• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Particle Size Influence on the effective Permeability of Composite Materials?

    2018-06-11 12:21:26TaiXiang向泰RuNengZhong鐘汝能BinYao姚斌ShaoJingQin覃紹京andQinHongZheng鄭勤紅
    Communications in Theoretical Physics 2018年5期

    Tai Xiang(向泰),Ru-Neng Zhong(鐘汝能),Bin Yao(姚斌),Shao-Jing Qin(覃紹京),and Qin-Hong Zheng(鄭勤紅),?

    1Key Laboratory of Photoelectric Information Technology,Yunnan Province&Solar Energy Research Institute,Yunnan Normal University,Kunming 650500,China

    2Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China

    1 Introduction

    It is highly advantageous to obtain theoretical predictions for the electromagnetic parameters of materials,to establish the general dependence and relation between various microstructure and macroscopic quantities of composite materials.A theoretical estimation provides much more information than a numerical simulation data or an experimental data,and it guides material design.This work is concerned with the theoretical model of the technology and application of composite materials,especially for the effective permeability of particle dispersed system in Fig.1.

    The effective electromagnetic parameters of composite materials can be obtained through assumptions and simplifications,such as Clausius-Mossotti equation,[1]Lorentz-Lorentz equation[2]and Maxwell-Garnett formula.[3?5]Many such kind of self-consistent effective medium theories have been developed.[6?10]Markel summarized two tutorials which are devoted to the Maxwell-Garnett approximation and related theories.[11?12]The effective permeability of composites has been theoretically estimated.[13?17]The effective permeability of Ce2Fe17N3?δparticles/epoxy resin composites with various volume concentrations were measured in the frequency range of(0.1–15)GHz.[18]Materials were analyzed in a finite element software(COMSOL Multiphysicsc),[19]and other numerical methods.[20]The variation approach is another kind of method to calculate the effective magnetic permeability of composite material,[21?24]and it has been implemented numerically.[25]Series expansion and several derivations have been done for materials with special structures.[26?31]Numerical method in these schemes has also been developed.[32?33]

    In the meantime,the study of macroscopic electromagnetic properties of the soft magnetic composite has made much progress.[34?39]Peng et al.studied the effective electromagnetic parameters in random mixture media of magnetic iron fiber.[40]Choi et al.designed the microstructure with the prescribed magnetic permeability and proposed a design method to control the magnetic flux flow by layered microstructures.[41]Thabet et al.studied the effective permeability of new nanocomposites magnetic materials based on theoretical approaches at terahertz frequencies to exhibit weak electric and magnetic responses.[42]Barski et al. first considered the possibility of theoretical predictions of effective properties for smart materials.[43]

    According to the de fi nition of the magnetic permeability,one estimation of the effective magnetic permeability is calculated from the average of the fields /.This average method is used in Maxwell-Garnett formula.Another estimation of the effective magnetic permeability is calculated from the average of the energy /·.We call this the average energy field method.Energy method has a deep root in energy storage concept in magnetization process.In this work,we will compare the magnitude difference of these two estimations.There is a third estimation given by averaging ·/.Its magnitude can be given directly by the first two estimations.We will not discuss it for lack of physical meaning.In this work,for the composited material in Fig.1(a),we model the interfaces between the small particles and the medium as a finite thickness layer of substance in Fig.1(b).The particles are embedded in the medium homogeneously.Filler particles are surrounded by a matrix of media.There will be several stacks of atoms at the interface,which have properties different from the particle and different from the medium either.This interface layer has a thickness of nanoscale and we will model them into the interface layer with physical quantities for itself.

    Fig.1 Model for composite material with mixed particles.(a)There is not an interface layer on the surface of a particle.(b)There is an interface layer on the surface of a particle.

    Particles can be so tiny on nanometer scale,and the size of the interface to the size of the particle is big.We will study particles in nanoscale.The distance between particles is larger than the particle size.The interaction between particles is negligible.The particle radius is much smaller than the electromagnetic wavelength.With these approximations,we study in the following sections how the particle size affects the effective permeability through classical models for superconductor and normal particles,we discuss the difference between the energy method and direct field average method.

    2 Mawell-Garnett Method

    We derive the magnetic intensity and induction of every domain of the composite material from Maxwell equation,then calculate the effective magnetic permeability of the composite material.

    Let the composite material be in a uniform static magnetic field.The static magnetic intensity is H0eZ,the volume of the composite material is V,the total volume of all particles isV1,the medium volume which excludes particles is V3.Letfbe the volume ratio of the particles.The radius of a particle is R,the number of the particles in the composite material isN.Thus,V1=f V=4Nπ R3/3 and V3=(1?f)V.The magnetic intensity in the particles and medium are H1and H3,and the magnetic induction of the particles and medium are B1and B3,respectively.The magnetic permeability of the particles and medium is μcand μm.The effective magnetic permeability of the composite material is μeff?MG.

    Equation(1)is the Laplace equation of magnetic scalar potential of the static magnetic field,and its general solution is Eq.(2).an,bn,cn,dn(n=1,2,3,...)are coefficients of the general solution,which must satisfy the boundaryvalue relation and boundary condition.

    According to the asymptotic boundary condition and the boundary-value relation as Eq.(3),the coefficients of the functions in all domains can be exactly determined for this system.

    The unique solution with all nonzero coefficients can be calculated.

    Local magnetic intensity is

    Then,we can get the magnetic intensity in the particle and medium,respectively.

    The effective magnetic permeability obtained from the volume average of the fields is

    with

    Thus,

    It is the Maxwell-Garnett equation.

    Fig.2 The effect of particle filling in Eq.(11).It is a three-dimensional scattering point map with μe ff?MG/μm vs.fand μc/μm.

    The effect of the particle filling can be discussed through μeff?MG/μmplotted in Fig.2,which indicates the tendency with μeff?MG/μmvs.fand μc/μm.

    In Fig.2,the effective permeability of the composite can be increased or decreased through the change of the magnetic particle permeability and particle volume ratio.When μcis bigger than μm,the effective permeability of the composite material increases with the increase of particle volume ratio. Ifμc/μm→ ∞,andf→ 0.5,μeff?MG/μm→ 4.When μcis smaller than μm,the effective permeability of the composite material decreases with the increase of particle volume ratio.Ifμc/μm→ 0,and f→ 0.5,μeff?MG/μm→0.4.Therefore,for the reasonable filling range f<0.5,no matter how we change the properties of the particle,we always have a permeability for the composite in a finite range,0.4μm≤ μeff?MG≤4μm.

    3 Energy Method

    Magnetic field is a form of energy,so the process of magnetization can be analyzed through energy.The energy of the magnetic field is related to the integral of the magnetic intensity,magnetic induction and space volume of magnetic field.Let

    with

    By Eqs.(4),(6),(9),and(13),we can obtain

    So,the effective permeability of the composite material is

    Forboth Maxwell-Garnett method and energy method,the effective permeability of the composite material depends on μc,μm,andf.It does not depend on particle size R.We will reveal in next section the size dependence of the effective permeability,after we consider the thickness of the interface layer between the particle and the medium.

    Obviously,(1/R6)fμmin Eq.(15)is the energy,which comes from the magnetic dipole of the particle in numerator of the energy method equation.When we integrate the energy density,the integration contains the contribution of the magnetic dipole.The field contribution of the magnetic dipole is zero in the denominator in Eq.(12)of energy method,where the magnetic intensity field is averaged.When the magnetic intensity and induction are integrated in the Maxwell-Garnett formula,the average fields generated by the dipole are also zero because of the symmetry.So comes the difference between Eqs.(10)and(16),with the dipole energy effect missed in the Maxwell-Garnett formula.

    The effect of the magnetic particle dipole can be demonstrated by the ratio of effective permeability by energy method and the Maxwell-Garnett method,and it is plotted in Fig.3:

    Fig.3 The effect of the magnetic dipole of the particle in Eq.(17). μe ff?W(f,μc/μm)/μe ff?MG(f,μc/μm)vs.volume ratio fis plotted for parameters μc/μm =1000,100,2,1,0.5,0.01,0.001,0. μeff?MG(f,μc/μm)is much different from μe ff?W(f,μc/μm)when μc/μmis far from unity.

    When μc? μmand f→0.5,the effect of the magnetic dipole of the particle is the biggest,

    Fig.4 The filling dependence of the effective quasistatic permeability for Ce2Fe17N3?δ composite. The squares are experimental data;[18]the line and inverted triangle is the calculate data based on Eq.(16);The line and dot is the calculate data based on Eq.(10);The line and triangle is the calculate data base on Bruggeman equation.

    In Fig.3,we see for both μc> μmand μc< μmthe effective permeability of composite material obtained by energy method is bigger than the one by Maxwell-Garnett method.

    increases withf.When μc? μmandf→0.5,the effect of the magnetic dipole of the particle is the biggest,

    When μc? μmorμc? μm,the effect of the magnetic dipole of the particle should not be ignored.For these situation,the energy method is more feasible to calculate the effective permeability of the composite material.It can also be seen in Fig.3 that the difference of the two methods is not significant whenμc≈μmorfis small.For this kind of situation,Maxwell-Garnett method is really simple and feasible.

    Figure4is the comparison of Maxwell-Garnett method,Bruggeman method,energy method,and experiment result.It can be found that the energy method’s result is in agreement with the experiment.[18]

    For the composite material filled by superconductor particles,no matter how to change the volume ratio of particles,we will have μeff≤μmfor the Maxwell Garnett method and the energy method,because of the Meissner effect,[44]μc=0.Thus,superconductor particles cannot be used to increase the permeability of the composite material,but they can help to decrease the permeability of the composite material.

    4 Interaface Layer for Particle

    We have discussed the Maxwell-Garnett and the energy method for calculating the effective permeability of ideal two phase composite material ideally as above.But actually,in the composite material there will have an interface layer between particle and medium of one nanometer thickness.The interface layer is neither particle nor medium.When the size of the particle is big,the effect of interface layer in electromagnetic properties of composite material can be ignored.But the effect of interface layer on electromagnetic properties of composite material cannot be ignored when the size of the particle is small,especially when the size of the particle is nano-sized.When the particles are of nano-size,it is valuable to observe the effect of the physical properties of the interface layer to the effective electromagnetic properties of the composite material.[45]

    As the model of the composite material in Fig.1(b),letR1be the radius of the particle with the interface layer enclosed,anddbe the thickness of the interface layer.Then the core sphere has a radiusR=R1?d with the interface layer excluded.The volume of the interface of the particles isV2.The permeability of the interface layer isμs.The magnetic intensity of the interface isH2,and the magnetic induction of the interface isB2.The definition of other parameters are the same as Sec.2.

    We will calculate the magnetic scalar potential in the semi-analytical multi-pole method.Following the multipole technique,[46?47]we set all the poles at the center of the particle for the magnetic scalar potentialφ(r).The static magnetic field in the core,in the interface layer and in the media satisfy the Laplace equation as Eq.(18).The general solution is Eq.(19),1,2,3,...)are the coefficients of the general solution,which must satisfy the boundary-value relation and boundary condition.

    According to the asymptotic boundary condition and the boundary-value relation atr=Randr=R1,coefficients in Eq.(19)in all domains can be exactly determined for this system.And the unique solution with all nonzero coefficients can be calculated:

    Then,we get the magnetic intensity of the core,interface and media,respectively.

    It can be seen from Eq.(22)that the magnetic dipole moment M and magnetization intensitym of the magnetic dipole.

    The effective permeability can be obtained in the same way from the energy method in Sec.3,

    If the particle is made of superconductor material,because of the Meissner effect,we takeμc=0in above equations and obtain the effective permeability for the composite material.

    5 Discussion and Conclusion

    The effective permeability of composite materialμeff?Win Eq.(25)depends on the permeability of the particlesμc,μs,μm,the volume fractionf,the particle sizeR,and also the thickness of the interface layerd.While in Secs.2 and 3,the interface layer were not considered,and the estimations there missed the particle size dependence.

    By taking the limitR→0,the complex equation(25)recovers the result given in Eq.(16).The interesting point here is in the limitR→R1,in the behavior for thin layers.InR→R1limit,we can also recover Eq.(16)for bare magnetic balls in the medium.For μeff?Wequation,ifd is small but nonzero,the approximated magnetic scalar potential coefficients in Eq.(21)for the interface layer is:

    Therefore,for smalld,the uniform component of the local magnetic field in interface layer is

    μm/(μc+2μm)is the property of the medium and the particle.The interface layer gives proportional factorsμc/μs+2and μc/μs?1,which enhances the local magnetic field.For smallμs,this factor can be big.

    The thicknessd interacts with particle property through the volume average for the layer fi rst.The effective permeability up to the leading orders of the relative thickness of the interface layer can be easily derived from the following equation,

    Fig.5 The e ff ect of the interface layer of magnetic balls given by equation(28). μe ff?W(f,d/R1)/μe ff?W(f,0)vs. volume ratiofis plotted for parametersd/R1=0.05,0.1,0.2,μs/μm=0.25,4.We choose μc/μm=2for all curves.Whend/R1is big,μe ff?W(f,d/R1)increases much from μe ff?W(f,0)ifμs>μc,and decreases much ifμs<μc.

    We display the e ff ect of the interface layer in Fig.5,which plots Eq.(28). In Fig.5,it can be seen thatμeff?W(f,d/R1)increases or decreases along with the increase of filling factor,and this can be controlled by the sign of μs? μc.The change of μeff?W(f,d/R1)is big for small particles.For nano-sized particles,letR1be about 5 nm anddof the order 1 nm,thed/R1=0.2curves in e Fig.5 show much improvement ofμeff?Westimation after we consider carefully the interface layer.

    We plot Fig.6 for special cases with μc? μmorμc? μmthrough Eq.(28). It can be seen thatμeff?W(f,d/R1)/μeff?W(f,0)curves all tend to 1 when μc?μmorμc?μm.For these cases,the influence of the interface layer to the effective permeability can be ignored.

    In this study we show the essential features of the mechanism of the interface layer.A fine tuning ofdandμscan be guided by the effective permeability expression in Eq.(25),then one can produce material with a targeted permeability.In this study,the energy method is proposed for calculating the effective static permeability of composites.The effect of interface layer has been fully demonstrated and discussed with the help of magnetic particles and superconductor particles.The predicted effective permeability of composite material based on the energy method agrees with experimental.These results encourage applications of energy average method and interface layer model in design,fabricating,and analysis of particle dispersed composite materials.

    Fig.6 The influence of the interface layer when μc?μmor μc?μm.Allμeff?W(f,d/R1)/μeff?W(f,0)curves tend to 1.Thus,the influence of the interface layer to the effective permeability can be ignored.

    [1]J.H.Hannay,Eur.I.Phls.4(1983)141.

    [2]H.A.Lorentz,Annalen Der Physik 245(2010)641.

    [3]J.C.M.Garnett,Trans.Roy.Soc.53(1904)385.

    [4]J.C.M.Garnett,Phil.Trans.R.Soc.London 205(1906)237.

    [5]A.Sihvola,IEEE Electromagn.Waves Series 47(1999)63.

    [6]Giordano Stefano,J.Electrostat.58(2003)59.

    [7]D.A.G.Bruggeman,Annalen der Physik 5(1935)636.

    [8]L.Tsang and J.A.Kong,Theory of Microwave Remote Sensing,John Wiley&Sons,New York 6(1985)pp.575–602.

    [9]R.E.Meredith and C.W.Tobias,J.Appl.Phys.32(1961)132.

    [10]T.Liu,P.H.Zhou,L.J.Deng,and W.Tang,J.Appl.Phys.106(2009)3401.

    [11]V.A.Markel,J.Opt.Soc.America A 33(2016)1244.

    [12]V.A.Markel,J.Opt.Soc.America A 33(2016)2237.

    [13]C.Brosseau,J.Appl.Phys.91(2002)3197.

    [14]V.B.Bregar,Phys.Rev.B 50(2005)174418.

    [15]V.Boucher,L.P.Carignan,T.Kodera,et al.,Phys.Rev.B 80(2009)308.

    [16]J.Jin,S.Liu,Z.Lin,and S.T.Chui,Phys.Rev.B:Condensed Matter 80(2009)115101.

    [17]A.V.Goncharenko,Phys.Rev.E 68(2003)041108.

    [18]W.L.Zuo,L.Qiao,X.Chi,et al.,J.Alloy.Compd.509(2011)6359.

    [19]A.Bordianu,L.Petrescu,and V.Ionita,J.Phys.:Conference Series 585(2015)012003.

    [20]B.Drnovsek,V.B.Bregar,and M.Pavlin,J.Appl.Phys.103(2008)335.

    [21]Z.Hashin and S.Shtrikman,J.Appl.Phys.33(1962)3125.

    [22]Z.Qu,S.Liu,Q.Wang,et al.,Comput.Mater.Sci.88(2014)145.

    [23]L.Wu and S.Pan,Compos.Sci.Technol.72(2012)1443.

    [24]H.Waki,H.Igarashi,and T.Honma,IEEE Trans.Magn.41(2005)1520.

    [25]J.J.Wang,Y.Song,X.Q.Ma,et al.,J.Appl.Phys.117(2015)4184.

    [26]J.Lam,J.Appl.Phys.60(1986)4230.

    [27]T.M.Simon,F.Reitich,M.R.Jolly,et al.,J.Intel.Mat.Syst.Str.10(1998)872.

    [28]J.E.Martin,E.Venturini,J.Odinek,and R.A.Anderson,Phys.Rev.E 61(2000)2818.

    [29]H.M.Yin and L.Z.Sun,Acta Mater.54(2006)2317.

    [30]H.Zhang and X.Wang,Smart Mater.Struc.23(2014)045009.

    [31]Y.L.Jiang,Int.J.Engineering Sci.38(2000)1993.

    [32]K.S.Yee,IEEE Trans.Antennas Propag.14(1966)302.

    [33]B.Patel and T.I.Zohdi,Mater.Des.94(2016)546.

    [34]Y.Pittini-Yamada,E.A.Périgo,Y.Hazan,et al.,Acta Mater.59(2011)4291.

    [35]X.Huang,Y.M.Xie,B.Jia,et al.,Struc.Multidiscip.Opt.46(2012)385.

    [36]Y.Ito and H.Igarashi,IEEE Trans.Magn.49(2013)1953.

    [37]J.H.Paterson,R.Devine,and A.D.R.Phelps,J.Magn.Magn.Mater.196–197(1999)394.

    [38]M.Anhalt and B.Weidenfeller,J.Appl.Phys.105(2009)023907.

    [39]Ge Fuding and Zhu Jing,Aerosp.Mater.Technol.5(1996)42(in Chinese).

    [40]Peng Weicai and Chen Kanghua,Rare Metal Mat.Eng.34(2005)1407(in Chinese).

    [41]J.S.Choi and J.Yoo,Int.J.Numer.Meth.Eng.82(2010)1.

    [42]A.Thabet,M.A.Abdel-Moamen,and S.Abdelhady,PSC.IEEE(2016)52.

    [43]M.Barski and A.Muc,Mech.Compos.Mater.47(2011)387.

    [44]W.Meissner and R.Ochsenfeld,Die Naturwissenschaften.21(1933)787.

    [45]T.Xiang,Q.Zheng,and S.Qin,IEEE Trans.Dielectr.Electr.Insul.24(2017)1197.

    [46]Q.Zheng,F.Xie,Y.Yang,and W.Lin,J.Electromagn.Wave.13(1999)1153.

    [47]J.N.Sheng,Q.S.Ma,B.Yuan,et al.,Theory and Application of Semi-analytical Method in Electromagnetic Fields and Waves,Chinese Academic Press,Beijing(2006)pp.45–49.

    av在线老鸭窝| 色网站视频免费| 热re99久久精品国产66热6| 免费黄色在线免费观看| 久久精品夜色国产| 一二三四在线观看免费中文在 | 日本欧美国产在线视频| 亚洲国产精品成人久久小说| 亚洲人与动物交配视频| 韩国高清视频一区二区三区| 亚洲精品456在线播放app| 下体分泌物呈黄色| 国产精品国产三级国产专区5o| 青春草国产在线视频| 亚洲少妇的诱惑av| 老熟女久久久| 女人被躁到高潮嗷嗷叫费观| av天堂久久9| 免费观看无遮挡的男女| 美女福利国产在线| 性色avwww在线观看| 99久国产av精品国产电影| 亚洲人与动物交配视频| 在线亚洲精品国产二区图片欧美| 久久久久精品性色| 大香蕉97超碰在线| 大香蕉97超碰在线| 亚洲四区av| 人人妻人人添人人爽欧美一区卜| 蜜臀久久99精品久久宅男| 高清黄色对白视频在线免费看| 国产xxxxx性猛交| 亚洲少妇的诱惑av| 免费人成在线观看视频色| 国产又色又爽无遮挡免| 亚洲精品美女久久av网站| 成年女人在线观看亚洲视频| 亚洲综合精品二区| 免费人妻精品一区二区三区视频| 免费黄频网站在线观看国产| 国产一区二区在线观看日韩| 一级毛片 在线播放| 99热网站在线观看| 中文字幕最新亚洲高清| 精品少妇久久久久久888优播| av电影中文网址| 亚洲精品国产av成人精品| 国产精品嫩草影院av在线观看| 久久久久精品性色| 男人爽女人下面视频在线观看| 免费看av在线观看网站| 亚洲美女搞黄在线观看| 国产色爽女视频免费观看| 热99久久久久精品小说推荐| 人人妻人人澡人人爽人人夜夜| 欧美日本中文国产一区发布| av在线播放精品| 王馨瑶露胸无遮挡在线观看| 咕卡用的链子| 亚洲国产精品成人久久小说| 晚上一个人看的免费电影| 国产日韩欧美在线精品| 热99久久久久精品小说推荐| 五月开心婷婷网| 最近最新中文字幕大全免费视频 | 欧美日韩综合久久久久久| 欧美精品人与动牲交sv欧美| 美女主播在线视频| 久久久国产一区二区| 亚洲 欧美一区二区三区| 97人妻天天添夜夜摸| 熟妇人妻不卡中文字幕| 天天影视国产精品| 免费在线观看完整版高清| 亚洲经典国产精华液单| 久久久国产精品麻豆| 国产福利在线免费观看视频| 国产熟女午夜一区二区三区| 中国三级夫妇交换| 美女xxoo啪啪120秒动态图| 热re99久久国产66热| 在线 av 中文字幕| 999精品在线视频| 少妇精品久久久久久久| 免费在线观看完整版高清| 亚洲第一区二区三区不卡| 黄片无遮挡物在线观看| 国产国拍精品亚洲av在线观看| 久久97久久精品| 最近2019中文字幕mv第一页| 欧美97在线视频| 国产免费一级a男人的天堂| 午夜激情久久久久久久| 侵犯人妻中文字幕一二三四区| 日韩欧美一区视频在线观看| 丝袜人妻中文字幕| 久久99热这里只频精品6学生| 久热久热在线精品观看| 看免费成人av毛片| 七月丁香在线播放| 最近2019中文字幕mv第一页| 国产成人精品福利久久| 国产一区亚洲一区在线观看| 黄网站色视频无遮挡免费观看| 久久久久久久久久成人| 极品人妻少妇av视频| av国产久精品久网站免费入址| 97在线人人人人妻| 成人毛片a级毛片在线播放| 国产男女内射视频| 久久久精品区二区三区| 国产在线免费精品| 一本—道久久a久久精品蜜桃钙片| 国产亚洲精品久久久com| 国产日韩欧美在线精品| 欧美亚洲 丝袜 人妻 在线| 视频中文字幕在线观看| 丁香六月天网| 一级片免费观看大全| 欧美另类一区| 欧美日韩亚洲高清精品| 精品国产露脸久久av麻豆| 一本色道久久久久久精品综合| 在现免费观看毛片| 亚洲精华国产精华液的使用体验| 久久这里只有精品19| 最后的刺客免费高清国语| 日韩视频在线欧美| 街头女战士在线观看网站| 午夜免费鲁丝| 国产精品麻豆人妻色哟哟久久| 久久99一区二区三区| 色哟哟·www| 秋霞在线观看毛片| 伦理电影大哥的女人| 我的女老师完整版在线观看| 欧美激情国产日韩精品一区| 蜜臀久久99精品久久宅男| 天堂8中文在线网| 黄色 视频免费看| 五月开心婷婷网| 女人精品久久久久毛片| 97精品久久久久久久久久精品| 人妻一区二区av| 视频区图区小说| 婷婷色综合www| 久久精品aⅴ一区二区三区四区 | 桃花免费在线播放| 九色亚洲精品在线播放| 捣出白浆h1v1| 2018国产大陆天天弄谢| 免费黄色在线免费观看| 免费高清在线观看日韩| 午夜激情久久久久久久| 香蕉精品网在线| 久久国产精品大桥未久av| 五月玫瑰六月丁香| 另类精品久久| 国产免费现黄频在线看| √禁漫天堂资源中文www| 性色av一级| 伦理电影大哥的女人| 爱豆传媒免费全集在线观看| 久久精品久久久久久久性| 女性生殖器流出的白浆| 夫妻午夜视频| 亚洲图色成人| 男女下面插进去视频免费观看 | 大香蕉久久网| 大片电影免费在线观看免费| 999精品在线视频| 免费av不卡在线播放| 亚洲av福利一区| 99热这里只有是精品在线观看| 女人久久www免费人成看片| 亚洲精品乱久久久久久| 亚洲精品第二区| 日本黄色日本黄色录像| 午夜久久久在线观看| 久久久精品区二区三区| 日本免费在线观看一区| 免费大片18禁| 成人综合一区亚洲| 免费在线观看黄色视频的| 久久国内精品自在自线图片| 亚洲久久久国产精品| www.色视频.com| 久久久久精品性色| 国产精品一区二区在线观看99| 一级片'在线观看视频| 亚洲成人一二三区av| 熟女电影av网| 在线观看美女被高潮喷水网站| 老熟女久久久| 免费人妻精品一区二区三区视频| 成人无遮挡网站| 80岁老熟妇乱子伦牲交| 国产熟女午夜一区二区三区| 欧美 亚洲 国产 日韩一| 国产精品国产av在线观看| 中文字幕人妻熟女乱码| 99热6这里只有精品| 久久久国产精品麻豆| 免费久久久久久久精品成人欧美视频 | 欧美3d第一页| 中文天堂在线官网| 丰满少妇做爰视频| 免费看不卡的av| 精品一区二区三区四区五区乱码 | 90打野战视频偷拍视频| 久久久久人妻精品一区果冻| 国产日韩欧美亚洲二区| 观看av在线不卡| 久久国内精品自在自线图片| 女人久久www免费人成看片| 国产激情久久老熟女| 久热久热在线精品观看| 亚洲精品乱码久久久久久按摩| 亚洲精品av麻豆狂野| 国产色婷婷99| 国产成人91sexporn| 99热全是精品| 永久免费av网站大全| 黑人欧美特级aaaaaa片| 99热这里只有是精品在线观看| 亚洲成av片中文字幕在线观看 | 一级爰片在线观看| 春色校园在线视频观看| 国产精品久久久久久精品古装| 热99久久久久精品小说推荐| 欧美精品人与动牲交sv欧美| 国产国拍精品亚洲av在线观看| 亚洲欧美日韩卡通动漫| 免费看av在线观看网站| 看免费成人av毛片| 中国国产av一级| 国产亚洲av片在线观看秒播厂| 街头女战士在线观看网站| 日本欧美国产在线视频| 免费高清在线观看日韩| av在线播放精品| 人妻 亚洲 视频| 亚洲欧美成人综合另类久久久| 狂野欧美激情性bbbbbb| 国产精品一区二区在线观看99| 国产高清国产精品国产三级| 成人综合一区亚洲| av免费在线看不卡| 内地一区二区视频在线| 成人手机av| 国产精品嫩草影院av在线观看| 国产欧美亚洲国产| 国产精品女同一区二区软件| 久久毛片免费看一区二区三区| 国产精品秋霞免费鲁丝片| 麻豆乱淫一区二区| 国产成人精品无人区| 国产成人免费无遮挡视频| 久久精品aⅴ一区二区三区四区 | 看非洲黑人一级黄片| 午夜激情av网站| 亚洲成人av在线免费| 搡老乐熟女国产| 精品亚洲成国产av| 香蕉国产在线看| 国产精品嫩草影院av在线观看| 国产精品.久久久| 国产高清国产精品国产三级| 秋霞伦理黄片| 五月玫瑰六月丁香| 国产亚洲av片在线观看秒播厂| 成人黄色视频免费在线看| 亚洲欧美中文字幕日韩二区| 亚洲欧美一区二区三区黑人 | 九九爱精品视频在线观看| 最新的欧美精品一区二区| 中文字幕精品免费在线观看视频 | 大香蕉97超碰在线| 99视频精品全部免费 在线| 免费观看性生交大片5| 夜夜爽夜夜爽视频| 亚洲欧美精品自产自拍| 又粗又硬又长又爽又黄的视频| 免费黄色在线免费观看| 日本黄色日本黄色录像| 亚洲伊人久久精品综合| 中文乱码字字幕精品一区二区三区| 成年动漫av网址| 成人手机av| 亚洲四区av| 国产伦理片在线播放av一区| 精品国产一区二区久久| 欧美 亚洲 国产 日韩一| 午夜影院在线不卡| 亚洲欧美精品自产自拍| √禁漫天堂资源中文www| 激情视频va一区二区三区| 亚洲中文av在线| 精品久久蜜臀av无| 日韩一区二区三区影片| 亚洲国产精品999| 亚洲欧洲国产日韩| av电影中文网址| 考比视频在线观看| 香蕉国产在线看| 日韩欧美精品免费久久| 亚洲丝袜综合中文字幕| 日本与韩国留学比较| 美女福利国产在线| www.av在线官网国产| 狂野欧美激情性xxxx在线观看| 国产xxxxx性猛交| 色婷婷av一区二区三区视频| 韩国精品一区二区三区 | 亚洲av在线观看美女高潮| 亚洲熟女精品中文字幕| 成人二区视频| 91aial.com中文字幕在线观看| 国产精品久久久久久精品电影小说| 在线天堂最新版资源| 毛片一级片免费看久久久久| 黄色配什么色好看| 亚洲精品久久午夜乱码| 91精品三级在线观看| 国产高清国产精品国产三级| 蜜桃在线观看..| 国产精品三级大全| 一区二区日韩欧美中文字幕 | 久久久久久人妻| 欧美精品一区二区免费开放| 亚洲av综合色区一区| 亚洲精品日韩在线中文字幕| 97精品久久久久久久久久精品| 满18在线观看网站| 老司机影院成人| 欧美日韩一区二区视频在线观看视频在线| 午夜福利影视在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 性色avwww在线观看| 亚洲经典国产精华液单| 国产免费一区二区三区四区乱码| 国产免费现黄频在线看| 18禁在线无遮挡免费观看视频| 99国产精品免费福利视频| 狂野欧美激情性xxxx在线观看| 日韩一区二区视频免费看| 国产欧美另类精品又又久久亚洲欧美| videos熟女内射| 国产精品秋霞免费鲁丝片| 午夜精品国产一区二区电影| 日韩精品有码人妻一区| 亚洲美女搞黄在线观看| 亚洲综合色惰| 涩涩av久久男人的天堂| 最近最新中文字幕免费大全7| 黑人巨大精品欧美一区二区蜜桃 | 精品一区二区三卡| 又粗又硬又长又爽又黄的视频| 又黄又爽又刺激的免费视频.| 美女国产视频在线观看| 精品亚洲成国产av| xxx大片免费视频| 一级爰片在线观看| 2018国产大陆天天弄谢| 国产av一区二区精品久久| 免费久久久久久久精品成人欧美视频 | videosex国产| 亚洲高清免费不卡视频| 一级毛片黄色毛片免费观看视频| 日本欧美国产在线视频| 男的添女的下面高潮视频| www日本在线高清视频| 中文字幕另类日韩欧美亚洲嫩草| 日本欧美国产在线视频| 久久久久久久久久久久大奶| 亚洲欧美日韩另类电影网站| 在线观看免费日韩欧美大片| 成人二区视频| 亚洲欧洲国产日韩| 丁香六月天网| 亚洲一级一片aⅴ在线观看| 国产亚洲av片在线观看秒播厂| 欧美少妇被猛烈插入视频| 免费人成在线观看视频色| 2018国产大陆天天弄谢| 少妇的逼水好多| 欧美少妇被猛烈插入视频| 国产午夜精品一二区理论片| 精品第一国产精品| 高清视频免费观看一区二区| 91在线精品国自产拍蜜月| 免费大片黄手机在线观看| 日日摸夜夜添夜夜爱| www.av在线官网国产| 久久青草综合色| 日本黄色日本黄色录像| 国产av国产精品国产| 久久精品aⅴ一区二区三区四区 | 精品国产一区二区三区久久久樱花| 制服人妻中文乱码| h视频一区二区三区| 亚洲内射少妇av| 一区二区日韩欧美中文字幕 | 欧美97在线视频| 亚洲内射少妇av| 赤兔流量卡办理| 在线观看国产h片| 欧美人与善性xxx| 国精品久久久久久国模美| 久久久国产精品麻豆| 成人无遮挡网站| av.在线天堂| 日本欧美国产在线视频| 91午夜精品亚洲一区二区三区| 一级黄片播放器| 免费高清在线观看视频在线观看| 飞空精品影院首页| 国产成人91sexporn| 又黄又爽又刺激的免费视频.| 久久人人爽人人爽人人片va| 成人午夜精彩视频在线观看| 国产成人av激情在线播放| 在线天堂中文资源库| 毛片一级片免费看久久久久| 久久人妻熟女aⅴ| 9热在线视频观看99| 亚洲精品视频女| 啦啦啦啦在线视频资源| 日韩精品有码人妻一区| 国产精品麻豆人妻色哟哟久久| 九色成人免费人妻av| 久久毛片免费看一区二区三区| 黄片播放在线免费| 90打野战视频偷拍视频| 国产精品嫩草影院av在线观看| 日韩人妻精品一区2区三区| a级毛色黄片| 国产 一区精品| 国产深夜福利视频在线观看| 国产一区亚洲一区在线观看| 18+在线观看网站| 人人妻人人添人人爽欧美一区卜| 国产精品一区二区在线观看99| 99久久精品国产国产毛片| av网站免费在线观看视频| 97精品久久久久久久久久精品| 黄片无遮挡物在线观看| 九九爱精品视频在线观看| 99香蕉大伊视频| 欧美成人精品欧美一级黄| 国产麻豆69| 亚洲第一av免费看| 国产男女内射视频| 男人添女人高潮全过程视频| 18禁裸乳无遮挡动漫免费视频| 精品亚洲成a人片在线观看| 日本vs欧美在线观看视频| 欧美成人午夜免费资源| 国产极品粉嫩免费观看在线| 三上悠亚av全集在线观看| 国产精品成人在线| 久久人人爽人人片av| 午夜日本视频在线| 侵犯人妻中文字幕一二三四区| 日韩人妻精品一区2区三区| 中文字幕精品免费在线观看视频 | 久久午夜福利片| av有码第一页| 日日爽夜夜爽网站| 亚洲国产精品999| 九色成人免费人妻av| 涩涩av久久男人的天堂| 亚洲国产精品专区欧美| 女的被弄到高潮叫床怎么办| 国产精品国产三级专区第一集| 午夜激情av网站| 欧美精品人与动牲交sv欧美| 成年人午夜在线观看视频| 亚洲欧美精品自产自拍| 欧美 亚洲 国产 日韩一| 欧美xxⅹ黑人| 热99国产精品久久久久久7| 亚洲国产精品一区二区三区在线| 卡戴珊不雅视频在线播放| 人妻一区二区av| av一本久久久久| 久热这里只有精品99| 一级a做视频免费观看| 日韩精品免费视频一区二区三区 | 最后的刺客免费高清国语| 亚洲精品美女久久久久99蜜臀 | 最近手机中文字幕大全| 国产av精品麻豆| 大片免费播放器 马上看| 18禁国产床啪视频网站| 在线观看国产h片| 尾随美女入室| 精品第一国产精品| 高清视频免费观看一区二区| 欧美日韩视频高清一区二区三区二| 午夜福利,免费看| 久久综合国产亚洲精品| 色5月婷婷丁香| 成人漫画全彩无遮挡| 在线精品无人区一区二区三| 欧美日韩视频高清一区二区三区二| 在线精品无人区一区二区三| 最近中文字幕高清免费大全6| 国产在线免费精品| 女人精品久久久久毛片| 亚洲五月色婷婷综合| 国产永久视频网站| a级毛片黄视频| 日本黄大片高清| 国产精品嫩草影院av在线观看| 亚洲欧美一区二区三区黑人 | 中文乱码字字幕精品一区二区三区| 高清黄色对白视频在线免费看| 在线 av 中文字幕| 成人毛片60女人毛片免费| 亚洲国产精品成人久久小说| 欧美精品人与动牲交sv欧美| 97人妻天天添夜夜摸| 一级,二级,三级黄色视频| www日本在线高清视频| 中文字幕另类日韩欧美亚洲嫩草| 少妇猛男粗大的猛烈进出视频| 免费大片黄手机在线观看| 久久 成人 亚洲| 亚洲国产日韩一区二区| 激情五月婷婷亚洲| 午夜视频国产福利| 亚洲欧洲日产国产| 亚洲人成网站在线观看播放| 中文字幕最新亚洲高清| 18禁国产床啪视频网站| 免费大片18禁| 成年人免费黄色播放视频| 一区二区三区四区激情视频| 亚洲中文av在线| videossex国产| 免费女性裸体啪啪无遮挡网站| 亚洲av免费高清在线观看| 国产福利在线免费观看视频| 国产成人aa在线观看| 18在线观看网站| 天堂俺去俺来也www色官网| 亚洲色图 男人天堂 中文字幕 | 久久久久久久久久久免费av| 午夜91福利影院| 亚洲第一区二区三区不卡| av女优亚洲男人天堂| 亚洲精品自拍成人| 性色av一级| 中文字幕人妻熟女乱码| 91成人精品电影| 亚洲情色 制服丝袜| 香蕉丝袜av| 婷婷色av中文字幕| 五月玫瑰六月丁香| 国产在线免费精品| 51国产日韩欧美| 亚洲国产av影院在线观看| 国产不卡av网站在线观看| 久久午夜福利片| 免费人妻精品一区二区三区视频| 少妇精品久久久久久久| 久久精品久久精品一区二区三区| 亚洲av日韩在线播放| 亚洲av综合色区一区| 亚洲国产av新网站| 亚洲精品一区蜜桃| 黑人高潮一二区| 午夜免费男女啪啪视频观看| 久久97久久精品| 日韩人妻精品一区2区三区| 亚洲精品一区蜜桃| 国产精品女同一区二区软件| 亚洲国产精品一区二区三区在线| 中文字幕免费在线视频6| 国产精品三级大全| 大陆偷拍与自拍| 建设人人有责人人尽责人人享有的| 一级毛片 在线播放| 在线精品无人区一区二区三| 曰老女人黄片| 亚洲伊人久久精品综合| 伦精品一区二区三区| a级毛片黄视频| 最新中文字幕久久久久| 国产高清三级在线| 久久久精品94久久精品| 国产1区2区3区精品| 亚洲精品美女久久久久99蜜臀 | 久久久久精品性色| 只有这里有精品99| 狠狠精品人妻久久久久久综合| 久久久久久伊人网av| 亚洲人成77777在线视频| 嫩草影院入口| 寂寞人妻少妇视频99o| 亚洲欧美日韩另类电影网站| 少妇被粗大猛烈的视频| 新久久久久国产一级毛片| 亚洲av福利一区| 国产午夜精品一二区理论片| 黄色毛片三级朝国网站| av.在线天堂| 日韩 亚洲 欧美在线| 香蕉国产在线看| 国产在线一区二区三区精| 亚洲av电影在线观看一区二区三区| 亚洲av日韩在线播放| 亚洲av在线观看美女高潮| 人人妻人人添人人爽欧美一区卜|