袁 日 榮
(廈門大學(xué)數(shù)學(xué)科學(xué)學(xué)院,福建 廈門 361005)
(1)
(2)
若c0=1且其他的常數(shù)為零,則方程(1)就是著名的復(fù)Monge-Ampère型方程.帶梯度項(xiàng)的復(fù)Monge-Ampère型方程的一個(gè)特殊且重要的例子是Sasakian度量空間的測地線方程[1].本研究的目的之一是將他們的估計(jì)推廣到更一般的情形.當(dāng)c0=c1=…=cn-3=0時(shí),筆者得到了方程(1)的C2,α-估計(jì)[2].
對(duì)于標(biāo)準(zhǔn)的方程而言,即χ為流形M上一個(gè)光滑的實(shí) (1,1)-形式,這類形如式(1) 的方程的研究可追溯到文獻(xiàn)[3-6],這些工作研究了復(fù) Monge-Ampère 方程.從那以后,這類方程引起了很多有趣且重要的研究,可參考文獻(xiàn)[7-14]及其引用的文獻(xiàn).
在陳述本文中主要結(jié)果之前,需要介紹一些符號(hào).在局部坐標(biāo)(z1,…,zn)下,記
(3)
同時(shí)需假設(shè)χ滿足如下結(jié)構(gòu)條件:
(4)
本文中的主要結(jié)果可如下表述:
(5)
那么對(duì)于方程(1)滿足χu>0的解u∈C3(M),存在一個(gè)依賴|ψ|C0,1(M)及其他已知信息的常數(shù)C,使得
(6)
注1定理 1推廣了Guan等[1]的梯度估計(jì).條件(5)可看成一種錐條件[13],有興趣的讀者可參考文獻(xiàn) [9-10,12,22].
記λ=λ(χu)為χu關(guān)于K?hler形式ω的特征根.令σk為一個(gè)初等對(duì)稱函數(shù),其定義為
(7)
方程(1)可等價(jià)地寫成
(8)
本文中主要結(jié)果的關(guān)鍵是下面的引理1.Fang等[9]首先對(duì)反σk方程證明這個(gè)引理1.Guan[15-16]和Székelyhidi[22]將它推廣到更一般的Hessian方程.
引理1假設(shè)條件(5)成立,那么存在兩個(gè)正常數(shù)R0,ε>0,使得當(dāng)|χu|≥R0時(shí),有
(9)
(10)
(11)
定理1的證明考慮如下閘函數(shù)
φ=Aeη,
其中A和B為兩個(gè)待定的正常數(shù).
(12)
由假設(shè)可知,在p點(diǎn)處有
(13)
約定下文中的計(jì)算均在p點(diǎn)處進(jìn)行.通過計(jì)算可知
(14)
由此
(15)
對(duì)方程 (8) 進(jìn)行求導(dǎo)可得
(16)
現(xiàn)在,利用前文中的假設(shè) (4) 得到
(17)
式中的L為方程 (8) 的線性化算子
v∈C2(M).
(18)
簡單計(jì)算可得
φi=φηi,
(19)
使用 Cauchy-Schwarz 不等式和假設(shè) (4),得到
(20)
和
(21)
再由式(13),(15)~(21),有
(22)
(23)
下面,依據(jù)引理1來進(jìn)行討論.假設(shè) |λ|≤R0,其中R0,ε均為引理 1中的常數(shù),那么存在常數(shù)K1>0,使得
是平凡的.
若|λ|≥R0,則由式(4)和引理 1可知
因此,
(24)
不失一般性,可假設(shè)λ1≥…≥λn.如果A,B?1,并且
那么
(25)
為證明式(25),僅需要驗(yàn)證存在某個(gè)正數(shù)δ>0,使得λn≥δ.
綜上可知,如果λi≤λj,則
fjλj≤fiλi,
因而,
(26)
由Cauchy-Schwarz 不等式
(27)
由式(22),(25),(27) 和引理1可得到定理1梯度估計(jì)的證明.
[1] GUAN P F,ZHANG X.Regularity of the geodesic equation in the space of Sasake metrics[J].Adv Math,2012,230:321-371.
[2] YUAN R R.On a class of fully nonlinear elliptic equations containing gradient terms on compact Hermitian manifolds[EB/OL].[2017-03-12].https:∥cms.math.ca/10.4153/CJM-2017-015-9.
[3] AUBIN T.Equations du type Monge-Ampère sur les varietes Kahleriennes compactes[J].Bull Sci Math,1978,102:63-95.
[4] BEDFORD E,TAYLOR B.The Dirichlet problem for a complex Monge-Ampère equation[J].Invent Math,1976,37:1-44.
[5] CAARELLI L A,KOHN J,NIRENBERG L,et al.The Dirichlet problem for nonlinear second-order elliptic equations,Ⅱ.Complex Monge-Ampère,and uniformaly elliptic,equations[J].Comm Pure Appl Math,1985,38:209-252.
[6] YAU S T.On the Ricci curvature of a compact Kahler manifold and the complex Monge-Ampère equation Ⅰ[J].Comm Pure Appl Math,1978,31:339-411.
[7] CHEN X X.A new parabolic ow in Kahler manifolds[J].Comm Anal Geom,2004,12:837-852.
[8] DONALDSON S K.Moment maps and dieomorphisms[J].Asian J Math,1999,3:1-16.
[9] FANG H,LAI M J,MA X N.On a class of fully nonlinear ow in Kahler geometry[J].J Reine Angew Math,2011,653:189-220.
[10] GUAN B,LI Q.The Dirichlet problem for a complex Monge-Ampère type equation on Hermitian manifolds[J].Adv Math,2013,246:351-367.
[11] GUAN B,SUN W.On a class of fully nonlinear elliptic equations on Hermitian manifolds[J].Calc Var Partial Dierential Equations,2015,54:901-916.
[12] SUN W.On a class of fully nonlinear elliptic equations on closed Hermitian manifolds[J].J Geom Anal,2016,26:2459-2473.
[13] SONG J,WEINKOVE B.On the convergence and singularities of the J-flow with applications to the Mabuchi energy[J].Comm Pure Appl Math,2008,61:210-229.
[14] KOMZSIK L.Implicit computational solution of generalized quadratic eigenvalue problems[J].Elsevier Science Publishers B V,2001,37(10):799-810.
[15] SMITH H A,SINGH R K,SORENSEN D C.Formulation and solution of the non-linear,damped eigenvalue problem for skeletal systems[J].International Journal for Numerical Methods in Engineering,1995,38(18):3071-3085.
[16] GUAN B.The Dirichlet problem for fully nonlinear elliptic equations on Riemannian manifolds[EB/OL].[2017-03-12].https:∥arxiv.org/abs/1403.2133.
[17] LI Y Y.Some existence results of fully nonlinear elliptic equations of Monge-Ampère type[J].Comm Pure Appl Math,1990,43:233-271.
[18] URBAS J.Hessian equations on compact Riemannian manifolds[C]∥Nonlinear Problems in Math-ematical Physics and Related Topics Ⅱ.New York:Kluwer/Plenum,2002:367-377.
[19] BLOCKIV.A gradient estimate in the Calabi-Yau theorem[J].Math Ann,2009,344:317-327.
[20] HANANI A.Equations du type de Monge-Ampère sur les varietes hermitiennes compactes[J].J Funct Anal,1996,137:49-75.
[21] HOU Z.Complex Hessian equation on Kahler manifold[J].Int Math Res Not,2009,16:3098-3111.
[22] SZEKELYHIDI G.Fully non-linear elliptic equations on compact Hermitian manifolds[EB/OL].[2017-03-12].https:∥arxiv.org/abs/1501.02762.