• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Numerical Investigation of 3D MHD Rotating Flow with Binary Chemical Reaction,Activation Energy and Non-Fourier Heat Flux?

    2018-07-09 06:46:44DianChenLuRamzanBilalJaeDongChungandUmerFarooq5DepartmentofMathematicsFacultyofScienceJiangsuUniversityZhenjiang220China
    Communications in Theoretical Physics 2018年7期

    Dian-Chen Lu,M.Ramzan,M.Bilal,Jae Dong Chung,and Umer Farooq,5Department of Mathematics,Faculty of Science,Jiangsu University,Zhenjiang 220,China

    2Department of Computer Science,Bahria University,Islamabad Campus,Islamabad 44000,Pakistan

    3Department of Mathematics,Faculty of Computing,Capital University of Science and Technology,Islamabad,Pakistan

    4Department of Mechanical Engineering,Sejong University,Seoul 143-747,Korea

    5Department of Mathematics,COMSATS Institute of Information Technology,Park road,Tarlai Kalan,Islamabad 45550,Pakistan

    1 Introduction

    The subject of non-Newtonian fluid mechanics has been an inspiring and defying area as it enfolds abundant vital problems from petroleum,biomedical food processing,chemical and polymer industries.Non-Newtonian fluid models are quite effective to illustrate the flow of commonly used various fluids available naturally or in processed form like motor oils,polymeric liquids,slurries,biological fluids and pastes etc.Elastico viscous fluid is a kind of non-Newtonian material in which the fluid’s deformity rate decreases once the shear stress is removed.This action is recognized as stress relaxation.In absence of sheer stress the time consumed by the fluid,to regain its equilibrium position due to its elastic characteristics,is named as relaxation time.Upper-convected Maxwell(UCM) fluid model is one of the commonly used elastico viscous fluid models.Maxwell fluid model has gained special attention of researchers in the recent past.Han et al.[1]studied analytical solution of UCM fluid flow past a stretched surface with Cattaneo-Christov heat flux and slip boundary condition.Mustafa[2]found numerical and analytical solution of non-Fourier heat flux in a rotating flow of Maxwell fluid.Ramzan et al.[3]discussed numerical solution of 3D UCM fluid flow with effects of nonlinear radiative heat flux and chemical reaction in attendance of double diffusion.Ramzan et al.[4]also examined three-dimensional UMC magnetohydrodynamic fluid flow with impact of homogeneous-heterogeneous reactions and non-Fourier heat flux with convective boundary conditions.Mustafa et al.[5]analytically investigated the flow of Upper-convected Maxwell fluid and temperature reliant thermal conductivity with Cattaneo-Christov heat flux.Khan et al.[6]found series solution of Maxwell fluid flow with homogeneous-heterogeneous reactions in attendance of heat generation/absorption and chemical reaction. Khan et al.[7]deliberated flow of Maxwell fluid with effects of mixed convection past an oscillating vertical plate using Laplace transform method.Hsiao[8]inspected Maxwell fluid flow past a high efficiency extrusion sheet with electrical MHD,mixed convection and thermal radiation.Hayat et al.[9])cogitated the 3D rotating flow of Maxwell nanofluid with using Optimal Homotopy analysis method.Jusoh et al.[10]found numerical solution of MHD 3D Maxwell fluid flow through a porous stretching/shrinking surface with convective boundary condition.Some more investigations highlighting flow of Maxwell fluid may be seen at Refs.[11–13].

    In many engineering processes,like thermal insulation,vaporization,food processing,diffusion of nutrients in tissues,distillation of alcohol,condensation in mixtures,im-portance of mass transfer can not be denied.A valuable contribution of mass transfer may also be found in livingmatter processes including sweating,respiration and nutrition etc.There have been studies in the past highlighting role of chemical reaction in mass transfer processes(see Refs.[14–16]and reference there in)and has a variety of applications like thermal oil recovery,chemical engineering,nuclear reactor cooling,and geothermal reservoirs.Study of binary chemical reaction in the flow of boundary layer was coined by Bestman.[17]He studied the flow of heat and mass transfer past a permeable medium with effects of binary reaction and arrhenius activation energy.Activation energy has a key role in all chemical reactions.It is the minimum amount of energy required for atoms and molecules to be in a position where a chemical reaction may trigger.The idea of activation energy is widely applicable in many fields including oil emulsions,oil reservoir,and mechanics of water.Makinde et al.[18]found numerical solution of time dependent flow with radiation,chemical reaction and Arrhenius activation energy effects past a permeable plate.Later,Maleque[19]talked about solution of time dependent fluid flow in attendance of heat generation/absorption,viscous dissipation,Arrhenius activation energy,and chemical reaction.Awad et al.[20]used the Spectral Relaxation Method(SRM)to find solution of a rotating viscous fluid with chemical reaction and Arrhenius activation energy.Some recent studies featuring both chemical reaction and activation energy are referred at Refs.[21–22].

    A reasonable number of applications emphasizing the role of steady and unsteady rotating flows may be found in chemical and geophysical fluid mechanics.These all of applied nature like in thermal power generating systems,in food processing,in the skins of high speed air crafts and in rotor stator systems.The pioneering work highlighting rotating flow was done by Wang.[23]This was followed by a study by Rajeswari and Nath[24]who explored the rotating time dependent flow.Takhar et al.[25]later discussed the effects of magnetohydrodynamic in a rotating flow.Kumari et al.[26]found numerical solution of rotating flow of Power law fluid model using Keller Box method.Zaimi et al.[27]also applied same numerical technique to examine the rotating flow of viscoelastic fluid.Javed et al.[28]investigated rotating fluid flow past an exponential stretched surface.Mustafa[29]deliberated rotating flow of UCM fluid with non-Fourier heat flux.Turkyilmazoglu[30]applied Spectral numerical integration method to find solution of a shrinking rotating disk with effect of magnetohydrodynamic.Recent attempts emphasizing rotating flow are referred at Refs.[31–33].

    It is observed that past investigations have not considered the onset of binary chemical reaction and energy activation on 3D rotating flow of Maxwell fluid accompanying non-Fourier heat flux.The present effort is to fill in such gap.Additionally, flow analysis is performed in the presence of magnetohydrodynamic and,heat and mass convective boundary conditions.Novelty of the existing exploration is through the subsequent characteristics.First,we have considered the three dimensional Maxwell rotating fluid flow with chemical reaction and activation energy.Second,the effect of magnetohydrodynamics is considered in the formulation of the problem.Third,we have analyzed the whole scenario in attendance of heat and mass boundary conditions.Fourth,the problem is studied in the presence of non-Fourier heat flux.Fifth,we have found the numerical solution[34?35]using bvp-4c function in MATLAB.Graphical illustrations accentuating effects of arising parameters on all involved fields are presented and well argued.A comparison to a previously published study is also added to validate our results.

    2 Mathematical Formulation

    Consider a 3D Maxwell rotating incompressible fluid flow(rotating with a constant angular velocity ?)past an elastic stretched surface placed in the xy-plane in which fluid is positioned at z≥0.The sheet is stretched with a linear velocity uw(x)=ax in x-direction.Let Twand Cwbe the temperature and concentration at the surface.However,T∞and C∞are the temperature and concentration far away from the surface as shown in Fig.1.

    Fig.1 Geometry of the Problem.

    A magnetic force of strength B0is applied normal to the plane of the stretched surface.Taking into account the binary chemical reaction with activation energy[20]and non-Fourier heat flux,[36]the governing equations of 3D Maxwell rotating fluid are given by:

    where ρ,p and ? = [0,0,?]are fluid density,pressure and the angular velocity.The quantity ? × (? ×r)= ??(?2r2/2)denotes the centrifugal force which is well-adjusted by the pressure gradient??p.The term(T/T∞)ne?Ea/κTrepresents the modified Arrhenius function.[20]Here,k=8.61 × 10?5eV/K,and n(?1

    and in Eq.(3),q is the heat flux satisfying the following relation

    where λ2and k represent the thermal relaxation time and fluid thermal conductivity.Considering the mass continuity equation?·V=0 and the steady laminar flow with?q/?t=0.Also in Eq.(5),λ1,A1=(?V)+(?V)tand D/Dt are the fluid relaxation time, first Rivilin-Ericksen tensor and the upper-convected time derivative.Introducing boundary layer approximations,Eqs.(1)–(4)take the form

    where D,kf,and λ2are the diffusion coefficient,thermal conductivity of the fluid,and relaxation time of heat flux.For λ2=0,Eq.(5)is reduced to classical Fourier’s law and Fick’s law.Also,ν,T,cp,v and(u,v,w)are the kinematic viscosity,temperature,specific heat, fluid density and velocities along(x,y,z)directions respectively.Equations(7)–(11)are supported by the boundary conditions are

    Employing transformation

    Equation(7)is satisfied automatically and Eqs.(8)–(12)take the form

    where λ,β,Pr,Sc,E,δ,σm,δt,M,and γ1and γ2are the rotation parameter,Deborah number(ratio of relaxation time to time of observation),Prandtl number(quotient of momentum to thermal diffusivity),Schmidt number(quotient of momentum to mass diffusivity),non-dimensional activation energy,temperature difference parameter,dimensionless reaction rate,thermal relaxation time(ratio of time required by a tissue to cool midway towards its original temperature),magnetic parameter and thermal and concentration Biot numbers(quotient of resistance to the internal heat flow to resistance to external heat flow)respectively and are defined as:

    Local Nusselt and Sherwood numbers in dimensional form are

    where

    Dimensionless forms of Local Nusselt and Sherwood numbers are

    3 Numerical Solutions

    The system of ODEs is solved with MATLAB built-in function bvp-4c.It is a finite difference code that implements the three-stage Lobatto IIIa formula.This is a collocation formula and the collocation polynomial provides a C1-continuous solution that is fourth order accurate uniformly in[a,b].Mesh selection and error control are based on the residual of the continuous solution.It has the following Matlab syntax:

    sol=(bvp4c(@odefun;@bcfun;solinit;options).To apply this method,the system of nonlinear ODEs(14)–(17)is converted to the subsequent system of first order ODEs:

    We denote f by y1,g by y4,θ by y6and ? by y8for converting the boundary value problem to the following initial value problem(IVP)

    along with following boundary conditions

    All the computations are made with the tolerance of ε=10?6,using a verified Matlab code.

    4 Results and Discussions

    In this section we have presented graphical illustrations depicting effects of varied prominent parameters on all involved profiles with requisite deliberations.

    Fig.2 Graph of f′versus β. λ =0.2,M=0.2,Pr=1.0,n=0.2,γ =0.1,δt=0.3,Sc=0.7,σm=0.5,δ=1.0,E=1.0.

    Fig.3 Graph of g versus β. λ =0.2,M =0.2,Pr=1.0,n=0.2,γ1= γ2=0.1,Sc=0.7,σm=0.5,δ=1.0,E=1.0,δt=0.3.

    Fig.4 Graph of f′versus λ. β =0.2,M=0.2,Pr=1.0,n=0.2,γ1= γ2=0.1,δt=0.3,Sc=0.7,σm=0.5,δ=1.0,E=1.0.

    Fig.5 Graph of g versus λ. β =0.2,M =0.2,Pr=1.0,n=0.2,γ1= γ2=0.1,δt=0.3,Sc=0.7,σm=0.5,δ=1.0,E=1.0.

    Fig.6 Graph of ? versus E. λ =0.2,β =0.2,Pr=1.0,n=0.2,γ1= γ2=0.1,δt=0.3,Sc=0.7,σm=0.5,δ=1.0.

    Fig.7 Graph of ? versus σm. λ =0.2,M=0.2,Pr=1.0,n=0.2,γ1= γ2=0.1,δt=0.3,Sc=0.7,β=0.2,δ=1.0,E=1.0.

    Figure 2 represents the behavior of Deborah number β on velocity field f′.From figure,it is witnessed that f′is decreasing function of β.This because of the fact that fluid’s motion in one direction is stymied by the viscoelastic effects.For smaller values of β,viscous effects are stronger than elastic and eventually fluid starts behaving like elastic solid material.However,for larger β,f′→ 0 near the sheet.

    Figure 3 is portrayed to visualize the influence of Deborah number β on g.From the graph,it is obvious that negative g values point out the fluid’s flow completely in y-direction.However,gradual increase in β shows that oscillations in g profile are more similar to that of f′.

    Fig.8 Graph of ? versus δ. λ =0.2,M =0.2,Pr=1.0,n=0.2,γ1= γ2=0.1,δt=0.3,Sc=0.7,σm=0.5,β =0.2,E=1.0.

    Fig.9 Graph of f′versus M. λ =0.2,β =0.2,Pr=1.0,n=0.2,γ1= γ2=0.1,δt=0.3,Sc=0.7,σm=0.5,δ=1.0,E=1.0.

    Fig.10 Graph of θ versus δt. λ =0.2,M=0.2,Pr=1.0,n=0.2,γ1= γ2=0.1,β =0.2,Sc=0.7,σm=0.5,δ=1.0,E=1.0.

    From Fig.4,it is noticed that velocity profile f′is decreasing function of rotation parameter λ.For λ =0,we have non-rotating frame.With gradual increment in λ,rotation rate will be stronger than the stretching rate and offer more resistance to the fluid’s motion.Eventually,a thinner boundary layer thickness with decrease in velocity distribution is observed.

    Figure 5 depicts the behavior of rotation parameter λ on velocity distribution g.It is noticed that an oscillatory pattern encountered for increasing values of λ which assist the flow in negative y-direction.

    Figure 6 is drawn to show the effects of dimensionless activation energy E on concentration distribution ?.Form figure,it is revealed that E is dwindling function of ?.Increasing values of E with low temperature results in smaller reaction rate constant and eventually slow chemical reaction is observed.This boosts the concentration’s solute.

    In Fig.7,impact of dimensionless constant rate σmon concentration field is portrayed. Higher values of σmweaken the concentration field that eventually supports the destructive chemical reaction.

    Fig.11 Graph of θ versus Pr. λ =0.2,M=0.2,β =0.2,n=0.2,γ1= γ2=0.1,δt=0.3,Sc=0.7,σm=1.0,δ=1.0,E=1.0.

    Fig.12 Graph of θ versus γ1. λ =0.2,M=0.2,Pr=1.0,n=0.2, γ2=0.1, δt=0.3,Sc=0.7,σm=0.5,δ=1.0,E=1.0.

    Figure 8 is illustrated to depict the influence of temperature difference parameter δ on concentration distribution.As the difference between the two temperatures(at the wall and far away from the wall)increases,a weaker concentration profile with thinner boundary layer thickness is witnessed.

    Fig.13 Graph of θ versus γ2. λ =0.2,M=0.2,Pr=1.0,n=0.2,β =0.2,δt=0.3,Sc=0.7,σm=0.5,δ=1.0,E=1.0.

    Table 1 Comparison of Local Nusselt number ?θ′(0)for varied values of λ, β and Pr obtained by Shafique et al.[22]in the absence of magnetohydrodynamic and Cattaneo-Christov heat flux.

    From Fig.9,it is perceived that velocity distribution is dwindling function of magnetic parameter M.The reason of deteriorating velocity is stronger Lorentz force(because of gradually improving values of M)which ultimately oppose the fluid’s motion and forces it to slow down.

    Figure 10 is portrayed to show the influence of thermal relaxation time δton temperature distribution θ.From Fig.10,it is seen that θ is declining function of δt.Comparatively more time is required by material particles to pass on heat to adjacent particles with increasing thermal relaxation time.This feature of material resembles to partially insulated materials and has become a reason to lower the temperature.

    In Fig.11,effect of Prandtl number Pr on temperature field θ is displayed.For growing values of Pr,a weaker thermal diffusivity is noticed that ultimately drops the fluid’s temperature.

    Table 2 Sherwood number for varied values of Pr,δt,Sc,σm,δ,E and n when γ1= γ2= β =M=0.2.

    Figures 12 and 13 reveal that temperature and concentration distributions with their associated boundary layer thicknesses are augmented with mounting values of respective Biot numbers γ1and γ2.As temperature and concentration have direct proportionate with heat and mass transfer coefficients h1and h2respectively.That is why both distributions demonstrate increasing behavior for higher values of respective Biot numbers.

    Table 1 is erected numerically to give comparison with a previous study by Shafique et al.[22]in limiting case and all values are found in an excellent agreement.Table 2 represents the trend of Sherwood number against varied values of Pr,δt,Sc,σm,δ,n,E and by fixing other parameters λ,β,M,γ1and γ2.It is noticed that Sherwood number showns a declining behavior for Pr,δt,E and increasing tendency for Sc,σm,δ,n.

    5 Final Remarks

    In this exploration,we have studied numerical solution of 3D magnetohydrodynamic rotating flow of Maxwell fluid with binary chemical reaction,activation energy and Cattaneo-Christov heat flux using bvp-4c MATLAB.The key observations of the present study are:

    ?Velocity is declining function of Deborah number and rotation parameter.

    ?Activation energy and temperature difference parameters have opposite effects on concentration distributions.

    ?With increase in thermal relaxation time and Prandtl number,decrease in temperature field is observed.

    ?Temperature and concentration distributions demonstrate increasing behavior for respective Biot numbers.

    ?Sherwood number shows a decreasing behavior for Prandtl number,thermal relaxation time,and nondimensional activation energy.

    Competing interests:The authors declare no competing interest.

    [1]S.Han,L.Zheng,C.Li,and X.Zhang,Appl.Math.Lett.38(2014)87.

    [2]M. Mustafa, AIP Adv. 5 (2015) 047109,http://dx.doi.org/10.1063/1.4917306.

    [3]M.Ramzan,M.Bilal,and J.D.Chung,Int.J.Chem.React.Eng.15(3)(2017)doi.org/10.1515/ijcre-2016-0136.

    [4]M.Ramzan,M.Bilal,and J.D.Chung,J.Mol.Liq.230(2017)4152.

    [5]M.Mustafa,T.Hayat,and A.Alsaedi,Int.J.Heat Mass Trans.106(2017)142.

    [6]M.I.Khan,T.Hayat,M.Waqas,et al.,J.Mol.Liq.233(2017)465.

    [7]I.Khan,N.A.Shah,and L.C.C.Dennis,Sci.Rep.7(2017),doi:10.1038/srep40147.

    [8]K.L.Hsiao,Appl.Therm.Engr.112(2017)1281.

    [9]T.Hayat,T.Muhammad,S.A.Shehzad,and A.Alsaedi,J.Mol.Liq.229(2017)495.

    [10]R.Jusoh,R.Nazar,and I.Pop,Int.J.Mech.Sci.124–125(2017)166.

    [11]J.Zhao,L.Zheng,X.Chen,et al.,Appl.Math.Modelling 44(2017)497.

    [12]A.Shahid,M.M.Bhatti,O.A.Bég,and A.Kadir,Neural Comput.Appl.(2017)1.

    [13]M.Ramzan,M.Bilal,J.D.Chung,and U.Farooq,Results Phys.6(2016)1072.

    [14]S.Bilal,K.U.Rehman,H.Jamil,and M.Y.Malik,AIP Adv.6(2016)125125.

    [15]F.Mabood,S.Shateyi,M.M.Rashidi,et al.,Adv.Powder Tech.27(2016)742.

    [16]S.Ahmed,J.Zueco,amd L.M.López-González,Int.J.Heat Mass Trans.104(2017)409.

    [17]A.R.Bestman,Int.J.Energy Res.14(1990)389.

    [18]O.D.Makinde,P.O.Olanrewaju,and W.M.Charles,Afrika Matematika 22(1)(2011)65.

    [19]K.A.Maleque,Thermodyn.2013(2013),Article ID 284637,9 pages.

    [20]F.G.Awad,S.Motsa,and M.Khumalo,PLoS ONE 9(2014)e107622.

    [21]M.Mustafa,J.A.Khan,T.Hayat,and A.Alsaedi,Int.J.Heat Mass Trans.108(2017)1340.

    [22]Z.Shafique,M.Mustafa,and A.Mushtaq,Results Phys.6(2016)627.

    [23]C.Y.Wang,Zeitschrift für angewandte Mathematik und Physik ZAMP 39(1988)177.

    [24]V.Rajeswari and G.Nath,Int.J.Engr.Sci.30(1992)747.

    [25]H.S.Takhar,A.J.Chamkha,and G.Nath,Int.J.Therm.Sci.42(2003)23.

    [26]M.Kumari,T.Grosan,and I.Pop,Technische Mechanik 1(2006)11.

    [27]K.Zaimi,A.Ishak,and I.Pop,Appl.Math.Mech.34(2013)945.

    [28]T.Javed,M.Sajid.Z.Abbas,and N.Ali,Int.J.Num.Meth.Heat&Fluid Flow 21(2011)903.

    [29]M.Mustafa,AIP Adv.5(2015)047109.

    [30]M.Turkyilmazoglu,Comput.&Fluids 90(2014)51.

    [31]T.Hayat,T.Muhammad,S.A.Shehzad,and A.Alsaedi,Comput.Meth.Appl.Mech.Eng.315(2017)467.

    [32]M.Mustafa,T.Hayat,and A.Alsaedi,Int.J.Heat Mass Trans.106(2017)142.

    [33]M.Ramzan,J.D.Chung,and N.Ullah,Results Phys.7(2017)3557.

    [34]M.Ramzan,M.Bilal,and J.D.Chung,J.Mol.Liq.225(2017)856.

    [35]M.E.Hakiem,M.Ramzan,and J.D.Chung,J.Comput.Theor.Nanosci.13(2017)8419.

    [36]J.B.J.Fourier,Theorie Analytique Da La Chaleur,Paris(1822).

    国产高清不卡午夜福利| 国产无遮挡羞羞视频在线观看| 成人漫画全彩无遮挡| 人人澡人人妻人| 一区二区三区乱码不卡18| 久久精品夜色国产| 蜜桃久久精品国产亚洲av| 999精品在线视频| 啦啦啦啦在线视频资源| 香蕉精品网在线| 简卡轻食公司| 国产一级毛片在线| 成人二区视频| 乱码一卡2卡4卡精品| 精品亚洲成国产av| av不卡在线播放| 一区二区av电影网| 色网站视频免费| 日韩一区二区视频免费看| 大又大粗又爽又黄少妇毛片口| 啦啦啦啦在线视频资源| a 毛片基地| 99热6这里只有精品| 人妻系列 视频| 97精品久久久久久久久久精品| 亚洲精品第二区| 美女cb高潮喷水在线观看| 成人影院久久| 亚洲av福利一区| 人妻人人澡人人爽人人| 国产一区有黄有色的免费视频| 性高湖久久久久久久久免费观看| 日韩中字成人| 国产av国产精品国产| 欧美丝袜亚洲另类| 性高湖久久久久久久久免费观看| 中国三级夫妇交换| 日韩亚洲欧美综合| 日韩一区二区视频免费看| 人成视频在线观看免费观看| 精品久久国产蜜桃| 99热这里只有是精品在线观看| 成年女人在线观看亚洲视频| 亚洲精品视频女| 爱豆传媒免费全集在线观看| 能在线免费看毛片的网站| 自线自在国产av| videosex国产| 最近最新中文字幕免费大全7| 王馨瑶露胸无遮挡在线观看| 久久久a久久爽久久v久久| 精品国产一区二区三区久久久樱花| 最黄视频免费看| 国产日韩一区二区三区精品不卡 | 日韩精品免费视频一区二区三区 | 日产精品乱码卡一卡2卡三| 亚洲欧洲日产国产| 麻豆乱淫一区二区| 日韩,欧美,国产一区二区三区| 亚洲美女黄色视频免费看| 成人18禁高潮啪啪吃奶动态图 | 午夜福利在线观看免费完整高清在| 久久久久久伊人网av| 王馨瑶露胸无遮挡在线观看| 欧美97在线视频| 国产成人精品久久久久久| 大码成人一级视频| 免费黄色在线免费观看| kizo精华| 精品国产一区二区久久| 插阴视频在线观看视频| 亚洲丝袜综合中文字幕| 母亲3免费完整高清在线观看 | 午夜福利网站1000一区二区三区| 成人漫画全彩无遮挡| 国产乱来视频区| 欧美激情 高清一区二区三区| av播播在线观看一区| 午夜免费鲁丝| 99久久人妻综合| 欧美最新免费一区二区三区| 免费久久久久久久精品成人欧美视频 | 各种免费的搞黄视频| 亚洲欧洲日产国产| 国产精品蜜桃在线观看| 久久人妻熟女aⅴ| 各种免费的搞黄视频| 国产精品嫩草影院av在线观看| 夜夜爽夜夜爽视频| av在线观看视频网站免费| 18禁在线播放成人免费| 纯流量卡能插随身wifi吗| 五月开心婷婷网| 搡女人真爽免费视频火全软件| av卡一久久| 国产在线一区二区三区精| 免费av不卡在线播放| 国产成人91sexporn| 欧美日韩国产mv在线观看视频| 国产亚洲精品第一综合不卡 | av播播在线观看一区| 欧美日韩视频高清一区二区三区二| 国产69精品久久久久777片| 欧美激情国产日韩精品一区| 女人精品久久久久毛片| 五月天丁香电影| 在线观看免费视频网站a站| a级毛片在线看网站| 国产亚洲最大av| a级毛色黄片| 人人妻人人爽人人添夜夜欢视频| 精品国产一区二区久久| 黄色视频在线播放观看不卡| 国产在线视频一区二区| 18禁裸乳无遮挡动漫免费视频| 免费日韩欧美在线观看| h视频一区二区三区| 亚洲激情五月婷婷啪啪| xxxhd国产人妻xxx| av黄色大香蕉| 精品人妻偷拍中文字幕| 久久综合国产亚洲精品| 国产亚洲av片在线观看秒播厂| 久久人妻熟女aⅴ| 免费av中文字幕在线| 丰满饥渴人妻一区二区三| 精品人妻熟女毛片av久久网站| 婷婷色综合大香蕉| av不卡在线播放| 国产av一区二区精品久久| 欧美亚洲 丝袜 人妻 在线| 国产成人av激情在线播放 | 大香蕉久久成人网| 久久青草综合色| 久久精品国产鲁丝片午夜精品| 国产熟女欧美一区二区| 亚洲情色 制服丝袜| 欧美亚洲日本最大视频资源| 久久人妻熟女aⅴ| 男女高潮啪啪啪动态图| av在线app专区| 三级国产精品欧美在线观看| 色视频在线一区二区三区| 亚洲人成网站在线播| 亚洲成人av在线免费| 在线观看三级黄色| 999精品在线视频| 成人亚洲欧美一区二区av| 777米奇影视久久| 狂野欧美白嫩少妇大欣赏| 十八禁网站网址无遮挡| 亚洲国产av影院在线观看| 2021少妇久久久久久久久久久| 另类亚洲欧美激情| 亚洲国产av影院在线观看| a级毛片黄视频| 亚洲欧美成人精品一区二区| 亚洲国产av新网站| 女性被躁到高潮视频| 蜜桃在线观看..| 精品久久久久久久久亚洲| 99九九在线精品视频| 国产日韩欧美在线精品| 国产精品偷伦视频观看了| 91精品国产国语对白视频| 亚洲国产毛片av蜜桃av| 美女主播在线视频| 亚洲欧洲日产国产| 午夜福利影视在线免费观看| av电影中文网址| 一区二区三区乱码不卡18| 久久久久久久国产电影| 日韩视频在线欧美| 亚洲经典国产精华液单| 日产精品乱码卡一卡2卡三| 日本猛色少妇xxxxx猛交久久| 丝袜美足系列| 欧美成人精品欧美一级黄| 久久亚洲国产成人精品v| 交换朋友夫妻互换小说| 亚洲精品色激情综合| 亚洲婷婷狠狠爱综合网| 女的被弄到高潮叫床怎么办| 久久av网站| 2022亚洲国产成人精品| 有码 亚洲区| 欧美 亚洲 国产 日韩一| 国产亚洲精品第一综合不卡 | 日本-黄色视频高清免费观看| 欧美国产精品一级二级三级| 在线亚洲精品国产二区图片欧美 | 久久99热6这里只有精品| 国产成人freesex在线| 久久久久久伊人网av| 少妇人妻精品综合一区二区| 黑丝袜美女国产一区| 少妇的逼好多水| 国产一级毛片在线| 久久免费观看电影| 午夜老司机福利剧场| 午夜免费观看性视频| 男人操女人黄网站| 最近2019中文字幕mv第一页| 久久女婷五月综合色啪小说| 丰满迷人的少妇在线观看| 久久精品国产亚洲av天美| 成人毛片60女人毛片免费| 青青草视频在线视频观看| av黄色大香蕉| 国产精品一国产av| a 毛片基地| 国产在线免费精品| 欧美另类一区| 中文字幕亚洲精品专区| 日韩人妻高清精品专区| 免费观看的影片在线观看| 欧美老熟妇乱子伦牲交| 日韩大片免费观看网站| 精品99又大又爽又粗少妇毛片| 国产免费福利视频在线观看| 久久人人爽av亚洲精品天堂| 大又大粗又爽又黄少妇毛片口| 哪个播放器可以免费观看大片| 三级国产精品片| 精品少妇黑人巨大在线播放| 18禁裸乳无遮挡动漫免费视频| 久久久精品区二区三区| 国产精品.久久久| 国产一区亚洲一区在线观看| 中文字幕免费在线视频6| 精品人妻偷拍中文字幕| 国语对白做爰xxxⅹ性视频网站| 久久亚洲国产成人精品v| 七月丁香在线播放| 如何舔出高潮| 精品熟女少妇av免费看| 青青草视频在线视频观看| 国产一区有黄有色的免费视频| 亚洲美女黄色视频免费看| 日本欧美国产在线视频| 夫妻性生交免费视频一级片| 国产黄片视频在线免费观看| 在线播放无遮挡| 3wmmmm亚洲av在线观看| 秋霞在线观看毛片| 免费观看av网站的网址| 久久精品久久精品一区二区三区| 午夜视频国产福利| 久久久久视频综合| 久久久久久人妻| 日韩人妻高清精品专区| 国产亚洲精品久久久com| 伦精品一区二区三区| 亚洲综合色网址| 久久精品国产亚洲网站| 肉色欧美久久久久久久蜜桃| 久久精品久久精品一区二区三区| 在线播放无遮挡| 日韩三级伦理在线观看| 十八禁高潮呻吟视频| av播播在线观看一区| 五月天丁香电影| 久久久国产精品麻豆| 激情五月婷婷亚洲| 国产亚洲精品第一综合不卡 | 久久97久久精品| 精品一品国产午夜福利视频| 色吧在线观看| 亚洲av在线观看美女高潮| 免费高清在线观看视频在线观看| 成年人午夜在线观看视频| 精品少妇黑人巨大在线播放| 成人18禁高潮啪啪吃奶动态图 | 菩萨蛮人人尽说江南好唐韦庄| 久久精品国产亚洲网站| 色网站视频免费| 丰满乱子伦码专区| 久久国产精品男人的天堂亚洲 | 欧美日韩国产mv在线观看视频| 色5月婷婷丁香| 亚洲精品色激情综合| 亚洲人成网站在线播| 欧美日韩成人在线一区二区| 色婷婷久久久亚洲欧美| 色94色欧美一区二区| 在线观看国产h片| 青春草视频在线免费观看| 欧美日韩精品成人综合77777| 99久久综合免费| 又黄又爽又刺激的免费视频.| 最新的欧美精品一区二区| 国产亚洲欧美精品永久| 精品亚洲乱码少妇综合久久| 婷婷色麻豆天堂久久| 国产老妇伦熟女老妇高清| 亚洲成色77777| 久久人人爽av亚洲精品天堂| 欧美97在线视频| 亚洲av.av天堂| 精品99又大又爽又粗少妇毛片| 国产黄色免费在线视频| 午夜激情av网站| 国产高清不卡午夜福利| 王馨瑶露胸无遮挡在线观看| 久久女婷五月综合色啪小说| 美女福利国产在线| 精品视频人人做人人爽| 3wmmmm亚洲av在线观看| 成人二区视频| 国产黄色免费在线视频| 热re99久久国产66热| 国产探花极品一区二区| 人人澡人人妻人| 午夜免费男女啪啪视频观看| 免费av中文字幕在线| 中文字幕久久专区| xxx大片免费视频| 成年av动漫网址| 国产精品偷伦视频观看了| 最近的中文字幕免费完整| 亚洲精品aⅴ在线观看| 午夜福利影视在线免费观看| 大香蕉久久网| 91在线精品国自产拍蜜月| 少妇精品久久久久久久| 免费播放大片免费观看视频在线观看| 欧美亚洲日本最大视频资源| 亚洲av欧美aⅴ国产| 日韩免费高清中文字幕av| 成人免费观看视频高清| 日日爽夜夜爽网站| 久久久久久久久久久免费av| 精品卡一卡二卡四卡免费| 亚洲精品一二三| 国产男女内射视频| 精品视频人人做人人爽| 国国产精品蜜臀av免费| 日韩视频在线欧美| 九色成人免费人妻av| 成人综合一区亚洲| 免费久久久久久久精品成人欧美视频 | 欧美3d第一页| 欧美亚洲 丝袜 人妻 在线| 狂野欧美白嫩少妇大欣赏| 国产永久视频网站| 99热6这里只有精品| 男女边摸边吃奶| 国产精品久久久久久精品电影小说| 日本黄大片高清| 中文字幕精品免费在线观看视频 | 日韩精品有码人妻一区| 乱人伦中国视频| 日韩精品有码人妻一区| 亚洲精品一区蜜桃| 成人国语在线视频| 国产色婷婷99| 97在线视频观看| 成人午夜精彩视频在线观看| 制服人妻中文乱码| 尾随美女入室| 国产片内射在线| 午夜免费男女啪啪视频观看| 国产精品女同一区二区软件| 国产不卡av网站在线观看| 国产精品免费大片| 久久久欧美国产精品| 夫妻午夜视频| 尾随美女入室| 久久人人爽av亚洲精品天堂| 成年人免费黄色播放视频| 天堂8中文在线网| 亚洲无线观看免费| 欧美日韩视频高清一区二区三区二| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产永久视频网站| 一级黄片播放器| 亚洲一区二区三区欧美精品| 欧美丝袜亚洲另类| 精品国产乱码久久久久久小说| 中文字幕制服av| 国产精品一国产av| 亚洲美女搞黄在线观看| 日韩精品有码人妻一区| videos熟女内射| 色婷婷av一区二区三区视频| 国产成人精品一,二区| 自拍欧美九色日韩亚洲蝌蚪91| 国产免费又黄又爽又色| 激情五月婷婷亚洲| 在线精品无人区一区二区三| 免费观看性生交大片5| 国产成人freesex在线| 激情五月婷婷亚洲| 丰满迷人的少妇在线观看| 一个人免费看片子| 亚洲精品日韩av片在线观看| a级毛片在线看网站| 久久ye,这里只有精品| 中文字幕制服av| 边亲边吃奶的免费视频| 在线观看免费高清a一片| 亚洲精华国产精华液的使用体验| 亚洲一级一片aⅴ在线观看| 少妇熟女欧美另类| 中文字幕人妻丝袜制服| 国产高清国产精品国产三级| 老女人水多毛片| 成人黄色视频免费在线看| 亚洲精品日本国产第一区| 国产欧美亚洲国产| 亚洲欧洲精品一区二区精品久久久 | 少妇人妻久久综合中文| 麻豆精品久久久久久蜜桃| 日本黄大片高清| 精品少妇内射三级| 久久亚洲国产成人精品v| 午夜激情久久久久久久| 亚洲不卡免费看| 久久免费观看电影| 亚洲国产最新在线播放| 欧美激情国产日韩精品一区| av卡一久久| 国产精品久久久久久久电影| 中文乱码字字幕精品一区二区三区| 久久久亚洲精品成人影院| 亚洲精品成人av观看孕妇| 制服诱惑二区| 精品亚洲乱码少妇综合久久| 大片电影免费在线观看免费| 中国美白少妇内射xxxbb| 综合色丁香网| 成人亚洲欧美一区二区av| 春色校园在线视频观看| 国产一区二区三区综合在线观看 | 国产日韩一区二区三区精品不卡 | 母亲3免费完整高清在线观看 | 在线观看人妻少妇| 欧美日韩亚洲高清精品| 色94色欧美一区二区| 久久久精品94久久精品| 国产精品蜜桃在线观看| 亚洲av国产av综合av卡| 日韩亚洲欧美综合| 久久国产精品大桥未久av| 天美传媒精品一区二区| 少妇的逼水好多| 欧美精品国产亚洲| 亚洲欧美色中文字幕在线| 精品一区二区免费观看| 欧美亚洲日本最大视频资源| 亚洲精品久久久久久婷婷小说| 曰老女人黄片| 天堂中文最新版在线下载| 王馨瑶露胸无遮挡在线观看| 国产成人精品福利久久| 成人漫画全彩无遮挡| 另类亚洲欧美激情| 国产精品三级大全| 久久久久久久亚洲中文字幕| 成人国产av品久久久| 永久网站在线| 黄色视频在线播放观看不卡| 亚洲天堂av无毛| 蜜桃久久精品国产亚洲av| 久久久久视频综合| 国产av一区二区精品久久| 欧美性感艳星| 日本黄色日本黄色录像| 青春草亚洲视频在线观看| 91精品一卡2卡3卡4卡| 国产片内射在线| 久热这里只有精品99| 亚洲精品乱久久久久久| 国产乱人偷精品视频| 亚洲天堂av无毛| 黄色视频在线播放观看不卡| 肉色欧美久久久久久久蜜桃| 王馨瑶露胸无遮挡在线观看| 岛国毛片在线播放| 国产成人av激情在线播放 | 国产精品 国内视频| 国内精品宾馆在线| av.在线天堂| 性色avwww在线观看| 黑丝袜美女国产一区| 精品卡一卡二卡四卡免费| 久久女婷五月综合色啪小说| 卡戴珊不雅视频在线播放| 久久久久国产网址| 久久97久久精品| 伦精品一区二区三区| 免费大片18禁| 日本黄色日本黄色录像| 毛片一级片免费看久久久久| 国产免费现黄频在线看| 一级毛片我不卡| 伊人亚洲综合成人网| 欧美成人精品欧美一级黄| 各种免费的搞黄视频| 欧美老熟妇乱子伦牲交| 丰满少妇做爰视频| 日韩av不卡免费在线播放| 国产欧美日韩一区二区三区在线 | 亚洲欧美成人精品一区二区| 精品卡一卡二卡四卡免费| 久久热精品热| 免费黄网站久久成人精品| 国产国拍精品亚洲av在线观看| 久久精品国产亚洲av涩爱| 最近手机中文字幕大全| 一区二区三区精品91| 十八禁高潮呻吟视频| 免费不卡的大黄色大毛片视频在线观看| 美女中出高潮动态图| 校园人妻丝袜中文字幕| 永久网站在线| 蜜桃国产av成人99| 97超视频在线观看视频| 麻豆成人av视频| 亚洲欧美清纯卡通| 日韩av在线免费看完整版不卡| 性色av一级| 中国三级夫妇交换| 高清视频免费观看一区二区| 美女内射精品一级片tv| 午夜日本视频在线| 亚洲精品国产av蜜桃| 国产精品国产三级国产av玫瑰| 80岁老熟妇乱子伦牲交| 亚洲高清免费不卡视频| 这个男人来自地球电影免费观看 | 中国三级夫妇交换| 人人妻人人爽人人添夜夜欢视频| 高清欧美精品videossex| 黄片无遮挡物在线观看| 亚洲av在线观看美女高潮| 精品一区在线观看国产| 黑丝袜美女国产一区| 99热6这里只有精品| 少妇人妻久久综合中文| 日韩成人伦理影院| 高清欧美精品videossex| 国产精品无大码| 日本91视频免费播放| 免费大片18禁| 大话2 男鬼变身卡| 91精品国产九色| 一本色道久久久久久精品综合| 伦精品一区二区三区| 日本欧美国产在线视频| 日韩中字成人| 人妻 亚洲 视频| 国产av国产精品国产| 美女大奶头黄色视频| 蜜桃国产av成人99| 大片电影免费在线观看免费| 伦理电影大哥的女人| 狂野欧美激情性bbbbbb| 男人操女人黄网站| 国产淫语在线视频| 男女国产视频网站| 国产精品一区二区三区四区免费观看| 毛片一级片免费看久久久久| 欧美日韩一区二区视频在线观看视频在线| av女优亚洲男人天堂| 麻豆精品久久久久久蜜桃| 精品一区二区三卡| 色吧在线观看| 男人添女人高潮全过程视频| 七月丁香在线播放| 成人综合一区亚洲| 97在线视频观看| 久久久久久久久久成人| 男男h啪啪无遮挡| 日韩熟女老妇一区二区性免费视频| 一区二区三区乱码不卡18| 边亲边吃奶的免费视频| 三级国产精品片| 看非洲黑人一级黄片| 久久久国产欧美日韩av| 国国产精品蜜臀av免费| 国产精品99久久久久久久久| 亚洲成人手机| 久久99一区二区三区| 国产乱来视频区| 久久久久精品久久久久真实原创| tube8黄色片| a级毛片免费高清观看在线播放| 精品少妇黑人巨大在线播放| 亚洲国产最新在线播放| av网站免费在线观看视频| 久久99热6这里只有精品| 免费播放大片免费观看视频在线观看| 国产精品麻豆人妻色哟哟久久| 男女高潮啪啪啪动态图| 亚洲精品美女久久av网站| 日韩欧美精品免费久久| 久久久久久久久久久久大奶| 国产69精品久久久久777片| 亚洲综合色惰| 亚洲人成网站在线观看播放| 黄色怎么调成土黄色| 99国产综合亚洲精品| 九色亚洲精品在线播放| 亚洲天堂av无毛| 午夜福利视频在线观看免费| av黄色大香蕉| 国产高清国产精品国产三级| 免费高清在线观看日韩| 国产 精品1| 永久网站在线| 狠狠精品人妻久久久久久综合| 成人18禁高潮啪啪吃奶动态图 | 欧美国产精品一级二级三级| 一级毛片黄色毛片免费观看视频|