• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Seiberg-Witten/Whitham Equations and Instanton Corrections in N=2 Supersymmetric Yang-Mills Theory?

    2018-06-11 12:21:14JiaLiangDai戴佳亮andEnGuiFan范恩貴
    Communications in Theoretical Physics 2018年5期

    Jia-Liang Dai(戴佳亮) and En-Gui Fan(范恩貴)

    School of Mathematical Science,Fudan University,Shanghai 200433,China

    1 Introduction

    The solution of exact low energy effective action in N=2 supersymmetric Yang-Mills theory with SU(2)gauge group was obtained by Seiberg and Witten in Ref.[1]and their work have been generalized to the other higher rank gauge group SU(n),SO(n)and Sp(n)without or with matter hypermultiplets in the fundamental representation as well as to the exceptional group.The key analysis in Ref.[1]was that the quantum moduli space of N=2 supersymmetric gauge theories coupled with or without hypermultiplets could be naturally identi fi ed with the moduli space of certain hyperelliptic curves or Riemann surfaces.More specifically,with the help of these hyperelliptic curves we can describe the low energy effective action by a single holomorphic function F called prepotential and the exact solution for the prepotential is completely determined from the period integrals of a meromorphic differential on the hyperelliptic curves.[2?4]In general,the expression of prepotential F in the weakcoupling region may be divided into three parts:classical part Fclass,perturbative part Fpertwhich arises only from one-loop effects,and a sum of n-instanton part Fnin[5?6]

    it is well known that various kinds of methods have been developed to derive the prepotential from the Seiberg-Witten curves such as hypergeometric functions,[3]Picard-Fuchs equations[7?12]and the renormalization group type equations,[13]however,their complexity increases rapidly as the rank of the gauge group is large,even without matter hypermultiplets.In addition,another important observation about prepotential was noticed by Nekrasov[14]who introduced a partition function which is the generating function of the integral of equivariant cohomology class on the moduli space of framed instantons and showed[15]that the logarithm of this partition function is the instanton part of the Seiberg-Witten prepotential in N=2 supersymmetric four-dimensional gauge theory with gauge group SU(n).Meanwhile,Nakajima and Yoshioka[16]independently proved Nekrasov’s conjecture using the blowup techniques and Hilbert scheme which relates the Seiberg-Witten curves,prepotential and partition function together.These give a framework for understanding the instantons in gauge theory,integrable systems and representation theory of in finite-dimensional algebras in an intricate way.

    On the other hand,it was soon discovered that there exists a deep connection between Seiberg-Witten gauge theory and integrable system.[17?21]Roughly speaking,the Seiberg-Witten solution for the N=2 supersymmetric Yang-Mills theory is equivalent to a homogeneous solution of the Whitham hierarchy as well as the prepotential F corresponds to the logarithm of the Toda’s quasiclassical tau function.In the theory of Whitham hierarchy,there is a new family of variables introduced into the prepotential known as Whitham slow times Tnwhile the Whitham equations parameterized by the slow times characterize the deformations of the Seiberg-Witten curves.Around this time,the RG equations in Seiberg-Witten theory were fi rst derived by Gorsky,Marshakov,Mironov,and Morozov in Ref.[13]with the aid of Whitham hierarchy.Furthermore,based on their work Takasaki pointed out that the deformations by T1are interpreted as the renormalization group flows while the other Whitham deformations may be viewed as generalized RG flows.[22?23]More importantly,it is of great significance to remark that the second derivative of the prepotential F with respect to the slow time Tnleads to the appearance of the Riemann Theta-function.In this sense,after appropriately rescaling the gauge invariant parameters,the T1can be naturally regarded as the dynamical scale Λ which explicitly occurs in the Seiberg-Witten theory and the main RG equations required in this paper are given by[24?25]

    here the symbol ΘE(0|τ)is the Riemann’s theta function associated to the hyperelliptic curve C

    where E=[α;β]Tstands for an even half integer characteristic and in the case of pure SU(n)gauge theory it will be in the form of E=[0,...,0;1/2,...,1/2]T.From the above discussion,there is no difficulty in seeing that one can calculate any desired order instanton correction terms in SU(n)supersymmetric gauge theory by comparing the expansion coefficients of powers of Λ on both sides of Eq.(2)if we insert into the semiclassical expression of the prepotential F.Therefore,one of the most fundamental results of the Seiberg-Witten/Whitham equations is that they provide us a precise description of general recursion relations for any order instanton correction coefficient Fnin terms of the lower order instanton correction terms.It then follows that from this point of view,in principle,we could obtain arbitrary higher order correction coefficient Fnwithout solving the explicit expressions for the Seiberg-Witten periods a,aDwhich is the major feature of this article.

    The paper is organized as follows. In Sec.2 we briefly deduce the instanton correction coefficients using the Seiberg-Witten/Whitham equations in the case of SU(2)supersymmetric gauge theory as an illustrative example.In Sec.3 we generalize this approach to the general SU(n)situation and mainly we compute one-and two-instanton correction coefficients in detail,moreover,our results are in agreement with those in Ref.[5].Section 4 contains some conclusions and discussions and Appendix supplies us with relevant calculations and specific proofs we needed in Sec.3.

    2 SU(2)Case

    Let us first discuss the simplest case of non-abelian SU(2)supersymmetric gauge theory.For the moment due to the instanton effect,it is sufficient to consider the prepotential in SU(2)case without hypermultiplets and the general form of the prepotential F is[3]

    here the first term in Eq.(4)is one-loop expression for the prepotential which does not receive higher order perturbative corrections and the coefficients Fkin second term are constants.Notice that searching for the exact low energy effective action solution is equivalent to evaluating Fkfor all the k,fortunately,the Seiberg-Witten/Whitham equations give us an effective and standard procedure to determine these coefficients.Firstly one has

    here we set F0=6 which makes the constant coefficient term to be zero and this will be re fl ected in our choice for the normalization of F if we are rescaling Λ appropriately.We apply Eq.(2)to receive

    Substituting τ into the Riemann’s theta function(3)we find

    and the derivative of the Riemann’s theta function is

    obviously,the Seiberg-Witten/Whitham equations in SU(2)case turns out to be extremely simple

    matching the coefficient of(Λ/a)4nterm on both sides of Eq.(9),we then obtain the recursion relations for Fnas follows

    here ΘjandeΘjare defined as in Eqs.(7),(8)respectively.Now if rescaling the renormalization parameter Λ?→Λ/2 we can reexpress the prepotential F more explicitly

    here the instanton corrections coefficients are F1=1/25,F2=5/214,F3=3/218and so on.[3]

    Alternatively one can consider the physics near the N=1 singularities where generically corresponding to N?1 massless magnetic monopoles and the basic idea now is to evaluate the dual variables aD,kobtained from the akafter an S duality transformation.As shown in Ref.[26],the general expression of the strong coupling expansion of the prepotential at such singularity is given by

    in this case the variable a and coupling coefficient τDcan be formally calculated as above

    by analogy with Eq.(6)we have

    However,it should note here that from the point of view of the dual transformation,the characteristic of the theta function near the N=1 points must be replaced byα=(1/2,...,1/2)andβ=(0,...,0),at the same time,the Riemann’s theta function becomes Θ = ∑∞n=?∞exp(iπ(n+1/2)2τD),consequently it reads

    We assume FD0= ?1 and that is just the outcome of normalization of the FDkif we are rescaling Λ appropriately.In this way,the prepotential FDtakes a more familiar form as that in[3]

    here=iaD/Λ and taking advantage of these relations,one could derive the strong coupling expansion coefficients FDnrecursively through comparing the coefficient of the term(aD/Λ)n+1/8on both sides of the Seiberg-Witten/Whitham equation(2).

    3 SU(n)Case

    In this section we mainly consider the general SU(n)non-abelian supersymmetric Yang-Mills theory without doubt that the associated formulae and computations are much more complicated.To illustrate this detailedly,let us first recall that the general form of the prepotential F in the pure SU(n)supersymmetric gauge theory consists of three parts:the classical prepotential,the perturbative one-loop effects,and the k-instanton corrections,[5]namely

    in this formalism,the derivatives of the prepotential F follow directly that

    In view of the restriction to the constrain hyperplanewe should view the prepotential F(a1,...,aN)as a function of all the independent variables akexcept aNwhich results in ?i(ak?aN)= δki+1(here?imeans the partial derivative with variable ai,1≤i≤N?1).Thus we can put the RG equations in the following precise way

    hererespectively.Now the need to pay attention to is that because of the constraint conditionthe dual variables aD,iare

    and after a simple calculation we get

    which leads to a fairly explicit expression for the coupling coefficients τij= ?aD,i/?aj? ?aD,i/?aN(ij)

    in particular,the coupling coefficients τiiare

    From the previous argument we are aware of that in the general SU(n)non-abelian case,the most crucial ingredient in our analysis is the expression of Θ function.Therefore under the substitution of Eqs.(22),(23)into the de fi nition of Θ,it turns out to be

    where

    herecomes from the aNkterms in Eqs.(22)and(23).We already eliminate the e?(3/2)Nαfactor in Eq.(24)by appropriately rescaling Λ and as explained above this will be reflected in our choice for the normalization of the Fk.In addition,Θ(0)=1.Then without more efforts one is able to write down the formula for the derivative of the Θ with respect to the period matrix τijin the following form although the expressions ofare rather more involved.However,it is not difficult to prove that the indice l starts from 1,since when l=0 all integers nimust be equal to zero and from Eq.(26)we easily conclude that the coefficientsvanish.

    Now let us insert the formulae of ΘE(0|τ),?τijΘE(0|τ)obtained above into Eq.(2)

    which provides an exact expression for the instanton corrections coefficients

    here β =2N and comparing the coefficients of powers of Λ makes it possible to compute the Fkin a purely algebraic combinatorial way

    We remark here that Eq.(29)is a fundamental recursion relation for us to derive the exact n-instanton coefficient Fnby starting just from the coefficient F1through the Whitham hierarchy method in pure SU(n)supersymmetric gauge theory.As a matter of fact,the above results can even be extended to the more sophisticated situations of the massless or massive hypermultiplets included.Generally speaking,it is essentially no difficulty in applying this approach to the massless or massive hypermultiplets cases by repeating these relations(29)recursively,and after finitely many steps one is capable of getting all the correct instanton coefficients.However,in each case when k is larger,the functionsbecome much more complicated and of course the procedure of computation turns into cumbersome.Thereby for the purpose of the concrete evaluation of the Fk,one has to resort to the help of symbolic computation.In this article we basically compute 1-instanton and 2-instanton correction coefficients to illustrate the calculational procedure and then compare them with the results in paper.[5]

    3.1 1-Instanton Correction

    To derive the 1-instanton correction coefficient F1we consider k=1 in Eq.(29)which reads

    obviously from the definition ofwe have α=2,that is

    and we observe that the solutions of Eq.(31)are divided into two cases

    In the first case(a),under the condition ni=1 for some i,the expression A(a;n1,...,nN?1)turns out to be

    then analogous to Eq.(33)in case(b)we have

    clearly,notice that when ni= ?1 and nj= ?ni=1 we find A(?i)=A(i),A(?i,j)=A(i,?j)respectively.Then recalling the coefficients

    after a straightforward calculation,Eq.(30)becomes

    here we introduce the notationfor convenience and make use of(see the proof in Appendix A),the 1-instanton correction part of F can be written as

    now if defining the functionwe can rewrite Eq.(37)in the form ofwhich is the same as the expression in Ref.[5].

    3.2 2-instanton Correction

    In the following section we mainly compute the 2-instant correction coefficient and we are thus led,on account of the recursion relation(29),to the F2

    evidently,the calculation of F2is identical to the sum of three terms in Eq.(38)respectively.

    (a)term

    Taking into account of the definition oftogether with Eq.(35),we simplify the first term as

    here the accurate expression of F1,i(see Appendix B)is

    now utilizing Eq.(55)below,we may rewrite Eq.(39)as

    (b)term

    In order to obtain the explicit expression ofwe note that from Eq.(26)there are two conditions make contributions to the coefficients of Λ4N:(i) α =4,m=0;(ii) α =2,m=1,k=1.For the first condition α =4,or equivalentlywe find that the corresponding solutions are separated into two cases(we mainly consider N≥5)

    thus according to the definition of Eq.(25)one obtains as well as

    due to the symmetry between indices l and m,the functions of(ij)are now given by

    here the summation is for l,m and theare

    here we sum over for j,l,m.Now using these consequences and the expressions forogether with Eqs.(43),(44)above,we calculate

    Furthermore substituting the expressionsinto Eq.(47),it is immediate to see that

    and a tedious algebraic calculation of the mixed derivatives of the F1shows that

    the detailed proof of Eq.(49)can be consulted in Appendix B.

    (c) F1Θ(1)term

    Finally we want to compute the F1Θ(1)term and to begin with

    Hence,let us combineand we have

    Now to proceed further it is necessary to calculate the bibjblbmterms in Eqs.(41)and(49)explicitly,actually we find

    and from Appendix C,we conclude that

    The above analysis enables us to derive the 2-instanton correction coefficient F2in terms of variables aijand bk.Indeed,putting all these Eqs.(41),(47)–(49)and(51)–(53)together,we therefore arrive at a more compact expression as follows

    In particular,using the key relationit follows that

    and as a consequence,various identities can now be deduced from the above Eq.(55)which will play an important role to help us simplify the expression of F2.For instance,by differentiating Eq.(55)with respect to aiand multiplyingon both sides of the result equation,then summing over for i one finds that

    moreover,the similar process gives rise to

    analogously let us take derivative with respect to aion both sides of Eq.(57),multiplyon the result equation and sum over for i,through a direct calculation it yields

    hence inserting Eqs.(56)and(58)into(54)with the aid of Eq.(57),the computation of F2now is straightforward,and one finally obtains

    As a final comment,it is worth mentioning here that taking advantage of the notation Sk(x),the evaluation of 2-instanton correction coefficient F2can also be expanded in a more familiar form

    We point out here that the above expression is precisely the same as derived by E.D’Hoker,D.H.Phong and I.M.Krichever in Ref.[5].

    4 Conclusion

    In this paper,we primarily describe how to obtain arbitrary order instanton corrections coefficients of the effective prepotential F in N=2 pure SU(n)supersymmetric Yang-Mills theory from Whitham hierarchy and Seiberg-Witten/Whitham equations.The most important feature of this method is that there is no necessary to know the exact expressions of the Seiberg-Witten periods as functions of the moduli parameters.It is natural to generalize this idea to the other classical gauge group theory with or without hypermultiplets,which allows us to calculate the instanton corrections terms in various different Seiberg-Witten curves within a unified framework.We emphasize here that if one wants to get the recursion relations of instanton corrections coefficients from Seiberg-Witten/Whitham equations with massive or massless hypermultiplets,the number of hypermultiplets must be an even integer and the massive hypermultiplets must come up in degenerated pairs as shown in Ref.[10].Therefore it is essential to modify the formalism of the Whitham hierarchy and RG equations in order to extend our approach to the generic cases of unpaired and arbitrary masses.This would be interesting to further study.

    Appendix A

    For presenting the proof,it is convenient to define polynomial fand the first basic result is trivialBelow we will mostly focus on

    here(aN)means omitting the term fi(aN)in the products of f1(aN)··fi(aN)··fN?1(aN).Next for simplicity it is useful to introduce polynomialobviously we find gj(ak)=0 for jk,k≤N ?1,which provides

    Now let us make some general considerations on the following polynomial G(x)

    in fact,we notice that the degree of G(x)is N?2 but the polynomial has N?1 roots ai,i=1,...,N?1 which tells us that the polynomial G(x)is identically equal to zero,in other words,T(x)≡ (?1)(N?2)(N?3)/2∏N?1j

    on the other hand,from the definition of fi(x)we have

    then inserting Eqs.(A4)and(A5)into Eq.(A1),one obtains

    that is complete the proof.

    Appendix B

    Here we will exhibit some elementary identities about bi,which are applicable for our purpose and the corresponding proofs are straightforward

    According to these equations we can calculate the explicit form of F1,ij,indeed a simple and direct calculation shows that

    Then we give some details about how to evaluate the second derivative of Eq.(A8)with respect to the variable ajwhich can be seen as follows

    proceeding as before one finds(ij)

    Now if taking into account of Eq.(A7),we obtain a certain number of identities about the terms in Eq.(A9),these are

    Finally,let us substitute Eq.(A11)into(A9)together with Eq.(A10),we get

    Appendix C

    To begin with it is well known that from

    we have

    here the termsvanishing due to the antisymmetry of the indices i,j foror l,m for

    Analogously with the help of the equation

    it is enough to present that

    the termsvanishing because of the antisymmetry of the indices l,i or m,j for aliamj.

    Similarly from the identity

    we also have

    which gives rise to

    as explained above the first termsvanishing since the antisymmetry of the indices i,j or l,m for almaij.Now combining Eqs.(A14),(A16)with(A19)one can easily verify that

    [1]N.Seiberg and E.Witten,Nucl.Phys.B 426(1994)19.

    [2]A.Gorsky,I.Krichever,A.Marshakov,et al.,Phys.Lett.B 355(1995)466.

    [3]A.Klemm,W.Lerche,and S.Theisen,Int.J.Mod.Phys.A 11(1996)1929.

    [4]H.Itoyama and A.Morozov,Nucl.Phys.B 477(1996)855.

    [5]E.D’Hoker,D.H.Phong,and I.M.Krichever,Nucl.Phys.B 489(1997)179.

    [6]E.D’Hoker,D.H.Phong,and I.M.Krichever,Nucl.Phys.B 489(1997)211.

    [7]K.Ito and N.Sasakura,Nucl.Phys.B 484(1997)141.

    [8]J.M.Isidro,A.Mukherjee,J.P.Nunes,and H.J.Schnitzer,Nucl.Phys.B 492(1997)647.

    [9]M.Alishahiha,Phys.Lett.B 398(1997)100.

    [10]J.M.Isidro,A.Mukherjee,J.P.Nunes,and H.J.Schnitzer,Nucl.Phys.B 502(1997)363.

    [11]Y.Ohta,J.Math.Phys.40(1999)6292.

    [12]J.M.Isidro,arXiv:hep-th/0011253.

    [13]A.Gorsky,A.Marshakov,A.Mironov,and A.Morozov,Nucl.Phys.B 527(1998)690.

    [14]N.Nekrasov,Adv.Theor.Math.Phys.7(2004)831.

    [15]N.Nekrasov and A.Okounkov,arXiv:hep-th/0306238.

    [16]H.Nakajima and K.Yoshioka,Invent.Math.162(2005)313.

    [17]E.Martinec and N.Warner,Nucl.Phys.B 459(1995)97.

    [18]T.Nakatsu and K.Takasaki,Mod.Phys.Lett.A 11(1996)157.

    [19]E.D’Hoker and D.H.Phong,arXiv:hep-th/9903068.

    [20]A.Marshakov,Seiberg-Witten Theory and Integrable Systems,World Scientific,Singapore(1999).

    [21]A.Marshakov and N.Nekrasov,arXiv:hep-th/0612019.

    [22]K.Takasaki,Int.J.Mod.Phys.A 15(2000)3635.

    [23]K.Takasaki,Prog.Theor.Phys.Suppl.135(1999)53.

    [24]J.D.Edelstein and J.Mas,arXiv:hep-th/9902161.

    [25]J.D.Edelstein,M.G.Reino,and J.Mas,Nucl.Phys.B 561(1999)273.

    [26]J.D.Edelstein and J.Mas,Phys.Lett.B 452(1999)69.

    午夜免费成人在线视频| 黑人操中国人逼视频| 午夜精品国产一区二区电影| 色尼玛亚洲综合影院| 麻豆av在线久日| 丁香欧美五月| 日本黄色视频三级网站网址 | 久久久久久人人人人人| 50天的宝宝边吃奶边哭怎么回事| 如日韩欧美国产精品一区二区三区| 亚洲精品美女久久av网站| 午夜精品国产一区二区电影| 热99国产精品久久久久久7| 色综合欧美亚洲国产小说| 欧美乱妇无乱码| av网站免费在线观看视频| 人人妻人人澡人人爽人人夜夜| 成年动漫av网址| 悠悠久久av| 久久国产亚洲av麻豆专区| 操美女的视频在线观看| 69av精品久久久久久| 美女高潮到喷水免费观看| av在线播放免费不卡| a级毛片黄视频| 国产日韩一区二区三区精品不卡| 丰满人妻熟妇乱又伦精品不卡| 亚洲一区高清亚洲精品| 国产精品久久视频播放| av视频免费观看在线观看| 乱人伦中国视频| 国产亚洲一区二区精品| 欧美日韩瑟瑟在线播放| 亚洲 欧美一区二区三区| 国产精品 欧美亚洲| 久久久国产成人免费| 91av网站免费观看| 91麻豆精品激情在线观看国产 | 欧美 亚洲 国产 日韩一| 国产高清国产精品国产三级| e午夜精品久久久久久久| 久久性视频一级片| 久久久久国内视频| 免费女性裸体啪啪无遮挡网站| 黑丝袜美女国产一区| 久久久水蜜桃国产精品网| 老汉色av国产亚洲站长工具| 精品人妻在线不人妻| 免费少妇av软件| 极品少妇高潮喷水抽搐| 午夜精品国产一区二区电影| 老司机在亚洲福利影院| 国产亚洲精品一区二区www | 亚洲第一青青草原| 亚洲成人国产一区在线观看| 亚洲,欧美精品.| 丰满的人妻完整版| 国产高清激情床上av| 国产成人系列免费观看| 亚洲欧美色中文字幕在线| 人人妻,人人澡人人爽秒播| 成人av一区二区三区在线看| 欧美日韩黄片免| 在线观看www视频免费| 欧美成人午夜精品| 亚洲中文字幕日韩| 丝袜在线中文字幕| 老熟妇仑乱视频hdxx| 国产在线一区二区三区精| 亚洲欧美日韩另类电影网站| 一级a爱视频在线免费观看| 9热在线视频观看99| 欧美日韩av久久| 一二三四在线观看免费中文在| 黄色成人免费大全| 日韩中文字幕欧美一区二区| av免费在线观看网站| 宅男免费午夜| 999久久久国产精品视频| 日本黄色视频三级网站网址 | 亚洲九九香蕉| 国产精品一区二区在线观看99| 人人妻人人爽人人添夜夜欢视频| 丰满的人妻完整版| 亚洲精品久久成人aⅴ小说| avwww免费| 美女午夜性视频免费| 亚洲片人在线观看| 国产成人系列免费观看| 国产精品香港三级国产av潘金莲| 伊人久久大香线蕉亚洲五| 亚洲全国av大片| 黄色 视频免费看| 亚洲国产欧美日韩在线播放| 悠悠久久av| 天天躁夜夜躁狠狠躁躁| 成人av一区二区三区在线看| 精品国产超薄肉色丝袜足j| 又黄又爽又免费观看的视频| 黄色毛片三级朝国网站| 丰满迷人的少妇在线观看| 熟女少妇亚洲综合色aaa.| 午夜精品在线福利| 欧美乱妇无乱码| 欧美日韩成人在线一区二区| 成人手机av| 最近最新免费中文字幕在线| 久久精品成人免费网站| 亚洲国产欧美一区二区综合| 亚洲七黄色美女视频| 免费人成视频x8x8入口观看| 老鸭窝网址在线观看| 国产精品久久视频播放| 老鸭窝网址在线观看| 欧美亚洲 丝袜 人妻 在线| 18禁美女被吸乳视频| 亚洲七黄色美女视频| 狠狠婷婷综合久久久久久88av| 十八禁网站免费在线| 岛国毛片在线播放| 男女下面插进去视频免费观看| 在线免费观看的www视频| tube8黄色片| 精品国产美女av久久久久小说| 精品视频人人做人人爽| 人妻一区二区av| 成年动漫av网址| 精品人妻在线不人妻| 久热这里只有精品99| 热99久久久久精品小说推荐| 男女床上黄色一级片免费看| 国产欧美亚洲国产| 80岁老熟妇乱子伦牲交| 久久精品国产清高在天天线| 亚洲精品久久成人aⅴ小说| 免费少妇av软件| 成年人免费黄色播放视频| 亚洲人成77777在线视频| 精品久久久久久久毛片微露脸| 久久人妻福利社区极品人妻图片| 亚洲国产欧美一区二区综合| 久久精品亚洲av国产电影网| 亚洲熟女精品中文字幕| 国产麻豆69| 亚洲成国产人片在线观看| 在线播放国产精品三级| 国产高清国产精品国产三级| 99国产精品99久久久久| 欧美日韩精品网址| 嫩草影视91久久| 欧美黑人精品巨大| 99re6热这里在线精品视频| 一夜夜www| 如日韩欧美国产精品一区二区三区| 免费在线观看亚洲国产| 亚洲免费av在线视频| 久久久精品国产亚洲av高清涩受| 欧洲精品卡2卡3卡4卡5卡区| 在线国产一区二区在线| 女性被躁到高潮视频| 成人av一区二区三区在线看| tube8黄色片| 日韩欧美一区二区三区在线观看 | 老鸭窝网址在线观看| 欧美日韩一级在线毛片| 国产精品 欧美亚洲| xxxhd国产人妻xxx| 曰老女人黄片| 又黄又爽又免费观看的视频| 一边摸一边抽搐一进一出视频| 国产成人欧美| 丝瓜视频免费看黄片| 免费看a级黄色片| 国产精品久久久人人做人人爽| 国产欧美日韩精品亚洲av| 国产高清激情床上av| 亚洲精品粉嫩美女一区| 国产不卡一卡二| 亚洲少妇的诱惑av| 国产精品久久久人人做人人爽| 亚洲精品国产精品久久久不卡| 交换朋友夫妻互换小说| 久99久视频精品免费| 午夜久久久在线观看| 夜夜躁狠狠躁天天躁| 香蕉久久夜色| 亚洲精品中文字幕在线视频| 老熟女久久久| 啦啦啦免费观看视频1| videos熟女内射| 在线视频色国产色| 国产精品二区激情视频| 叶爱在线成人免费视频播放| 亚洲成人国产一区在线观看| 老汉色av国产亚洲站长工具| 亚洲成人国产一区在线观看| 国产伦人伦偷精品视频| 欧美成狂野欧美在线观看| 国产亚洲欧美98| 欧美另类亚洲清纯唯美| 搡老熟女国产l中国老女人| ponron亚洲| 国产精品香港三级国产av潘金莲| 国产午夜精品久久久久久| 男女之事视频高清在线观看| 一进一出抽搐动态| xxx96com| 欧美人与性动交α欧美软件| 欧美精品啪啪一区二区三区| 激情视频va一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 成年人免费黄色播放视频| 精品福利永久在线观看| 日本vs欧美在线观看视频| 99久久综合精品五月天人人| 国产1区2区3区精品| 亚洲国产欧美网| 久久久精品区二区三区| 国产在线观看jvid| 90打野战视频偷拍视频| 在线观看午夜福利视频| 无人区码免费观看不卡| 女人被狂操c到高潮| 国产激情欧美一区二区| 国产1区2区3区精品| 天堂俺去俺来也www色官网| 极品少妇高潮喷水抽搐| 亚洲国产毛片av蜜桃av| 精品一品国产午夜福利视频| 国产一区二区三区综合在线观看| 中文字幕人妻丝袜制服| 日韩人妻精品一区2区三区| 99香蕉大伊视频| 欧美大码av| 欧美 亚洲 国产 日韩一| www.自偷自拍.com| 99热只有精品国产| 男女下面插进去视频免费观看| 性少妇av在线| 国产成人精品久久二区二区免费| 亚洲午夜精品一区,二区,三区| 涩涩av久久男人的天堂| 免费高清在线观看日韩| 精品国产一区二区久久| 淫妇啪啪啪对白视频| 美女国产高潮福利片在线看| 99国产极品粉嫩在线观看| 精品视频人人做人人爽| 午夜福利免费观看在线| 男人的好看免费观看在线视频 | 在线永久观看黄色视频| 天堂动漫精品| 亚洲一区二区三区欧美精品| 18禁裸乳无遮挡动漫免费视频| 精品卡一卡二卡四卡免费| 手机成人av网站| 免费看a级黄色片| 成人免费观看视频高清| 亚洲人成电影免费在线| 免费在线观看日本一区| 麻豆成人av在线观看| 一区二区日韩欧美中文字幕| 亚洲精华国产精华精| 91麻豆av在线| 亚洲午夜精品一区,二区,三区| 在线视频色国产色| 日韩视频一区二区在线观看| 国产极品粉嫩免费观看在线| av国产精品久久久久影院| 少妇粗大呻吟视频| 80岁老熟妇乱子伦牲交| 久久精品人人爽人人爽视色| 久久久久久久精品吃奶| 在线av久久热| 天天躁日日躁夜夜躁夜夜| 777久久人妻少妇嫩草av网站| 欧美+亚洲+日韩+国产| 欧美黑人欧美精品刺激| 在线观看免费日韩欧美大片| 国产片内射在线| 又黄又粗又硬又大视频| 大型av网站在线播放| 精品国产一区二区久久| 久久青草综合色| 精品国内亚洲2022精品成人 | 悠悠久久av| 欧美激情 高清一区二区三区| 日韩人妻精品一区2区三区| 国产精品 欧美亚洲| 黄网站色视频无遮挡免费观看| 国产精品久久久人人做人人爽| av超薄肉色丝袜交足视频| 免费久久久久久久精品成人欧美视频| 国产精品99久久99久久久不卡| 欧美午夜高清在线| 欧美日韩视频精品一区| 最新美女视频免费是黄的| 欧美激情久久久久久爽电影 | 无人区码免费观看不卡| 精品国内亚洲2022精品成人 | 免费少妇av软件| 视频在线观看一区二区三区| 久久影院123| 麻豆成人av在线观看| 一进一出好大好爽视频| 久久九九热精品免费| 脱女人内裤的视频| 久久婷婷成人综合色麻豆| 日韩熟女老妇一区二区性免费视频| 精品熟女少妇八av免费久了| 91精品国产国语对白视频| 纯流量卡能插随身wifi吗| 久久久水蜜桃国产精品网| tocl精华| 人人澡人人妻人| 超碰97精品在线观看| 日韩熟女老妇一区二区性免费视频| 极品人妻少妇av视频| 搡老熟女国产l中国老女人| 国产在线观看jvid| av超薄肉色丝袜交足视频| 国产片内射在线| 久久国产精品影院| 亚洲成人国产一区在线观看| 免费在线观看黄色视频的| 9191精品国产免费久久| 午夜免费成人在线视频| 人人妻人人澡人人爽人人夜夜| 日本wwww免费看| 亚洲成人手机| 国产深夜福利视频在线观看| 五月开心婷婷网| 色婷婷av一区二区三区视频| 亚洲专区字幕在线| 国产又色又爽无遮挡免费看| 午夜福利在线观看吧| 色尼玛亚洲综合影院| 国产精品亚洲一级av第二区| 999精品在线视频| 十八禁网站免费在线| 日本vs欧美在线观看视频| 一本综合久久免费| 国产在线一区二区三区精| 99国产精品一区二区蜜桃av | 女人高潮潮喷娇喘18禁视频| 亚洲九九香蕉| 欧美日韩亚洲国产一区二区在线观看 | 天天操日日干夜夜撸| 法律面前人人平等表现在哪些方面| 女同久久另类99精品国产91| 两个人免费观看高清视频| 大香蕉久久成人网| 中亚洲国语对白在线视频| 国产精品偷伦视频观看了| 亚洲 欧美一区二区三区| 国产男靠女视频免费网站| 99国产综合亚洲精品| 成人三级做爰电影| 麻豆乱淫一区二区| 色94色欧美一区二区| 欧美丝袜亚洲另类 | 99国产综合亚洲精品| 久久久国产成人精品二区 | 搡老熟女国产l中国老女人| 欧美精品高潮呻吟av久久| 电影成人av| 在线播放国产精品三级| 成人国产一区最新在线观看| 狠狠婷婷综合久久久久久88av| 狂野欧美激情性xxxx| 欧美精品亚洲一区二区| 女人久久www免费人成看片| 亚洲一区高清亚洲精品| 侵犯人妻中文字幕一二三四区| 他把我摸到了高潮在线观看| 在线观看免费午夜福利视频| 不卡av一区二区三区| 国产不卡一卡二| 色精品久久人妻99蜜桃| av天堂久久9| 国产精品影院久久| 免费看十八禁软件| 成人精品一区二区免费| 午夜福利欧美成人| a在线观看视频网站| 少妇猛男粗大的猛烈进出视频| 丁香欧美五月| 在线观看免费日韩欧美大片| 久久青草综合色| 国产xxxxx性猛交| 国产精品偷伦视频观看了| 国产aⅴ精品一区二区三区波| 久久久久久人人人人人| 久久久久久久久久久久大奶| 精品国内亚洲2022精品成人 | 国产男女超爽视频在线观看| 人妻久久中文字幕网| 下体分泌物呈黄色| 在线天堂中文资源库| 老司机午夜十八禁免费视频| 欧美激情久久久久久爽电影 | 欧美日韩av久久| 国产欧美日韩精品亚洲av| 夜夜夜夜夜久久久久| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品美女久久久久99蜜臀| bbb黄色大片| 国产精品久久久久成人av| 国产高清激情床上av| 别揉我奶头~嗯~啊~动态视频| 色婷婷久久久亚洲欧美| 亚洲成av片中文字幕在线观看| 精品国产一区二区久久| 岛国在线观看网站| 国产一区二区激情短视频| e午夜精品久久久久久久| 变态另类成人亚洲欧美熟女 | 国产精品国产高清国产av | 最近最新中文字幕大全电影3 | 亚洲一区中文字幕在线| 亚洲第一青青草原| 欧美精品一区二区免费开放| svipshipincom国产片| av线在线观看网站| 人成视频在线观看免费观看| 看片在线看免费视频| 亚洲五月色婷婷综合| 国产精品二区激情视频| 亚洲熟女精品中文字幕| 久久ye,这里只有精品| 纯流量卡能插随身wifi吗| av超薄肉色丝袜交足视频| 男男h啪啪无遮挡| 另类亚洲欧美激情| 99久久国产精品久久久| 少妇 在线观看| 国产伦人伦偷精品视频| 两个人看的免费小视频| 国产一区有黄有色的免费视频| 80岁老熟妇乱子伦牲交| 制服诱惑二区| 热re99久久国产66热| 黄色女人牲交| 午夜老司机福利片| 亚洲熟女毛片儿| 午夜亚洲福利在线播放| 人妻丰满熟妇av一区二区三区 | 国产不卡av网站在线观看| 在线观看日韩欧美| 欧美日韩精品网址| 90打野战视频偷拍视频| 国产精品一区二区在线不卡| 女人高潮潮喷娇喘18禁视频| 十八禁人妻一区二区| 欧美乱色亚洲激情| 天堂动漫精品| 国产男女内射视频| 久久久国产欧美日韩av| 波多野结衣一区麻豆| 侵犯人妻中文字幕一二三四区| 久久人妻福利社区极品人妻图片| 亚洲情色 制服丝袜| 国产在线观看jvid| 久久香蕉激情| 99国产精品一区二区三区| 在线天堂中文资源库| 国内久久婷婷六月综合欲色啪| 极品少妇高潮喷水抽搐| 中文欧美无线码| 水蜜桃什么品种好| 在线天堂中文资源库| 欧美国产精品一级二级三级| 午夜免费成人在线视频| 十八禁人妻一区二区| av电影中文网址| 五月开心婷婷网| 91老司机精品| 国产av一区二区精品久久| 欧美人与性动交α欧美精品济南到| 亚洲午夜精品一区,二区,三区| 大陆偷拍与自拍| 免费一级毛片在线播放高清视频 | xxx96com| 国产蜜桃级精品一区二区三区 | 老汉色∧v一级毛片| 久久99一区二区三区| 少妇猛男粗大的猛烈进出视频| 91麻豆精品激情在线观看国产 | 国产成人av教育| 热re99久久精品国产66热6| 国产成人精品久久二区二区91| 日日摸夜夜添夜夜添小说| 亚洲精品一二三| 中出人妻视频一区二区| 妹子高潮喷水视频| 日韩大码丰满熟妇| 色婷婷久久久亚洲欧美| 久久国产精品大桥未久av| 免费观看精品视频网站| 日韩欧美三级三区| 亚洲avbb在线观看| 亚洲av成人不卡在线观看播放网| 午夜精品在线福利| 欧美日韩av久久| 国产成人精品久久二区二区91| 亚洲国产欧美网| 国产午夜精品久久久久久| 精品久久久久久久久久免费视频 | 亚洲欧美精品综合一区二区三区| 久久久国产精品麻豆| 免费观看精品视频网站| 在线免费观看的www视频| av一本久久久久| 日韩成人在线观看一区二区三区| 在线观看日韩欧美| 国产99白浆流出| 18在线观看网站| 亚洲精品一卡2卡三卡4卡5卡| 亚洲九九香蕉| 午夜91福利影院| 亚洲精品粉嫩美女一区| 久久国产精品人妻蜜桃| 久久精品熟女亚洲av麻豆精品| 在线av久久热| 精品人妻1区二区| 国产精品秋霞免费鲁丝片| 日韩免费av在线播放| 麻豆国产av国片精品| 国产无遮挡羞羞视频在线观看| 欧美在线一区亚洲| 一本综合久久免费| 亚洲av电影在线进入| 一区二区三区国产精品乱码| 午夜福利,免费看| 天天添夜夜摸| 人妻丰满熟妇av一区二区三区 | 久久香蕉国产精品| 精品午夜福利视频在线观看一区| 新久久久久国产一级毛片| 很黄的视频免费| 嫩草影视91久久| 国产成人av教育| 好男人电影高清在线观看| 99香蕉大伊视频| 热re99久久精品国产66热6| 久久九九热精品免费| 在线观看www视频免费| 国产精品偷伦视频观看了| 国产亚洲精品久久久久久毛片 | 亚洲av成人一区二区三| 捣出白浆h1v1| 久久人妻av系列| av视频免费观看在线观看| 国产精品欧美亚洲77777| 欧美午夜高清在线| 老司机午夜福利在线观看视频| 免费少妇av软件| 首页视频小说图片口味搜索| 99国产极品粉嫩在线观看| 欧美丝袜亚洲另类 | 亚洲专区国产一区二区| 天天操日日干夜夜撸| av电影中文网址| 久久中文字幕一级| 日韩免费高清中文字幕av| 国产精品自产拍在线观看55亚洲 | 中文字幕人妻丝袜一区二区| 搡老乐熟女国产| 午夜福利乱码中文字幕| 高清在线国产一区| 80岁老熟妇乱子伦牲交| √禁漫天堂资源中文www| 一进一出好大好爽视频| 国产aⅴ精品一区二区三区波| 两个人免费观看高清视频| 成人影院久久| 日本精品一区二区三区蜜桃| av国产精品久久久久影院| videosex国产| 看片在线看免费视频| 啦啦啦 在线观看视频| xxx96com| 亚洲中文av在线| 看黄色毛片网站| 人人妻人人澡人人爽人人夜夜| 啦啦啦在线免费观看视频4| 美女高潮到喷水免费观看| 亚洲av片天天在线观看| 国产一区二区三区在线臀色熟女 | 怎么达到女性高潮| 亚洲精品粉嫩美女一区| 窝窝影院91人妻| 一二三四社区在线视频社区8| xxx96com| 国产精品九九99| 一级毛片女人18水好多| av有码第一页| 看片在线看免费视频| 99国产综合亚洲精品| 欧美 亚洲 国产 日韩一| 欧美精品人与动牲交sv欧美| 国产精品99久久99久久久不卡| 久久精品成人免费网站| 亚洲成人免费电影在线观看| 男人操女人黄网站| 好男人电影高清在线观看| 免费不卡黄色视频| av在线播放免费不卡| 两个人看的免费小视频| 捣出白浆h1v1| 欧美日韩国产mv在线观看视频| 亚洲精品粉嫩美女一区| 午夜91福利影院| 免费女性裸体啪啪无遮挡网站| 日韩免费高清中文字幕av|