream of works about self-contained quantum thermal machines,[18?19,21,23?30]Similar with the two-qubit model studied above,the three qubits 1,2,and 3,interact with three baths,1,2,and 3,at temperatures T1

    which extracts heat from the target,and dissipates it into bath 2 through the spiral,qubit 2.The qubit 3 plays the role of the engine,which gains free energy from the hot bath 3,to drive the heat current from the target to spiral.

    The commutator of the tripartite interation and the zero-order term of steady state= τ1?τ2?τ3is proportional to the tripartite coherent term Yr=?.Such term is suppressed byby H0=H1+H2+H3to in the space of{Xr,Yr}.We derived the first order of steady state as

    Here?Er=E1+E3?E2,qr=q1+q2+q3and?sr=(s1?s2+s3?s1s2s3)/4.Denoting ri=(1+si)/2Using the similar steps as the case of two-qubit model,the steady state of the three-qubit absorption refrigerator can be represented by the sum of two geometric series.By using the sum formulae of infinite geometric series,one obtains

    When ?Er=0,the stateis consistent with the result in Ref.[24].

    5 Thermodynamic Consistency

    The steady-state solutions enable us to derive the heat currents and verify the consistency of the local master equation with thermodynamics.The first law of thermodynamics is a conservation law of energy,which can be expressed by the steady-state heat currents Qias[35]

    The second law for an isolated system is given by[36]

    stating that the rate of entropy production is nonnegative.

    The heat current Qiprovided by bath i is defined as

    which is the change of energy of an open system in state ρ under the influence of Di.It is easy to prove that the sum of all heat currents at steady state is zero,by calculating average energy of the right hand of Eq.(3).That is,the first law of thermodynamics in Eq.(28)is fulfilled.However,the second law may be violated in the cases of nonresonant,i.e. ?E0 for the two-qubit model and?Er0 for the refrigerator.

    The currents of the two-qubit steady state(20)are

    When the parameter pi= γi[1+exp(?βiEi)],this is formally consistent with the results in Ref.[12],and pi=Ji[1+exp(βiEi)]leads to the ones in Ref.[14].The minor difference between our results and the two mentioned references stems from different dephasing rate.Substituting the currents(31)into the rate of entropy production in(29),one obtains

    where ξ is a function of all the parameters of the twoqubit model,which is always positive.When?E=0,it is easy to find that,the two factors in the two square brackets of Eq.(32)are of the same sign,and consequently dS/dt≥ 0.However,when ?E0,the two factors may have opposite signs,and thus dS/dt<0.For instance,in the case of?E<0 and∑i(?1)iβiEi>0,the sum of the two may be less than zero.These analyses also apply to the three-qubit refrigerator in steady state(25),since its currents and entropy production are also in the forms as(31)and(32),with the replacing?E→?Er,q→qr,d → drand ξ→ ξr>0.These results demonstrate that,the local approach is valid only under the resonance between subsystems.

    Such inconsistency can be understood by comparing the heat currents(31)with the ones drawn by the internal interaction from subsystems. The later are defined as the influences of the interaction on local energies,=iTr{Hi[Hint,ρ]}.For the two-qubit model in steady state(20),it is easy to obtained that

    The results for the refrigerator have the same form,with the mentioned replacing d→dr.It is directly to check that,these currents fulfill the second law in Eq.(29)but break down the first law in Eq.(28).Their differences with the heat currents provided by the baths(31)are proportional to the amounts of detuning,and is caused by the energy allocated to global coherent terms of the steady state.Only when the differences vanish,the first and second laws of thermodynamics are fulfilled simultaneously.These analyses do not rely on the compact forms of steady states in Eqs.(20)and(25),as the conflict can be found by using only the first and second orders of the steady states.These results indicate an implicit assumption of the local master equation that,the global terms of a steady state are without influence upon the currents.That is,the local approach requires that no global coherence contributing to total energy is produced in the competition between the internal interaction and couplings with baths.This is similar to the well known fact that,the laws of thermodynamics are broken down when open systems are correlated with their environments.[37?38]Furthermore,we argue that,for a subsystem in the local approach,the rest of a composite open system plays the role of environments.And,the requirement of resonance is similar with the fact that,only the resonant frequencies of reservoirs are involved in the standard GKLS master equation.

    6 Summary

    We present a perturbative method to solve the stationary states of linear local master equations,with the internal interaction being weak enough.This method is demonstrated by the two-qubit heat transfer network and three-qubit absorption refrigerator,in which each qubit and its bath is modeled by a simple reset model as the treatment in Ref.[22].The recurrence relation shows that the stationary state is the result of competition between incoherent operations and the unitary creating quantum coherence.Our two examples indicate that,it is required that no global coherence contributing to total energy is produced in the competition,by the thermodynamic consistency of local master equations.

    In our investigation of the consistent of local master equations with thermodynamics,we did not compare the results with the open systems under other treatments as in the recent works,[14?21]but analyze consistency of the theory by studying the heat currents drawn by the interaction and the ones provided by the baths.Here,we argue that,the treatment in Ref.[15]is not reasonable to consider a local master equation as the limit of the global one,as they are two different extremes of the internal interactions.It would be interesting to extend our perturbative method to the case with strong system-environment couplings,where the higher-order and non-Markovian effects[39]must be taken into account.

    [1]G.Gemma,M.Michel,and G.Mahler,Quantum Thermodynamics,Springer,Berlin(2004).

    [2]J.Gemmer,M.Michel,and G.Mahler,Quantum Thermodynamics:Emergence of Thermodynamic Behavior Within Composite Quantum Systems,volume 784 of Lecture Notes in Physics,Springer Verlag,Heidelberg(2009).

    [3]M.A.Nielsen and I.L.Chuang,Quantum Computation and Quantum Information,Cambridge University Press,Cambridge(2000).

    [4]M.V.Berry,Proc.R.Soc.London,Ser.A 392(1984)45.

    [5]N.Gisin and I.C.Percival,J.Phys.A:Math.Gen.25(1992)5677.

    [6]J.Gemmer and M.Michel,Eur.Phys.J.B 53(2006)517.

    [7]H.P.Breuer and F.Petruccione,The Theory of Open Quantum Systems,Oxford University Press,Oxford(2002).

    [8]C.Gardiner and P.Zoller,Quantum Noise:A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics,Vol.56,Springer Science&Business Media(2004).

    [9]I.de Vega and D.Alonso,Rev.Mod.Phys.89(2017)015001.

    [10]G.Lindblad,Commun.Math.Phys.48(1976)119.

    [11]V.Gorini,A.Kossakowski,and E.C.G.Sudarshan,J.Math.Phys.17(1976)821.

    [12]A.Levy and R.Koslo ff,Europhys.Lett.107(2014)20004.

    [13]M.Kliesch,C.Gogolin,M.J.Kastoryano,et al.,Phys.Rev.X 4(2014)031019.

    [14]P.D.Manrique,F.Rodríguez,L.Quiroga,and N.F.Johnson,Adv.Cond.Matt.Phys.2015(2015)615727.

    [15]A.Trushechkin and I.Volovich,Europhys.Lett.113(2016)30005.

    [16]P.P.Hofer,M.Perarnau-Llobet,L.D.M.Miranda,et al.,New J.Phys.19(2017)123037.

    [17]J.O.González,L.A.Correa,G.Nocerino,et al.,Open Syst.Inf.Dyn.24(2017)1740010.

    [18]C.S.Yu and Q.Y.Zhu,Phys.Rev.E 90(2014)052142.

    [19]L.A.Correa,J.P.Palao,G.Adesso,and D.Alonso,Phys.Rev.E 87(2013)042131.

    [20]G.De?cordi and A.Vidiella-Barranco,Opt.Commun.387(2017)366.

    [21]Z.X.Man and Y.J.Xia,Phys.Rev.E 96(2017)012122.

    [22]N.Linden,S.Popescu,and P.Skrzypczyk,Phys.Rev.Lett.105(2010)130401.

    [23]A.Levy and R.Koslo ff,Phys.Rev.Lett.108(2012)070604.

    [24]P.Skrzypczyk,N.Brunner,N.Linden,and S.Popescu,J.Phys.A:Math.Theor.44(2011)492002.

    [25]N.Brunner,N.Linden,S.Popescu,and P.Skrzypczyk,Phys.Rev.E 85(2012)051117.

    [26]N.Brunner,M.Huber,N.Linden,et al.,Phys.Rev.E 89(2014)032115.

    [27]L.A.Correa,J.P.Palao,D.Alonso,and G.Adesso,Sci.Rep.4(2014)03949.

    [28]R.Kosloff and A.Levy,Annu.Rev.Phys.Chem.65(2014)365.

    [29]J.B.Brask and N.Brunner,Phys.Rev.E 92(2015)062101.

    [30]J.Goold,M.Huber,A.Riera,et al.,J.Phys.A:Math.Theor.49(2016)143001.

    [31]T.Baumgratz,M.Cramer,and M.Plenio,Phys.Rev.Lett.113(2014)140401.

    [32]M.L.Hu,X.Hu,Y.Peng,et al.,arXiv:quantph/1703.01852(2017).

    [33]J.H.Wilkinson,The Algebraic Eigenvalue Problem,Clarendon Press,Oxford(1965).

    [34]J.Y.Du and F.L.Zhang,New J.Phys.20(2018)063005.

    [35]R.Alicki,J.Phys.A:Math.Gen.12(1979)L103.

    [36]R.Koslo ff,Entropy 15(2013)2100.

    [37]D.Jennings and T.Rudolph,Phys.Rev.E 81(2010)061130.

    [38]M.N.Bera,A.Riera,M.Lewenstein,and A.Winter,Nat.Commun.8(2017)2180.

    [39]X.Zhao,J.Jing,B.Corn,and T.Yu,Phys.Rev.A 84(2011)032101.

    猜你喜歡
    福林
    銅失衡與阿爾茨海默病的研究進(jìn)展
    Probabilistic resumable quantum teleportation in high dimensions
    鷹王
    昆侖神龜
    寶藏(2019年6期)2019-07-04 12:26:36
    豬王
    一枚小銅鈿
    故事會(huì)(2017年2期)2017-01-20 19:08:08
    歡喜冤家
    回旋飛機(jī)
    鷹王
    鷹王
    国产日韩欧美在线精品| 无人区码免费观看不卡 | 亚洲,欧美精品.| 中文字幕人妻丝袜制服| 18禁裸乳无遮挡动漫免费视频| 99国产精品99久久久久| 丝袜在线中文字幕| 黄片小视频在线播放| 久久免费观看电影| 大码成人一级视频| 欧美激情久久久久久爽电影 | 国产成人啪精品午夜网站| 日韩免费高清中文字幕av| 亚洲全国av大片| 中文字幕人妻丝袜一区二区| 亚洲天堂av无毛| 欧美大码av| 老司机在亚洲福利影院| 久久毛片免费看一区二区三区| 国产有黄有色有爽视频| 日本vs欧美在线观看视频| 国产精品电影一区二区三区 | 在线永久观看黄色视频| 最新的欧美精品一区二区| 狂野欧美激情性xxxx| 国产精品一区二区在线不卡| 免费一级毛片在线播放高清视频 | 国产精品1区2区在线观看. | 久久av网站| 亚洲精华国产精华精| 日韩大片免费观看网站| 不卡av一区二区三区| 99久久人妻综合| 久久久水蜜桃国产精品网| 国产精品亚洲一级av第二区| 午夜福利一区二区在线看| 久久精品国产亚洲av高清一级| 99久久国产精品久久久| 黑人操中国人逼视频| 飞空精品影院首页| 久久久国产精品麻豆| 午夜精品久久久久久毛片777| 久久久久精品国产欧美久久久| 国产av国产精品国产| 国产欧美日韩一区二区精品| 成年人免费黄色播放视频| 亚洲精品美女久久久久99蜜臀| 国产一卡二卡三卡精品| 久久中文字幕人妻熟女| 操出白浆在线播放| 在线观看舔阴道视频| 乱人伦中国视频| 成人亚洲精品一区在线观看| 亚洲伊人久久精品综合| 亚洲va日本ⅴa欧美va伊人久久| 涩涩av久久男人的天堂| 天天添夜夜摸| 大码成人一级视频| 国产精品亚洲一级av第二区| 欧美激情极品国产一区二区三区| 国产区一区二久久| 一区二区三区乱码不卡18| 国产野战对白在线观看| 久久久久久久精品吃奶| 多毛熟女@视频| 手机成人av网站| 精品视频人人做人人爽| 国产福利在线免费观看视频| 精品欧美一区二区三区在线| 黑人巨大精品欧美一区二区mp4| 人妻 亚洲 视频| 午夜福利在线观看吧| 欧美国产精品一级二级三级| 国产一区二区三区视频了| 亚洲熟妇熟女久久| 日韩一卡2卡3卡4卡2021年| 欧美乱码精品一区二区三区| 久久亚洲精品不卡| 超色免费av| 精品第一国产精品| 大型黄色视频在线免费观看| 国产成人精品在线电影| 午夜老司机福利片| av不卡在线播放| 丁香欧美五月| 久久精品亚洲av国产电影网| 啦啦啦在线免费观看视频4| 亚洲国产成人一精品久久久| 色94色欧美一区二区| 三级毛片av免费| 亚洲中文日韩欧美视频| 国产野战对白在线观看| 亚洲精华国产精华精| 搡老乐熟女国产| 国产一区二区三区视频了| 亚洲精品国产精品久久久不卡| 欧美日韩一级在线毛片| 精品国产国语对白av| 国产日韩欧美亚洲二区| cao死你这个sao货| 国产精品一区二区免费欧美| 好男人电影高清在线观看| 亚洲av电影在线进入| av片东京热男人的天堂| 欧美精品亚洲一区二区| 欧美激情极品国产一区二区三区| 国产成人免费观看mmmm| 美女国产高潮福利片在线看| 欧美黄色片欧美黄色片| 99香蕉大伊视频| 精品国产国语对白av| 天天躁狠狠躁夜夜躁狠狠躁| 啪啪无遮挡十八禁网站| 黄色a级毛片大全视频| 国产欧美日韩一区二区三区在线| 国产伦人伦偷精品视频| 青青草视频在线视频观看| 12—13女人毛片做爰片一| 亚洲av电影在线进入| 可以免费在线观看a视频的电影网站| 久久精品亚洲熟妇少妇任你| 午夜福利一区二区在线看| 国产精品成人在线| netflix在线观看网站| 午夜福利视频在线观看免费| 汤姆久久久久久久影院中文字幕| 亚洲国产欧美网| 亚洲成人免费av在线播放| 国产免费福利视频在线观看| 亚洲欧美日韩高清在线视频 | 制服诱惑二区| av电影中文网址| 精品亚洲成国产av| 欧美在线一区亚洲| 丁香六月欧美| 久久久国产欧美日韩av| 免费人妻精品一区二区三区视频| 真人做人爱边吃奶动态| av在线播放免费不卡| 久久天躁狠狠躁夜夜2o2o| 最新美女视频免费是黄的| 超碰97精品在线观看| 久久久久精品人妻al黑| 久久久久久亚洲精品国产蜜桃av| 精品久久久精品久久久| 欧美午夜高清在线| 国产97色在线日韩免费| 不卡一级毛片| 国产福利在线免费观看视频| 久久国产亚洲av麻豆专区| 天天躁狠狠躁夜夜躁狠狠躁| 后天国语完整版免费观看| 一区二区三区国产精品乱码| 久久精品aⅴ一区二区三区四区| 欧美乱妇无乱码| 亚洲av成人一区二区三| 另类亚洲欧美激情| 国产国语露脸激情在线看| 成人永久免费在线观看视频 | 人人妻人人添人人爽欧美一区卜| 天天躁狠狠躁夜夜躁狠狠躁| 免费观看a级毛片全部| 久久精品亚洲精品国产色婷小说| 国产精品二区激情视频| 日韩中文字幕视频在线看片| 丝袜在线中文字幕| 夜夜爽天天搞| netflix在线观看网站| 国产真人三级小视频在线观看| 嫁个100分男人电影在线观看| 窝窝影院91人妻| 97在线人人人人妻| 嫁个100分男人电影在线观看| 亚洲中文日韩欧美视频| 久久久欧美国产精品| 中文字幕av电影在线播放| 日韩免费av在线播放| 国产精品av久久久久免费| 国产成人啪精品午夜网站| 亚洲国产欧美日韩在线播放| 亚洲国产欧美一区二区综合| 久久精品国产综合久久久| 80岁老熟妇乱子伦牲交| 人人妻人人澡人人看| 老司机亚洲免费影院| 亚洲第一青青草原| 一本色道久久久久久精品综合| 水蜜桃什么品种好| 国产男女超爽视频在线观看| 最新美女视频免费是黄的| 精品人妻1区二区| 人成视频在线观看免费观看| 天堂8中文在线网| 午夜免费成人在线视频| 亚洲熟女精品中文字幕| 757午夜福利合集在线观看| 日韩欧美三级三区| 最新在线观看一区二区三区| 久久国产精品影院| 91av网站免费观看| 久久国产亚洲av麻豆专区| av欧美777| 别揉我奶头~嗯~啊~动态视频| av电影中文网址| 久久av网站| 国产精品亚洲av一区麻豆| 日本黄色视频三级网站网址 | 精品国产乱码久久久久久小说| 欧美性长视频在线观看| 亚洲久久久国产精品| 可以免费在线观看a视频的电影网站| 日本黄色视频三级网站网址 | 国产单亲对白刺激| 少妇 在线观看| 国产男女超爽视频在线观看| 脱女人内裤的视频| 欧美老熟妇乱子伦牲交| 国产男女内射视频| 人人妻,人人澡人人爽秒播| 视频在线观看一区二区三区| 99久久99久久久精品蜜桃| kizo精华| 91麻豆av在线| 日韩免费av在线播放| 亚洲国产欧美一区二区综合| 欧美日韩国产mv在线观看视频| 一进一出好大好爽视频| 亚洲人成伊人成综合网2020| 一级a爱视频在线免费观看| 亚洲精品粉嫩美女一区| 大片电影免费在线观看免费| 91成人精品电影| 国产av又大| 亚洲一区中文字幕在线| 99精国产麻豆久久婷婷| 黄片播放在线免费| 国产精品麻豆人妻色哟哟久久| 成人手机av| 夜夜骑夜夜射夜夜干| 亚洲av美国av| 国产亚洲欧美精品永久| 国产男靠女视频免费网站| 青草久久国产| 九色亚洲精品在线播放| 叶爱在线成人免费视频播放| 久久热在线av| 国产精品国产av在线观看| 久久久国产成人免费| a级毛片黄视频| 精品少妇黑人巨大在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 少妇粗大呻吟视频| 欧美亚洲 丝袜 人妻 在线| 两性午夜刺激爽爽歪歪视频在线观看 | 久久影院123| 免费黄频网站在线观看国产| 久久久精品国产亚洲av高清涩受| 日本黄色视频三级网站网址 | 免费久久久久久久精品成人欧美视频| 人人妻,人人澡人人爽秒播| 91国产中文字幕| a级毛片黄视频| 亚洲人成77777在线视频| 久久ye,这里只有精品| 在线观看人妻少妇| 美女主播在线视频| 日本黄色视频三级网站网址 | 老司机午夜福利在线观看视频 | 成年人免费黄色播放视频| 狂野欧美激情性xxxx| 久久久久网色| 露出奶头的视频| 91老司机精品| a级片在线免费高清观看视频| 国产成人欧美在线观看 | 亚洲av电影在线进入| 精品一区二区三区av网在线观看 | 免费不卡黄色视频| 日韩免费av在线播放| a在线观看视频网站| 欧美精品啪啪一区二区三区| 叶爱在线成人免费视频播放| 王馨瑶露胸无遮挡在线观看| 成人亚洲精品一区在线观看| 黄色毛片三级朝国网站| 黄色视频不卡| 日日夜夜操网爽| 久久毛片免费看一区二区三区| av又黄又爽大尺度在线免费看| 三上悠亚av全集在线观看| 1024视频免费在线观看| 亚洲欧美精品综合一区二区三区| 国产精品久久久久久人妻精品电影 | 久久天堂一区二区三区四区| 黑人猛操日本美女一级片| 少妇精品久久久久久久| 成人国语在线视频| 在线观看人妻少妇| 最新在线观看一区二区三区| 大型黄色视频在线免费观看| av福利片在线| 国产精品久久久久久精品古装| 亚洲黑人精品在线| 99国产精品一区二区三区| 国产精品一区二区在线观看99| 黄片播放在线免费| 男女床上黄色一级片免费看| 久久午夜综合久久蜜桃| 在线永久观看黄色视频| 黄色丝袜av网址大全| 精品视频人人做人人爽| 91麻豆av在线| 国产一区有黄有色的免费视频| 久久这里只有精品19| 蜜桃国产av成人99| 天天操日日干夜夜撸| 日韩免费高清中文字幕av| 五月开心婷婷网| 人人澡人人妻人| 国产高清激情床上av| 91麻豆av在线| 男女午夜视频在线观看| 制服诱惑二区| 飞空精品影院首页| av福利片在线| 一区二区三区激情视频| 久久九九热精品免费| 黑人巨大精品欧美一区二区mp4| 精品福利永久在线观看| 欧美日韩精品网址| 久久久久久久精品吃奶| 国产老妇伦熟女老妇高清| 免费观看av网站的网址| 免费日韩欧美在线观看| 久久人人97超碰香蕉20202| 国产色视频综合| 一边摸一边做爽爽视频免费| 亚洲精华国产精华精| 色婷婷久久久亚洲欧美| 满18在线观看网站| 老熟妇乱子伦视频在线观看| 亚洲一码二码三码区别大吗| 老司机深夜福利视频在线观看| 精品久久久久久久毛片微露脸| av国产精品久久久久影院| 国产精品二区激情视频| 黑人欧美特级aaaaaa片| 国产伦理片在线播放av一区| 高潮久久久久久久久久久不卡| 亚洲精品久久成人aⅴ小说| 人妻久久中文字幕网| 天天躁狠狠躁夜夜躁狠狠躁| 少妇的丰满在线观看| www.自偷自拍.com| 三级毛片av免费| 精品福利观看| 亚洲国产精品一区二区三区在线| 成年版毛片免费区| 欧美日韩亚洲综合一区二区三区_| 成人精品一区二区免费| 99精国产麻豆久久婷婷| 日韩免费高清中文字幕av| 国产精品av久久久久免费| netflix在线观看网站| 午夜福利在线免费观看网站| 咕卡用的链子| 亚洲av第一区精品v没综合| 一区二区三区乱码不卡18| 99国产综合亚洲精品| 午夜日韩欧美国产| 精品国产乱码久久久久久男人| netflix在线观看网站| 成人亚洲精品一区在线观看| 久久精品国产综合久久久| 日韩视频一区二区在线观看| 亚洲av片天天在线观看| 国产男女超爽视频在线观看| 美国免费a级毛片| 香蕉丝袜av| 精品卡一卡二卡四卡免费| 性高湖久久久久久久久免费观看| 91精品国产国语对白视频| 亚洲精品粉嫩美女一区| 成人精品一区二区免费| 国产精品自产拍在线观看55亚洲 | 丝瓜视频免费看黄片| 后天国语完整版免费观看| 免费在线观看影片大全网站| 亚洲一卡2卡3卡4卡5卡精品中文| 每晚都被弄得嗷嗷叫到高潮| 国产成人av教育| 老熟妇仑乱视频hdxx| 最黄视频免费看| 每晚都被弄得嗷嗷叫到高潮| 女警被强在线播放| 精品人妻1区二区| aaaaa片日本免费| 欧美+亚洲+日韩+国产| 日韩有码中文字幕| av天堂在线播放| 99热网站在线观看| 丁香欧美五月| 法律面前人人平等表现在哪些方面| 成年动漫av网址| 一级毛片电影观看| 国产精品久久久人人做人人爽| 成人影院久久| 人人妻人人爽人人添夜夜欢视频| 亚洲色图综合在线观看| 女性生殖器流出的白浆| 黑人操中国人逼视频| 精品国产一区二区三区久久久樱花| 色播在线永久视频| 狠狠狠狠99中文字幕| 成人永久免费在线观看视频 | 国产亚洲一区二区精品| tocl精华| 日韩免费av在线播放| 午夜老司机福利片| 波多野结衣av一区二区av| 久久久久国产一级毛片高清牌| 精品一品国产午夜福利视频| 在线播放国产精品三级| 精品少妇黑人巨大在线播放| 精品少妇久久久久久888优播| 十八禁网站免费在线| 黄片播放在线免费| 日本黄色日本黄色录像| 欧美乱码精品一区二区三区| 黄频高清免费视频| 麻豆成人av在线观看| 男女边摸边吃奶| 精品国产亚洲在线| 国产欧美日韩综合在线一区二区| 亚洲少妇的诱惑av| 一本—道久久a久久精品蜜桃钙片| 国产野战对白在线观看| 大片电影免费在线观看免费| 1024香蕉在线观看| 99精品在免费线老司机午夜| tube8黄色片| 99热网站在线观看| 亚洲成人免费av在线播放| 亚洲综合色网址| 国产日韩欧美在线精品| 国产激情久久老熟女| 两个人免费观看高清视频| 国产精品一区二区在线不卡| 一二三四社区在线视频社区8| 高潮久久久久久久久久久不卡| 日韩三级视频一区二区三区| 在线观看免费高清a一片| 成在线人永久免费视频| 777久久人妻少妇嫩草av网站| 高清毛片免费观看视频网站 | 黄色怎么调成土黄色| 国产亚洲欧美在线一区二区| 搡老熟女国产l中国老女人| 俄罗斯特黄特色一大片| 成年人午夜在线观看视频| 亚洲国产欧美一区二区综合| 激情视频va一区二区三区| 亚洲色图 男人天堂 中文字幕| 999久久久国产精品视频| 菩萨蛮人人尽说江南好唐韦庄| 丝袜喷水一区| 国产精品一区二区在线不卡| 国产精品二区激情视频| 王馨瑶露胸无遮挡在线观看| 大型av网站在线播放| 国产亚洲一区二区精品| 午夜精品久久久久久毛片777| 涩涩av久久男人的天堂| 多毛熟女@视频| 国产一区二区三区综合在线观看| 亚洲国产欧美网| 男女下面插进去视频免费观看| 国产精品99久久99久久久不卡| 又大又爽又粗| 狠狠精品人妻久久久久久综合| 最新在线观看一区二区三区| 国产av一区二区精品久久| 国产精品一区二区免费欧美| 日韩视频一区二区在线观看| 欧美日韩av久久| 国产色视频综合| 成人国产一区最新在线观看| 可以免费在线观看a视频的电影网站| 人妻 亚洲 视频| 啦啦啦中文免费视频观看日本| 久久久国产精品麻豆| 国产老妇伦熟女老妇高清| 1024视频免费在线观看| www.自偷自拍.com| 91麻豆av在线| 十八禁网站免费在线| 热re99久久国产66热| 交换朋友夫妻互换小说| 动漫黄色视频在线观看| 十分钟在线观看高清视频www| 免费少妇av软件| 制服人妻中文乱码| 90打野战视频偷拍视频| 成年人午夜在线观看视频| 亚洲一区二区三区欧美精品| 飞空精品影院首页| 18禁裸乳无遮挡动漫免费视频| av视频免费观看在线观看| 亚洲欧美日韩高清在线视频 | 下体分泌物呈黄色| 在线观看免费日韩欧美大片| 91成人精品电影| 欧美中文综合在线视频| 亚洲中文av在线| 亚洲午夜理论影院| 这个男人来自地球电影免费观看| 欧美+亚洲+日韩+国产| 亚洲精品国产一区二区精华液| 一进一出好大好爽视频| netflix在线观看网站| 夜夜爽天天搞| 老熟妇仑乱视频hdxx| 极品人妻少妇av视频| 成年动漫av网址| 青青草视频在线视频观看| 极品教师在线免费播放| 国产精品亚洲一级av第二区| 日本wwww免费看| 精品一品国产午夜福利视频| 国产av国产精品国产| 中文字幕人妻丝袜制服| 国产亚洲一区二区精品| 国产一区二区在线观看av| 精品人妻在线不人妻| 91老司机精品| 在线 av 中文字幕| 后天国语完整版免费观看| 国产一区有黄有色的免费视频| 国产日韩一区二区三区精品不卡| 香蕉丝袜av| 日韩中文字幕欧美一区二区| av片东京热男人的天堂| 久久av网站| 美国免费a级毛片| 久久性视频一级片| 午夜福利视频在线观看免费| 色视频在线一区二区三区| 丝袜美腿诱惑在线| 国产无遮挡羞羞视频在线观看| 国产精品秋霞免费鲁丝片| 国产精品国产av在线观看| 免费一级毛片在线播放高清视频 | 亚洲精品中文字幕在线视频| 十分钟在线观看高清视频www| 国产91精品成人一区二区三区 | 亚洲国产欧美一区二区综合| 另类精品久久| 老司机福利观看| 啦啦啦 在线观看视频| 欧美激情久久久久久爽电影 | 欧美日韩亚洲高清精品| 一本色道久久久久久精品综合| 国产伦理片在线播放av一区| 亚洲成人手机| 男女下面插进去视频免费观看| 不卡一级毛片| 狂野欧美激情性xxxx| 午夜福利,免费看| 我要看黄色一级片免费的| 成年人黄色毛片网站| 免费少妇av软件| 脱女人内裤的视频| 国产福利在线免费观看视频| 中文字幕制服av| 老司机福利观看| 国产在线免费精品| 国产精品99久久99久久久不卡| 黄色片一级片一级黄色片| 久久亚洲精品不卡| 热re99久久国产66热| 亚洲精品自拍成人| 女人高潮潮喷娇喘18禁视频| 欧美久久黑人一区二区| 国产伦人伦偷精品视频| 免费在线观看影片大全网站| 国产男女内射视频| 久久久久精品人妻al黑| 国产精品久久久久久精品电影小说| 制服诱惑二区| 国产高清激情床上av| 色综合婷婷激情| 青草久久国产| 国产真人三级小视频在线观看| 国产免费视频播放在线视频| 欧美亚洲 丝袜 人妻 在线| 久久久国产欧美日韩av| 日日夜夜操网爽| 最近最新免费中文字幕在线| 91成人精品电影| 黄色怎么调成土黄色| 69av精品久久久久久 | 一级片'在线观看视频| 在线天堂中文资源库| 国产精品1区2区在线观看. | 亚洲欧洲日产国产| 亚洲av日韩精品久久久久久密| 久久国产精品影院| 国产精品亚洲av一区麻豆| 亚洲精品美女久久av网站| a级毛片黄视频| 免费不卡黄色视频| 精品少妇黑人巨大在线播放| 欧美日韩精品网址| 国产成人免费观看mmmm| 国产欧美亚洲国产|