• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Detection of Magnetic Field Gradient and Single Spin Using Optically Levitated Nano-Particle in Vacuum?

    2018-07-09 06:46:46KeWenXiao肖科文LeiMingZhou周雷鳴ZhangQiYin尹璋琦andNanZhao趙楠BeijingComputationalScienceResearchCenterBeijing00084China
    Communications in Theoretical Physics 2018年7期
    關(guān)鍵詞:雷鳴

    Ke-Wen Xiao(肖科文),Lei-Ming Zhou(周雷鳴),Zhang-Qi Yin(尹璋琦),and Nan Zhao(趙楠)Beijing Computational Science Research Center,Beijing 00084,China

    2Center for Quantum Information,Institute for Interdisciplinary Information Sciences,Tsinghua University,Beijing 100084,China

    1 Introduction

    The pioneering work of Ashkin and co-workers in 1970s[1?3]has stimulated the investigations of the optical trapping of dielectric objects. Since then,the optical tweezers give rise to enormous research progress in biophysics,[1,4?5]colloidal sciences,[6]micro- fluidic dynamics.[7]When the system is in high vaccum,the optically levitated particle can make quality factor potenitially reach 1012[8?11]and has high position measurement sensitivity due to the untethered feature of this system.[8,12]Therefore it is a promising system for the ground state cooling of the mechanical oscillator[13]and the preparation of the macroscopic quantum state[8,14]and other remarkable investigations.[10,12,15?19]Different material and different scale particle levitated by optical tweezers(OT)[9?10,12]can be applied for searching of non-Newtonian gravity,[20]the detection of gravitational wave[21]and the torsional mode by nonspherical particle.[22?23]

    The position measurement of the microparticle trapped by OT has many technologies,for example,total internal reflection microscopy,dynamic light-scattering(DLS)[24]and diffusing wave spectroscopy(DWS).[25?26]Total internal reflection microscopy can achieve 1 nm spatial resolution and up to 1μs temporal resolution.[27]Furthermore,DLS and DWS can have a spatial resolution of sub-nanometers and a temporal resolution on the order of nanoseconds.[26,28?29]However,these techniques can only get ensemble averaged results using these techniques,thus,they cannot be used to measure the instantaneous velocity of a single microscopic particle.[30]For better spatial and temporal resolution,balanced beam detection is brought up and became the standard tool to measure positions of microscopic particles for more and more researches.[31?32]By improving this technology,the spatial resolution and temporal resolution respectively achieve 0.03 nm and 0.01μs,[33]and it prompts the direct observations that the instantaneous velocity of microparticle[12,16]and the full transition from ballistic regime to diffusive Brownian motion[12,16,34]in air or liquid.This technology is very helpful to the detection of the single spin and the gradient of the magnetic field.

    Because of the reconfiguration of the OT system,the particle with the single spins trapped by OT is used for the spin-optomechanical hybrid system for investigation.[9]In the usual case,the negatively charged nitrogen-vacancy center(NV?)in diamond is a stable source of single spin or spin ensembles and it has stimulated substantial interest in quantum metrology,[35?36]quantum information,[37?38]the fundamental principle of quantum mechanics[39?40]and nanoscale sensing.[41?42]It displays a long ground-state spin coherence lifetime at room temperature[43]and can be considered as a stable optically accessible qubit in bulk diamond,[44]and has been leveraged to spin reading and writing to nuclei.[45]Nowadays,nanodiamond trapped with ensembles NV center[46]or single defect[47]by OT be used to the detection of the biological magnetic sensing.[48?49]Compared to diamonds,the ferromagnetic material is also a good spin source,which has high spin density,for example,the spin density of yttrium-iron-garnet(YIG)is(2×1022cm?3)[50?51]and is also suitable for the application of the experiment of superconductor quantum bit because its magnetic ordering(Curie)temperature is as high as 559 K.[52]

    By utilizing progressive detective technologies of displacement and spin-optomechanical hybrid system,we have proposed a scheme for detecting the single spin and the gradient of magnetic field.In this spin-mechanics hybrid system,a ferromagnatic nano-particle or nanodiamond is trapped by OT,and the collision between the residual air molecules and nano-particle results in the Brownian motion of particle.[16]The temperature and the pressure of the residual air affect the displacement of the particle trapped by OT.At the same time,the spin loading in the nanoparticle also prompts particle to move in the magnetic field gradient.In general,the displacement fluctuation of the particle caused by spin flipping in the magnetic field is overwhelmed caused by molecular collision of the residual air,therefore the effect of the spin is not detected.In order to extract the position signal caused by spin flipping,lowing temperature,increment of the gradient of magnetic field,and spin number are promising methods.Based on these method,the displacement fluctuation ratio caused by spin flipping and environments is introduced.Combining the theoretical analysis and the numerically simulation,the displacement fluctuation caused by spin flipping plays a leading role to the environments when the ratio is larger than unity.Therefore,the gradient of magnetic field single spin can be detected by this spin-optomechanics hybrid system.

    This paper is organized as follows.In Sec.2,we introduce the model of this system and deduced the ratio of the particle’s displacement fluctuation caused by spins flipping in the magnetic field gradient and caused by collision between the particle and the residual air molecules.In Sec.3,we present the measurement scheme of the gradient of the magnetic field by utilizing YIG nanoparticle trapped by optical tweezers and verified by numerical simulation and theoretical analysis.In Sec.4,the single spin detection can be realised based on the nanodiamond with NV center trapped by OT and we describe the methods of promoting the displacement fluctuation ratio of the particle caused by spin flipping and collision between nanoparticle and residual air.The conclusion is presented the last section in this paper.

    2 Model

    An optically trapped nanoparticle in non-perfect vacuum will exhibit Brownian motion due to collisions between the nanoparticle and residual air molecules in their three decoupled translational spatial dimensions.[22]When the spins are loaded into the nanoparticle as shown in Fig.1,according to the Newton’s law,the equation of motion for the optically trapped micro-sphere without feedback cooling in x direction is[17]

    where we can use the mass m of particle and the stiffness factor k due to optica√l trap to define the particle’s oscillating frequency ?0=without no damping.

    Fig.1 A nanoparticle loaded spins is trapped by lasers and controlled by magnetic field B.The particle stochastically moves in the focal plane,and the direction of magnetic filed is along x direction.

    In the experiment,the nanoparticle can be trapped by the strongly foused beam.We can adjust the trapping laser power Pt,the wave length of laser λ and the numerical aperture of the lens NA for trapping nanoparticle. In this paper,Pt= 0.1 W,λ = 1064 nm,and NA=0.8,so we can get the oscillating frequencyfor different material nanoparticles,where c is the light velocity and n is the refractive index of particle.For the damping system,the Stokes friction coefficient due to air molecules is γ,and Ftot=Fmol+Fspin,[50,54]Fmol=is the Brownian stochastic force due to residual air molecules.For convenience,we can set

    where ξ(t)is a normalized white-noise process,N is the number of spin in nano-particle,g and mJare respectively the electron’s Lande g-factor and magnetic quantum number.μBis Bohr magneton,GBis the gradient of the magnetic field and the direction of GBis parallel to the direciton of B,and Szis the spin loaded in the particle,every spin has two state,up and down.In our paper,we set the up state of spin is 1 and the down state is?1,every spin can be affected by the temperature of the particle,the interaction of spins and other reasons so that the random flipping.Therefore,the relaxation time of spin can be introduced for describing the random process of the spin flipping as follow

    where τcis relaxation time.Hence at different times t and t′,the correlation function of acceleration,Amol(t)and Aspin(t),as follow:

    where the amplitude of acceleration caused by molecules and spins arerespectively.

    The solution of Eq.(1)is:

    where the cyclic frequency of the damped oscillator isand Γ depends on temperature and the air pressure of the residual air in the high vacuum from A1.It is obviously that ?x(t)?=0,δx(t)=x(t)??,so

    and ?δx?≡ 0 in the long-time condition.The correlation function of displacement ?x(t)x(t+ τ)?can be given as follow:

    where τ is time interval.When τ approaches zero,this correlation function of displacement presents the variance of displacement.

    In Eqs.(6)and(7),A(t)is acceleration resulting from the force of molecules and spins,so the correlation function of displacement?x(t)x(t+ τ)?can be decomposed into two parts,

    where

    According Eq.(9),Imol/spinis represented the displacement correlation caused by molecular collision of residual air or by spin flipping in magnetic field.At first,we give the displacements correlation of Imol,

    when τ is very short,

    the variance of the displacement only depends on the temperature for the trapped nanoparticle.

    On the other hand,for the displacement correlation function caused by spin flipping,Ispinis given

    from computation Eq.(9),where

    For investigating the variance of the displacement caused by spin flipping,we set τ→ 0,Ispinis simplified to

    For comparing displacements caused by molecular collision and spin flipping,κ=Ispin/Imolis proposed as fol-low:

    The ratio κ of displacement correlation caused by spins flipping and by moleculardetermines which effect is the dominant role,andis the ratio of the displacement fluctuation of the particle resulting from spin flipping and molecular collision.When ratio is greater than unity,the spins flipping in magnetic field prevail and the signal of the particle’s displacement caused by spin flipping can be detected,on the contrary,signal of the displacement caused by spin flipping is covered up by molecular collision of residual air.From appendix A,Γ is relevant to residual air pressure and temperature in this system.

    3 Detection of the Magnetic Field Gradient

    The increment of the spin number can enhance the spin signal from Eq.(14),which is beneficial for the detection of the magnetic field gradient.That is because the randomly flipping effect of the spin can become strong after increasing the spin number.In this scheme,we take the YIG nanoparticle for example and consider a YIG nanoparticle trapped by OT and the spin can be affected by magnetic if eld.Because of the ferromagnetism of the particle,we can assume that the spins in YIG can be randomly flipped by the spin relaxation.

    In the first case,we take the 100 nm YIG nanoparticle for example and there are 8.85×107spins below the 273 K in particle.These spins flip collectively from one state to another,therefore,the position of the nanoparticle moves from one position to another.Figure 2 shows the flipping of the spin state and the displacement fluctuation resulting from molecular collision and spin flipping.In this case,the standard deviation of the particle’s displacement caused by molecular collision of residual air(?air)is 0.40 nm and GB=10 kT/m.The standard deviation of the particle’s displacement caused by spin flipping in magnetic field(?B)is 1.03 nm.κ1/2is 2.58,the collective effect of the spin can be detective.From our simulation,the position of the particle changes synchronously with the spinflipping in Fig.2(a).The inset of Fig.2(a)shows the harmonic oscillation of the particle when the spins do not flip.In this simulation,the simulating time is 100 ms and simulating time-step is 1μs.By numerically simulating,we can obtain a series of sampling points,and every sampling point corresponds different displacement of nano-particle at different time.For any sampling point,we can get the nano-particle’s displacement and count the number of occurrences of any displacement.Base on this result,we can get the Fig.2(b).In this case,we assume that all spins of the nanoparticle flip at the same time from the same state to another.However,in the realistic case all the spins ensembles do not collectively flip from one state to another at the same time.Therefore the displacement fluctuation caused by spin flipping in magnetic field gradient should be investigated anew.

    Fig.2 (Color online)The spin of the YIG nanoparticle collectively randomly flips and the position synchronously changes with spin state,and the position of the YIG particle is statistically analysed.(a)shows the every spin of YIG nanoparticle has the same property of flipping and the flipping time is random,however,the mean flipping time is determined,1 ms(blue curve).The yellow curve corresponds to the changing of the position of the particle.(b)The statistics of the position of the particle and its fitting.The radius of this YIG particle is 100 nm and the temperature and the residual air pressure are respectively 10 mK and 10 Pa.The gradient of magnetic field is 104T/m.The refractive index of YIG is 2.2.

    In the realistic case,the displacement fluctuation caused by molecular collision of residual air is not changed for the determined environment,but the displacement fluctuation caused by spin flipping in magnetic field is relevant to the equivalent spin number in YIG.Every spin flipping is random,therefore,the equivalent number of spin up and spin down is random and less than 8.85×107below the 273 K.The effect of displacement fluctuation caused by spin flipping is so week that cannot be detected compared to previous case.In addition,the position distribution of particle can be detected as a Gaussian distribution and is not similar to two peaks distribution in Fig.2.For distinguishing the displacement fluctuation caused by molecular collision and by spin flipping,at first,we can theoretically and numerically compute the displacement fluctuation caused by the residual air molecular collision,and then numerically compute the total displacement fluctuation,at last,the displacement fluctuation caused by spin flipping can be got from the difference between the total displacement fluctuation and the displacement fluctuation caused by molecular collision.For increasing the displacement fluctuation caused by spin flipping in magnetic field,we can increase the gradient of the magnetic field,GB.

    For the 100 nm YIG nanopartice,the state of the spin ensembles are Fig.3.This particle contains many spins and every spin flips randomly,therefore,the particle will randomly move in the focal plane. The oscillatory displacement of particle is determined by the gradient of magnetic field and the environments.When the temperature and the residual air pressure are respectively 1 mK and 1000 Pa,?airand?Bare respectively 0.18 nm and 2.0 nm by the statistical computation under GB=10 kT/m.These are depicted in Fig.3.

    Fig.3 (Color online)The synchronously oscillation of the nanoparticle with the flipping of the spins ensemble.The blue curve is the state flipping of the spin ensembles of the YIG nanoparitcle.The yellow curve shows the changing of the position change of the particle.The inset is the oscillation of the particle in the short time.The radius of this YIG particle is 100 nm and the temperature and the residual air pressure are respectively 1 mK and 1 kPa.The gradient of magnetic field is 104T/m and the refractive index of YIG is 2.2.

    On the contrary,if we have statistically computed the displacement fluctuation caused by spin flipping in the magnetic field,the gradient of the magnetic field can be got.Different gradient of magnetic field can stimulate different displacement fluctuation,therefore,the correspondence between the displacement fluctuation and the gradient of magnetic field can be depicted.For this system,when the magnetic field does not exist,the particle’s displacement fluctuation only results from the molecular collision of residual air.The fluctuation of the displacement caused by residual air molecular is constant.However,when the magnetic field exists,the displacement of the particle can be very larger than the thermal fluctuation of the particle.In this case,we can give the relation between displacement fluctuation of the particle and the gradient of magnetic field GBlike Fig.4.When GBis very small,?Bis not much bigger than?air.However,when GBincreases to 104T/m,?Band?aircan be distinguished significantly.The larger gradient of the magnetic field will result in the bigger position fluctuation.Considering the determined environment,?airis not changed and we can know that?Bcan be detected when GB≥1 kT/m.There are three styles line derived from simulation, fitting and analysis.From Eq.(14),the sensitivity to the gradient of the magnetic field is determined by

    The sensitivity has positive correlation with the spin number.When a 100 nm YIG nanoparticle trapped by OT,the position detective technology and statistical method can give different magnetic field gradient,and the results from numerical simulation and theoretical analysis can match well.In Fig.4,the fitting result of sensitivity is 1.67×10?13m/T(the dashed curve)and the analysis result is 1.95× 10?13m/T(the “+”symbol).They can match better each other in a longer time statistics.The inset figure(a)depicts that the displacement caused by magnetic field can be detected until GB≥103T/m,even though the displacement caused by GBis smaller than the displacement caused by residual airs.

    Fig.4 The relationship between displacement fluctuation of particle and the graident of the magnetic field in the environment of the temperature(1 mK)and the air pressure(1 kPa).The inset(a)is the smaller gradient of the magnetic field and the inset(b)is the larger gradient of the magnetic field.The the circle,dashed line and‘+′line are respectively simulating results, fitting results and the analytical results.The refractive index of YIG is 2.2.

    4 The Detection of the Single Spin

    A nanodiamond containing an NV center have one spin,it also can be trapped by OT.[9]In the theoretical analysis,we can get the ratio of standard deviation between xspinand xmol,the particle’s displacement can be also simulated at the same time.The position of the particle oscillates synchronously following the flipping of the spin in the NV center of the particle like Fig.5(a).The spin state flips between state?1 and state 1,and the particle synchronously oscillates in the region between?10 nm and 10 nm.

    Fig.5 The synchronous oscillation of the nanoparticle with the flipping of the single spin and the statistical and fitting results about the distribution of the particle’s position.(a)The blue curve is the spin state in the nanoparitcle with NV center.The yellow curve shows the changing of the position of the particle.The inset is the oscillation of the particle in the short time.(b)The statistical and fitting results about the distribution of the particle’s position. ?Band ?airare respectively the displacement of the particle caused by the magnetic field and the residual air.The radius of this nanodiamond particle is 30 nm which contains only one spin,and the temperature and the residual air pressure are respectively 1 mK and 0.5 Pa.The gradient of magnetic if eld is 106T/m.

    By utilizing the statistical and fitting methods,we can give the statistical property of the particle’s position caused by molecular collision of residual air and the spinflipping of magnetic field.In proper coefficients,there are two most probable positions of particle in the focal plane,which can be detected by detector of the position.This represents the particle oscillates randomly between two positions.The width of the position peak of particle results from the collision between the particle and the residual air molecules.Figure 5(b)is the statistical and fitting results.In this case,?Band?airare respectively 3.44 nm and 2.38 nm,which match well with the theoretical results 3.49 nm and 2.25 nm from Eqs.(11)and(13).It is easy to distinguish the displacement fluctuation caused by molecular collision and by single spin flipping,the single spin can be detected.

    The statistical method shows two maximum counts of detector about the position of the particle. These maximums represent that the particle prefers staying the greater probability positions to the other position.These maximum positions are just caused by spin flipping from one state to another in the magnetic field.At the same time,if the spin stays in one state and the nanoparticle is collided by the residual air,therefore,the nanoparticle has the property of the Brownian motion near the maximum position.

    In the last example,the ratio κ1/2is 1.5,although it is enough for distinguishing the effect between magnetic field and the residual air,we can get more significant effect of the magnetic field about the particle position by adjusting other coefficients.Hence,it is necessary to know the property of κ about the trapping frequency(?0),the relaxation time of spin(τc)and so on.

    In order to discuss the problem,we set:

    for Eq.(14).? is independent of the coefficients of the trapping lasers which determines the trapping frequency,?0.Therefore,the investigation about the relationship between κ and ?0is our first subject.

    4.1 ?0-dependence

    From Eq.(14),κ is monotonous decreasing function when increasing ?0,and ?κ/??0is as follow:

    Equation(17)is eternity negative for Γ >0 and τc>0.This presents κ decreasing with increasing of ?0for fixed

    Although κ declines with the trapping frequency ?0,different relaxation time of spin also affects the displacement of the particle caused by the gradientthe magneticFig.6.From this figurehe decreasing function with ?0which matches with Eq.(17).However,under normal case,the trapping frequency must be larger than 80 kHz otherwise the particle would not be trapped for the 30 nm radius of particle.Therefore,the inset of this figure shows the range of the trapping frequency 80 kHz to 160 kHz.It is obvious that the longer the relaxation time of spin is,the more significant the displacement fluctuation of√ spin flipping in the magnetic field gradient is.Althoughis slightly more than 1,we can increase τcin order to increase displacement fluctuation caused by spin flipping by some method.[56?57]Nevertheless,when the trapping frequency is larger, is not sensitive to τc.This property can be verified by analysis of the relationship between κ and τc.

    Fig.6 The relation between and ?about different0 τc.In this case,the radius of the nanodiamond particle is R=30 nm,the temperature is 1 mK,the residue air pres√sure is P=10 Pa.Different curves represent different with different τc.The units of inset is the same with main figure.

    Equation(18)shows that κ has two critical points, τc0=?1/(?0+Γ)and τc0=1/(?0?Γ),which give some interesting characters for our investigation.In one case,when the system is under-damping,?0> Γ,and the space of τcis divided into two range,i.e.τc∈ (0,1/(?0?Γ))and τc∈ (1/(?0? Γ),+∞).They correspond to ?κ/?τc>0 and ?κ/?τc<0,respectively.In this case, κ increases with the increment of τcuntil τc=1/(?0? Γ)and when τc>1/(?0?Γ),κ will decrease.

    In another case,when the system is over-damping,?0< Γ,κ increases with the increment of τc.The longer the relaxation time of the spin is,the more obvious the effect of spin is.By analysis the second order derivative of κ about τc,

    4.2 τc-dependence

    The relaxation time of spin can affect the ratio between Ispinand Imolas well.The derivative of κ with respect to τcis always stands up for the over-damping case.These two case can be corresponded with Fig.7.√This figure intuitively shows that the relation betweenκ and τc.For the under-damping case,?0=0.25Γ,this trapping frequency is general case,?0=98 kHz.That is over-damping,κ has a maximum value when τcis very short.Therefore the relaxation time is not as√ longer as better.However,for the under-damping case,κ increases with the increment of τclike the dashed line in Fig.7,hence the larger displacement of particle caused by magnetic field can be got by adjusting the relaxation of the spin.

    Fig.7 The relation betweenand τabout differentc?0.In this case,the radius of the nanodiamond particle is R=30 nm,the temperature is 1 mK,the residue air pressure is P=10 Pa.

    4.3 Environment Damping

    In real system,environmental temperature and the residual air pressure will affect the damping coefficient Γ from Appendix A,and then affect the ratio,κ.Therefore,for convenience,we investigate straightforwardly the relationship between κ and Γ. ?κ/?Γ clearly shows that κ decreases with the increment of the Γ as follow:

    Because ?κ/?Γ is always negative for the arbitrary parameters.For getting more remarkable displacement of the particle caused by spin flipping,we can reduce the temperature and the air pressure of the residual air.That is because the reduction of the temperature is equivalent to reduction of the fluctuation of thermal displacement of the particle and strengthening the effect of the spin flipping.The reduction of the air pressure will reduce the friction of the particle with the residual air molecules,the motion of the particle is more obvious.Although,the reducing residual air pressure can strength the signal of the spin flipping,the damping γradresulting from the photon shot noise will be primary and damping Γ from the interaction with residual air can be neglected at very low air pressure.In this case,we can introduce feedback cooling in order to solve this problem.Fortunately,ultrahigh vacuum(P ~ 10?8mbar)is not strictly demanded in our system,therefore,γradis neglectly smaller than the damping Γ by computation from Ref.[11]so that shot noise is unnecessarily considered.

    5 Conclusion

    In this paper,we have systematically investigated the motion of the nano-particle loading spins trapped by the optical tweezers in the high vacuum environment.Based on this system,the theoretical analysis has been utilized to study the displacement of the particle caused by molecular collision of the residual air and by spin flipping under the gradient of magnetic field,as well as their ratio.This theoretical analysis inspires a series of proposal about the detection of the gradient of the magnetic field and the detection of the single spin.By utilizing theoretical analysis and the numerical simulation,we present and verify the scheme of the detection of the gradient of the magnetic by trapping YIG nanoparticle.Similarly,this system also can be applied for detection of the single spin by trapping the diamond nanoparticle with NV center.By regulating the parameters,we can make the displacement fluctuation of the particle caused by the spin flipping in magnetic field gradient more remarkable.At last,we present the method about increasing the displacement fluctuation resulting from spin flipping,such as reducing the trapping frequency,increasing the relaxation time of the spin and reducing the temperature and residual air.This spin-mechanics hybrid system with spin have provided a novel experiment platform for high sensitive measurement,macro-ground state cooling etc.

    Appendix A:The Damping Factor in the High Vacuum

    In the high and ultrahigh vacuum,the damping factor,Γ,can be calculated,[10,58]

    where η =18.52 × 10?6Pa ·s is the viscosity coefficient of air in room temperature and atmospheric pressure,r is the radius of the particle,Kn=s/r is the Knudsen number with s being the mean the free path of air molecules,and cK=0.31Kn/(0.758+1.152Kn+Kn2).The mean free path is

    here P is the residual air pressure and mairis the mass of the single air molecule,the value is mair=4.80×10?26kg.

    Acknowledgement

    We thank Professor Renbao Liu for inspiring discussions.

    [1]A.Ashkin,Phys.Rev.Lett.24(1970)156.

    [2]A.Ashkin and J.M.Dziedzic,Appl.Phys.Lett.19(1971)283.

    [3]A.Ashkin and J.M.Dziedzic,Appl.Phys.Lett.28(1976)333.

    [4]A.Ashkin,J.M.Dziedzic,and T.Yamane,Nature(London)330(1987)769.

    [5]A.Ashkin and J.Dziedzic,Science 235(1987)1517.

    [6]K.Dholakia and P.Zemánek,Rev.Mod.Phys.82(2010)1767.

    [7]K.Dholakia,Chemical Society Reviews 37(2008)42.

    [8]Z.Q.Yin,A.A.Geraci,and T.Li,Int.J.Mod.Phys.B 27(2013)1330018.

    [9]L.P.Neukirch,E.V.Haartman,J.M.Rosenholm,and A.N.Vamivakas,Nature Photonics 9(2015)653.

    [10]T.Li,S.Kheifets,and M.G.Raizen,Nature Physics 7(2011)527.

    [11]V.Jain,J.Gieseler,C.Moritz,C.Dellago,et al.,Phys.Rev.Lett.116(2016)243601.

    [12]T.Li,S.Kheifets,D.Medellin,and M.G.Raizen,Science 328(2010)1673.

    [13]P.Rabl,P.Cappellaro,M.V.G.Dutt,et al.,Phys.Rev.B 79(2009)041302.

    [14]D.E.Chang,C.A.Regal,S.B.Papp,et al.,Proceedings of the National Academy of Sciences of the United States of America 107(2010)1005.

    [15]O.Romero-Isart,A.C.P flanzer,F.Blaser,et al.,Phys.Rev.Lett.107(2011)020405.

    [16]S.Kheifets,A.Simha,K.Melin,et al.,Science 343(2014)1493.

    [17]J.Gieseler,B.M.Deutsch,R.Quidant,and L.Novotny,Phys.Rev.Lett.109(2012)103603.

    [18]J.Gieseler,R.Quidant,C.Dellago,and L.Novotny,Nature Nanotechnol.9(2014)358.

    [19]J.Bateman,S.Nimmrichter,K.Hornberger,and H.Ulbricht,Nature Commun.5(2014)4788.

    [20]A.A.Geraci,S.B.Papp,and J.Kitching,Phys.Rev.Lett.105(2010)101101.

    [21]A.Arvanitaki and A.A.Geraci,Phys.Rev.Lett.110(2013)071105.

    [22]T.M.Hoang,Y.Ma,J.Ahn,et al.,Phys.Rev.Lett.117(2016)123604.

    [23]K.W.Xiao,N.Zhao,and Z.Q.Yin,Phys.Rev.A 96(2017)013837.

    [24]B.Berne and R.Pecora,Tanpakushitsu Kakusan Koso Protein Nucleic Acid Enzyme 49(1976)1676.

    [25]G.Maret,et al.,Zeit.Für Phys.B Con.Matt.65(1987)409.

    [26]D.J.Pine,D.A.Weitz,P.M.Chaikin,and E.Herbolzheimer,Phys.Rev.Lett.60(1988)1134.

    [27]L.Liu,A.Woolf,A.W.Rodriguez,and F.Capasso,Proceedings of the National Academy of Sciences of the United States of America 111(2014)E5609.

    [28]P.Zakharov,F.Cardinaux,and F.Scheffold,Phys.Rev.E 73(2006)011413.

    [29]J.X.Zhu,D.J.Durian,J.Müller,et al.,Phys.Rev.Lett.68(1992)2559.

    [30]J.Mo,J.Chem.Phys.49(2015)5158.

    [31]B.Luki′c,S.Jeney,C.Tischer,et al.,Phys.Rev.Lett.95(2005)160601.

    [32]T.Franosch,M.Grimm,M.Belushkin,et al.,Nature(London)478(2011)85.

    [33]P.N.Pusey,Science 332(2011)802.

    [34]R.Huang,I.Chavez,K.M.Taute,et al.,Nature Phys.7(2011)439.

    [35]P.Kumar and M.Bhattacharya,Opt.Express 25(2017)719568.

    [36]N.Zhao and Z.Q.Yin,Phys.Rev.A 90(2014)042118.

    [37]J.Wrachtrup and F.Jelezko,J.Phys.Condens.Matter 18(2006)S807.

    [38]P.Neumann,R.Kolesov,B.Naydenov,et al.,Nature Phys.6(2010)249.

    [39]Z.Yin and T.Li,Contemp.Phys.58(2017)1.

    [40]G.Anetsberger,P.Verlot,E.Gavartin,et al.,Nature Nanotechnol.4(2009)820.

    [41]J.R.Maze,P.L.Stanwix,J.S.Hodges,et al.,Nature(London)455(2008)644.

    [42]H.J.Mamin,M.Kim,M.H.Sherwood,et al.,Science 339(2013)557.

    [43]P.L.Stanwix,L.M.Pham,J.R.Maze,et al.,Phys.Rev.B 82(2010)201201.

    [44]F.Jelezko,T.Gaebel,I.Popa,et al.,Phys.Rev.Lett.93(2004)130501.

    [45]P.C.Maurer,G.Kucsko,C.Latta,et al.,Science 336(2012)1283.

    [46]V.R.Horowitz,B.J.Alemán,D.J.Christle,et al.,Proce.National Acad.Sci.109(2012)13493.

    [47]M.Geiselmann,M.L.Juan,J.Renger,et al.,Nature Nanotechnol.8(2013)175.

    [48]A.W.Schell,P.Engel,and O.Benson,arXiv:1303.0814(2013).

    [49]R.Beams,D.Smith,T.W.Johnson,et al.,Nano Lett.13(2013)3807.

    [50]H.Huebl,C.W.Zollitsch,J.Lotze,et al.,Phys.Rev.Lett.111(2013)127003.

    [51]M.A.Gilleo and S.Geller,Phys.Rev.110(1958)73.

    [52]D.Zhang,X.M.Wang,T.F.Li,et al.,npj Quantum Inform.1(2015)15014.

    [53]O.Romero-Isart,A.C.Panzer,M.L.Juan,et al.,Phys.Rev.A 83(2011)013803.

    [54]M.G.Raizen,R.J.Thompson,R.J.Brecha,et al.,Phys.Rev.Lett.63(1989)240.

    [55]F.Bloch,Phys.Rev.70(1946)460.

    [56]G.Q.Liu,Q.Q.Jiang,Y.C.Chang,et al.,Nanoscale 6(2014)10134.

    [57]J.Du,X.Rong,N.Zhao,et al.,Nature(London)461(2009)1265.

    [58]S.A.Beresnev,V.G.Chernyak,and G.A.Fomyagin,J.Fluid Mech.219(1990)405.

    猜你喜歡
    雷鳴
    Quantitative determination of the critical points of Mott metal–insulator transition in strongly correlated systems
    雷鳴和細雨
    In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
    Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
    Measuring the flexibility matrix of an eagle's flight feather and a method to estimate the stiffness distribution?
    動物可笑堂
    強勁、震撼 Rythmik Audio(雷鳴)FV25HP
    Tunneling field effect transistors based on in-plane and vertical layered phosphorus heterostructures?
    Capital Market Analysis
    商情(2017年5期)2017-03-30 23:58:25
    坑人的兄弟
    99国产极品粉嫩在线观看| 亚洲真实伦在线观看| 在线观看一区二区三区| 亚洲欧美日韩卡通动漫| 精品久久久久久成人av| 日本熟妇午夜| 国产不卡一卡二| 天天添夜夜摸| 亚洲人与动物交配视频| 午夜免费男女啪啪视频观看 | 久久久色成人| 男女视频在线观看网站免费| 国产精品久久视频播放| 国产美女午夜福利| 精品久久久久久成人av| 99久久精品一区二区三区| 国产探花极品一区二区| 精品国产超薄肉色丝袜足j| 男人舔奶头视频| 久久久久久久久大av| 国产欧美日韩精品亚洲av| 久久6这里有精品| 久99久视频精品免费| 99精品久久久久人妻精品| 麻豆成人av在线观看| 99国产精品一区二区三区| 757午夜福利合集在线观看| 色老头精品视频在线观看| 又黄又粗又硬又大视频| 国产 一区 欧美 日韩| 日韩大尺度精品在线看网址| 国产伦精品一区二区三区四那| 欧美一级毛片孕妇| 国产成+人综合+亚洲专区| 日本熟妇午夜| 欧美在线黄色| 夜夜爽天天搞| 国产aⅴ精品一区二区三区波| 一个人看的www免费观看视频| 丁香欧美五月| 啪啪无遮挡十八禁网站| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 午夜日韩欧美国产| 在线观看av片永久免费下载| 精品乱码久久久久久99久播| 男人和女人高潮做爰伦理| 中文在线观看免费www的网站| 亚洲av二区三区四区| 午夜福利欧美成人| 18美女黄网站色大片免费观看| 欧美中文综合在线视频| 久久国产精品影院| 男女床上黄色一级片免费看| 女警被强在线播放| 国产亚洲精品av在线| 婷婷精品国产亚洲av在线| 久久久国产精品麻豆| 女警被强在线播放| 国产伦在线观看视频一区| 神马国产精品三级电影在线观看| 免费看美女性在线毛片视频| 亚洲av不卡在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 午夜福利18| 偷拍熟女少妇极品色| 非洲黑人性xxxx精品又粗又长| 脱女人内裤的视频| av中文乱码字幕在线| 国产精品爽爽va在线观看网站| 18禁黄网站禁片午夜丰满| 亚洲av中文字字幕乱码综合| 日韩精品青青久久久久久| a级毛片a级免费在线| 黄色片一级片一级黄色片| 午夜视频国产福利| 亚洲欧美日韩无卡精品| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美精品综合久久99| 成人高潮视频无遮挡免费网站| 美女大奶头视频| 一夜夜www| 欧美日韩亚洲国产一区二区在线观看| 免费av不卡在线播放| 亚洲美女视频黄频| 一本一本综合久久| 在线观看舔阴道视频| 午夜福利18| 亚洲av第一区精品v没综合| 色av中文字幕| 成人特级黄色片久久久久久久| 免费电影在线观看免费观看| 亚洲人与动物交配视频| 国产精品乱码一区二三区的特点| 国产精品一及| 国产麻豆成人av免费视频| 一区二区三区国产精品乱码| 国产成人系列免费观看| 久久天躁狠狠躁夜夜2o2o| 99久久成人亚洲精品观看| 国产毛片a区久久久久| 天天一区二区日本电影三级| 久久午夜亚洲精品久久| 在线免费观看不下载黄p国产 | 国产老妇女一区| 在线观看av片永久免费下载| 草草在线视频免费看| 90打野战视频偷拍视频| 我要搜黄色片| 亚洲av免费高清在线观看| 91麻豆av在线| netflix在线观看网站| 欧美最新免费一区二区三区 | 国内精品久久久久久久电影| 男女那种视频在线观看| 日韩国内少妇激情av| 我的老师免费观看完整版| 一a级毛片在线观看| 久久这里只有精品中国| 麻豆国产97在线/欧美| 成年女人永久免费观看视频| 国产黄色小视频在线观看| 高清毛片免费观看视频网站| 免费在线观看成人毛片| 成人18禁在线播放| 日韩欧美在线乱码| 亚洲av二区三区四区| 亚洲中文字幕日韩| 2021天堂中文幕一二区在线观| 日韩av在线大香蕉| 18禁裸乳无遮挡免费网站照片| 亚洲精品456在线播放app | 国产一区二区在线观看日韩 | 成人无遮挡网站| 亚洲欧美日韩高清专用| 超碰av人人做人人爽久久 | 91麻豆av在线| 99精品在免费线老司机午夜| 九九在线视频观看精品| av国产免费在线观看| 成年女人永久免费观看视频| 亚洲国产色片| 日日夜夜操网爽| 成人特级黄色片久久久久久久| 色噜噜av男人的天堂激情| 久久久久久国产a免费观看| 最近最新免费中文字幕在线| 国产亚洲av嫩草精品影院| 欧美3d第一页| 99热精品在线国产| 3wmmmm亚洲av在线观看| 久9热在线精品视频| 9191精品国产免费久久| 国产精品av视频在线免费观看| 午夜老司机福利剧场| 一级毛片女人18水好多| www日本黄色视频网| 午夜老司机福利剧场| 窝窝影院91人妻| 国产三级在线视频| 国产精华一区二区三区| 老司机深夜福利视频在线观看| 日韩欧美一区二区三区在线观看| 热99re8久久精品国产| 日本熟妇午夜| 亚洲精品粉嫩美女一区| 熟女少妇亚洲综合色aaa.| 国产精品久久久久久久电影 | 内射极品少妇av片p| 热99re8久久精品国产| 成人高潮视频无遮挡免费网站| 欧美午夜高清在线| 桃色一区二区三区在线观看| 亚洲在线观看片| 一区二区三区激情视频| 国产免费男女视频| 悠悠久久av| 国产国拍精品亚洲av在线观看 | 国产精品久久电影中文字幕| 国产精品99久久久久久久久| 精品人妻偷拍中文字幕| 九色成人免费人妻av| 日本一二三区视频观看| 成人欧美大片| 2021天堂中文幕一二区在线观| 国产高清有码在线观看视频| svipshipincom国产片| 国产精品一区二区三区四区免费观看 | 日本黄大片高清| 97超视频在线观看视频| 老鸭窝网址在线观看| av片东京热男人的天堂| 怎么达到女性高潮| 午夜a级毛片| 在线观看日韩欧美| 免费av不卡在线播放| 久久久久久久午夜电影| 午夜久久久久精精品| 欧美又色又爽又黄视频| 午夜免费激情av| 在线播放无遮挡| 色综合亚洲欧美另类图片| 国产精品美女特级片免费视频播放器| 一级黄色大片毛片| 日本a在线网址| 亚洲av成人精品一区久久| 亚洲自拍偷在线| 国产亚洲精品久久久com| 91九色精品人成在线观看| 国产免费av片在线观看野外av| 18禁黄网站禁片午夜丰满| 白带黄色成豆腐渣| 中文字幕熟女人妻在线| 天堂影院成人在线观看| 欧美在线黄色| xxxwww97欧美| 午夜福利高清视频| 免费观看的影片在线观看| 国产免费男女视频| 国产高清视频在线观看网站| 欧美一级毛片孕妇| 人人妻,人人澡人人爽秒播| 国模一区二区三区四区视频| 国产熟女xx| 在线免费观看的www视频| 欧美3d第一页| 男人舔奶头视频| 午夜老司机福利剧场| 国产熟女xx| 99精品欧美一区二区三区四区| 免费看日本二区| 每晚都被弄得嗷嗷叫到高潮| 最后的刺客免费高清国语| 香蕉久久夜色| 久久精品综合一区二区三区| 国产高清三级在线| 国产主播在线观看一区二区| 国产精品亚洲av一区麻豆| 午夜福利在线观看免费完整高清在 | 偷拍熟女少妇极品色| 亚洲人成网站高清观看| 男人舔女人下体高潮全视频| 桃色一区二区三区在线观看| 精品国产超薄肉色丝袜足j| 91在线精品国自产拍蜜月 | 女人十人毛片免费观看3o分钟| a级一级毛片免费在线观看| 99久久精品热视频| 午夜福利成人在线免费观看| 老熟妇仑乱视频hdxx| 两个人视频免费观看高清| 欧美最黄视频在线播放免费| 欧美黄色片欧美黄色片| 精品99又大又爽又粗少妇毛片 | 午夜福利在线观看免费完整高清在 | 日本黄色片子视频| 亚洲专区中文字幕在线| 亚洲欧美日韩高清专用| 欧美区成人在线视频| 极品教师在线免费播放| 麻豆一二三区av精品| 国产欧美日韩一区二区三| 国产单亲对白刺激| 波多野结衣高清无吗| 青草久久国产| 又紧又爽又黄一区二区| 两个人视频免费观看高清| 看黄色毛片网站| 宅男免费午夜| 色av中文字幕| 亚洲精品一区av在线观看| 欧美色视频一区免费| 手机成人av网站| 久久久精品欧美日韩精品| 亚洲在线自拍视频| 一进一出好大好爽视频| 日韩欧美在线二视频| 日本与韩国留学比较| 一级作爱视频免费观看| 一区二区三区激情视频| 性色avwww在线观看| 天天一区二区日本电影三级| 少妇裸体淫交视频免费看高清| 欧美大码av| 悠悠久久av| 偷拍熟女少妇极品色| 欧美另类亚洲清纯唯美| 成人特级黄色片久久久久久久| 天天添夜夜摸| 免费人成在线观看视频色| 色综合亚洲欧美另类图片| 中出人妻视频一区二区| 亚洲自拍偷在线| 一进一出抽搐动态| 麻豆久久精品国产亚洲av| 亚洲五月天丁香| 久久精品亚洲精品国产色婷小说| 99国产综合亚洲精品| 免费人成在线观看视频色| 高清日韩中文字幕在线| svipshipincom国产片| 国产成人系列免费观看| www国产在线视频色| 久久久久亚洲av毛片大全| 99在线视频只有这里精品首页| 黄色成人免费大全| 夜夜爽天天搞| 亚洲av二区三区四区| 性色av乱码一区二区三区2| 亚洲中文日韩欧美视频| 欧美性猛交黑人性爽| 婷婷丁香在线五月| 亚洲国产欧美网| 欧美一级毛片孕妇| 一级毛片高清免费大全| 亚洲美女黄片视频| а√天堂www在线а√下载| 亚洲av不卡在线观看| 中文亚洲av片在线观看爽| 国产av不卡久久| 又爽又黄无遮挡网站| 黄色日韩在线| 国产精品三级大全| 99热这里只有精品一区| 伊人久久大香线蕉亚洲五| 久久久久久久精品吃奶| 国产成人a区在线观看| av在线蜜桃| 国内少妇人妻偷人精品xxx网站| 性色av乱码一区二区三区2| 99久久成人亚洲精品观看| 欧美一区二区精品小视频在线| 男女床上黄色一级片免费看| 国产69精品久久久久777片| 一级黄色大片毛片| 亚洲国产欧美人成| 人妻久久中文字幕网| 内射极品少妇av片p| 亚洲 欧美 日韩 在线 免费| 久久久久久国产a免费观看| 最新美女视频免费是黄的| 国产精品久久久久久亚洲av鲁大| 欧美成人一区二区免费高清观看| 亚洲中文日韩欧美视频| 男女做爰动态图高潮gif福利片| 免费看十八禁软件| 国产精品 欧美亚洲| 国产极品精品免费视频能看的| 亚洲国产欧美人成| 日韩欧美在线二视频| 91字幕亚洲| 一个人观看的视频www高清免费观看| 午夜精品一区二区三区免费看| 国产一区在线观看成人免费| 老司机福利观看| 日韩欧美精品v在线| 亚洲成a人片在线一区二区| 成人av一区二区三区在线看| 久久久久久久精品吃奶| 精品99又大又爽又粗少妇毛片 | av在线蜜桃| 亚洲av免费在线观看| xxxwww97欧美| 久久香蕉精品热| 国产精品自产拍在线观看55亚洲| 在线播放国产精品三级| av天堂在线播放| 精品熟女少妇八av免费久了| 日韩精品青青久久久久久| 热99re8久久精品国产| 欧美+亚洲+日韩+国产| 一级作爱视频免费观看| 亚洲精品亚洲一区二区| 亚洲成a人片在线一区二区| 国产三级在线视频| 99久久综合精品五月天人人| 久久这里只有精品中国| 国产又黄又爽又无遮挡在线| 美女高潮喷水抽搐中文字幕| 免费观看精品视频网站| 欧美日韩中文字幕国产精品一区二区三区| 一级毛片高清免费大全| 国内毛片毛片毛片毛片毛片| 国产毛片a区久久久久| 69av精品久久久久久| 亚洲色图av天堂| 亚洲精华国产精华精| 亚洲av二区三区四区| 在线观看午夜福利视频| 精品一区二区三区人妻视频| 国产成人av教育| 国产精品久久久久久亚洲av鲁大| 最新在线观看一区二区三区| 欧美在线黄色| 午夜久久久久精精品| 99热只有精品国产| 丁香六月欧美| 99国产综合亚洲精品| 又黄又粗又硬又大视频| 老鸭窝网址在线观看| 又紧又爽又黄一区二区| 亚洲欧美日韩高清专用| 神马国产精品三级电影在线观看| 久久草成人影院| 在线视频色国产色| 日本三级黄在线观看| 免费av毛片视频| 亚洲天堂国产精品一区在线| 99在线人妻在线中文字幕| 成人一区二区视频在线观看| 综合色av麻豆| 国产免费男女视频| 国产精品 国内视频| 国产视频一区二区在线看| 亚洲最大成人手机在线| 成人国产一区最新在线观看| e午夜精品久久久久久久| 搡老岳熟女国产| 欧美极品一区二区三区四区| 18禁国产床啪视频网站| 国产精品电影一区二区三区| 最近视频中文字幕2019在线8| 韩国av一区二区三区四区| 亚洲av第一区精品v没综合| 99久久九九国产精品国产免费| 一区二区三区免费毛片| 悠悠久久av| 国产中年淑女户外野战色| 国产精品国产高清国产av| 亚洲欧美日韩卡通动漫| 在线天堂最新版资源| 国产亚洲精品久久久com| 国内少妇人妻偷人精品xxx网站| x7x7x7水蜜桃| 少妇丰满av| 高清在线国产一区| 变态另类丝袜制服| 国产成+人综合+亚洲专区| 丝袜美腿在线中文| 久久精品91蜜桃| 99精品久久久久人妻精品| 日本五十路高清| 女人被狂操c到高潮| 一区福利在线观看| 亚洲人成网站高清观看| 一个人免费在线观看的高清视频| 国内精品一区二区在线观看| www.www免费av| 两个人的视频大全免费| 国产麻豆成人av免费视频| 国产真实伦视频高清在线观看 | aaaaa片日本免费| 久久国产乱子伦精品免费另类| 国产视频内射| www日本黄色视频网| 国产在视频线在精品| 一二三四社区在线视频社区8| 久久久久久久久中文| 日本a在线网址| 小说图片视频综合网站| 女警被强在线播放| 五月伊人婷婷丁香| xxx96com| 天天添夜夜摸| 黄色日韩在线| 午夜精品久久久久久毛片777| 国产av在哪里看| 亚洲久久久久久中文字幕| 97超视频在线观看视频| 亚洲成av人片在线播放无| 欧美在线一区亚洲| 色哟哟哟哟哟哟| 97超级碰碰碰精品色视频在线观看| 欧美bdsm另类| 国产成人av激情在线播放| or卡值多少钱| 黄色日韩在线| 久99久视频精品免费| 在线视频色国产色| 国产综合懂色| 亚洲av电影在线进入| 国产精品国产高清国产av| 国产亚洲精品久久久com| 国产精品久久久久久亚洲av鲁大| 内地一区二区视频在线| 亚洲精品美女久久久久99蜜臀| 亚洲国产欧美网| 色播亚洲综合网| 身体一侧抽搐| 美女高潮的动态| 丰满的人妻完整版| 免费一级毛片在线播放高清视频| 岛国在线免费视频观看| 国内精品美女久久久久久| x7x7x7水蜜桃| 九九久久精品国产亚洲av麻豆| 国产成人av激情在线播放| 欧美性感艳星| 久久香蕉精品热| 美女 人体艺术 gogo| 午夜a级毛片| 99热精品在线国产| 欧美成人性av电影在线观看| 国内精品美女久久久久久| 美女高潮的动态| 国产精品一及| 午夜日韩欧美国产| 午夜福利在线观看吧| 一区二区三区高清视频在线| 狂野欧美激情性xxxx| 久久中文看片网| 国产亚洲精品av在线| 久久精品91无色码中文字幕| 国产爱豆传媒在线观看| 亚洲人成网站在线播| 天堂动漫精品| 免费看光身美女| 亚洲最大成人手机在线| 亚洲国产精品999在线| 国产色爽女视频免费观看| 噜噜噜噜噜久久久久久91| h日本视频在线播放| 成人av在线播放网站| 美女大奶头视频| 九色国产91popny在线| 亚洲av成人av| 成人精品一区二区免费| 亚洲av电影在线进入| 啪啪无遮挡十八禁网站| www日本在线高清视频| 久久久精品欧美日韩精品| 国产成+人综合+亚洲专区| 淫秽高清视频在线观看| 欧美日本视频| 亚洲av一区综合| 亚洲精品乱码久久久v下载方式 | 精品一区二区三区视频在线 | 午夜精品在线福利| 日本成人三级电影网站| 九九久久精品国产亚洲av麻豆| 亚洲人成电影免费在线| 最好的美女福利视频网| 亚洲avbb在线观看| 国产精品影院久久| 国产精品亚洲av一区麻豆| av欧美777| 国产成人av激情在线播放| 亚洲精品粉嫩美女一区| 免费av观看视频| 免费观看人在逋| 在线国产一区二区在线| 一夜夜www| 欧美区成人在线视频| 真人一进一出gif抽搐免费| 精品一区二区三区人妻视频| 99在线视频只有这里精品首页| 国产高潮美女av| 51国产日韩欧美| 2021天堂中文幕一二区在线观| 狂野欧美激情性xxxx| 男女做爰动态图高潮gif福利片| 亚洲人成网站高清观看| 久久久国产精品麻豆| 看黄色毛片网站| 日本免费a在线| 国产精品一区二区三区四区免费观看 | 无遮挡黄片免费观看| 99久国产av精品| 男女下面进入的视频免费午夜| 国内久久婷婷六月综合欲色啪| 男女做爰动态图高潮gif福利片| 级片在线观看| 免费高清视频大片| 午夜视频国产福利| 日韩欧美免费精品| 亚洲av五月六月丁香网| 一本久久中文字幕| 国产爱豆传媒在线观看| 亚洲成a人片在线一区二区| 亚洲成人中文字幕在线播放| 国产精品永久免费网站| 男女床上黄色一级片免费看| 一级毛片高清免费大全| 精品免费久久久久久久清纯| 在线观看66精品国产| 1024手机看黄色片| 亚洲 国产 在线| 国产v大片淫在线免费观看| www.色视频.com| 国产精品电影一区二区三区| 俄罗斯特黄特色一大片| 老司机在亚洲福利影院| 亚洲成av人片免费观看| 人人妻,人人澡人人爽秒播| 亚洲精品456在线播放app | 最近最新中文字幕大全电影3| 欧美黑人欧美精品刺激| 久久久久久久亚洲中文字幕 | 在线观看美女被高潮喷水网站 | 成人欧美大片| 免费看美女性在线毛片视频| 亚洲专区国产一区二区| 亚洲国产色片| 国产午夜精品久久久久久一区二区三区 | 欧美在线一区亚洲| 精品一区二区三区视频在线观看免费| 美女 人体艺术 gogo| 一级a爱片免费观看的视频| 男女那种视频在线观看| 91久久精品国产一区二区成人 | 在线观看免费午夜福利视频| 欧美午夜高清在线| 免费看光身美女| 中文字幕精品亚洲无线码一区| 国产精品免费一区二区三区在线| 国内精品一区二区在线观看|