• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Searches for Dark Matter via Mono-W Production in Inert Doublet Model at the LHC?

    2018-06-11 12:21:30NengWan萬能NiuLi李牛BoZhang張波HuanYang楊歡MinFuZhao趙敏福MaoSong宋昴GangLi李剛andJianYouGuo郭建友
    Communications in Theoretical Physics 2018年5期
    關(guān)鍵詞:張波李剛萬能

    Neng Wan(萬能),Niu Li(李牛),Bo Zhang(張波),Huan Yang(楊歡),Min-Fu Zhao(趙敏福), Mao Song(宋昴), Gang Li(李剛),and Jian-You Guo(郭建友)

    1Center of Basic Experiment,West Anhui University,Lu’an 237012,China

    2School of Physics and Material Science,Anhui University,Hefei 230039,China

    1 Introduction

    The astrophysical and cosmographic observational evidences have confirmed the existence of dark matter(DM)and provided the DM density in the universe.[1]However,these observations do not tell us more detailed information about the mass of DM particle or whether it interacts with the Standard Model(SM)particles.Determining the nature of DM particle quantitatively is one of the most important tasks both in cosmology and particle physics.Among all the DM candidates,weakly interacting massive particles(WIMPs)is a promising scenario.This is due to that it offers the possibility to interpret the relic abundance for the DM as a natural deduction of the thermal history of the universe.[2]

    Among various theoretical models,the inert doublet model(IDM)is one of the simplest models for the WIMP dark matter scenario,in which an isospin doublet scalar field is added to the SM Higgs sector and the corresponding field is assumed to be odd under an unbroken discrete Z2symmetry.After electroweak spontaneous symmetry breaking,there are four Z2odd scalar particles,i.e.,the CP-even H,the CP-odd A and two charged H±scalar bosons.The Z2symmetry ensures that the doublet Φ2fields do not spontaneously decay into final states including only the SM particles.Among them,the lightest scalar particle may serve as a dark matter candidate if it is electrical neutral.In addition,the additional doublet Φ2does not interact with the Standard Model fermions at tree level.Their interacts with the Standard Model are achieved via gauge interactions and via the quartic term with the Higgs doublet in the scalar potential.These terms are important in the phenomenology for searching the IDM.

    The lightest scalar Higgs,as a candidate for dark matter,has been studied in extensive literature.[3?9]In Ref.[10],it is found that three mass regions of the inert scalar Higgs can get the correct thermal relic abundance.The dark matter direct detection and indirect detection experiments report their results recently,and not find any dark matter particle signal.This gives more stringent restrictions on the parameters of the IDM model.From the direct detection experiments,the mass of dark matter particle in the IDM has been constrained to two regions:around a half of the Higgs boson mass(125 GeV)in the low mass region or above about 500 GeV in the high mass region.[11?16]

    High energy colliders may also be a useful tool to search the dark matter particle in the IDM.In order to maintain Z2symmetry,Z2odd scalar particles always generate in pairs at high energy colliders.The lightest scalar particles of the IDM will become a dark matter candidate particle,other scalar particles will eventually decay into the lightest scalar particles and SM particles,such as A→ HZ,H±→ HW±.Thus,the final particles in high energy colliders can be observed as dark matter particles and W,Z associated production.Especially,the primary production processes including IDM effect are HHW and HHZ production.Dark matter associated a dilepton/dijet production in the IDM at hadron colliders has been studied in Refs.[12,17–22],where missing ETfollowing A→ HZ(?)(H±→HW±)from HA(H+H?)production and assuming that the CP-even scalar H is a dark matter candidate.This process can be used to measure the mass of all new scalars with statistical precision of the order of few hundred MeV at future e+e?colliders.[23?24]In this paper,we will investigate CP-even scalar H pairs associated a W boson production in the IDM at the LHC.

    The paper is arranged as follows:in Sec.2 we briefly describe the related simplified model and present the calculation strategy.In Sec.3,we summarize all the theoretical and phenomenological constraints on the scalar potential for the IDM.In Sec.4,we present some numerical results and discussion.Finally,a short summary is given in Sec.5.

    2 The Inert Higgs Doublet Model

    The Inert Higgs Doublet Model is an extension of Standard Model(SM),which contains two Higgs doublets Φ1,2and a discrete Z2symmetry.Under Z2symmetry,the Higgs doublet fields are defined by Φ1→ Φ1,Φ2→ ?Φ2.All the SM fields are invariants under the discrete Z2symmetry,and Φ1is almost the same as the SM Higgs doublet.The extension scalar sector of the IDM contains a complex isospin doublet field Φ2with hypercharge Y=1/2,which like the SM Higgs doublet field Φ1.The inert doublet field Φ2is odd under a discrete Z2symmetry.Under the electroweak symmetry SU(2)L×U(1)Yand the unbroken discrete Z2symmetry,the Higgs potential is given by

    In the CP-conserved case,all the parameters are considered to be real.The coupling constants should satisfy the theoretical constraints,such as vacuum stability[25?26]and perturbative unitarity.[27?28]The requirement of vacuum stability is present below,

    The coupling constants constraints from perturbative unitarity are given in Refs.[27–28].In the case with exact Z2symmetry,Φ2does not need any non-zero vacuum expectation value(VEV),and therefore,only the SM field,Φ1takes part in the electroweak symmetry breaking(EWSB).After the EWSB,the doublet scalar fields are parameterized as

    where h is the SM Higgs boson with the mass 125 GeV,v is the vacuum expectation value(VEV)with 246 GeV,and G+and G0are Nambu-Goldstone bosons,which are absorbed into the longitudinal components of the W and Z bosons.We call the other Z2odd scalar bosons H,A,H±as the inert scalar bosons,where H is neutral scalar,A is a neutral pseudoscalar,and H±are two charged Higgs bosons.After applying the stationary condition,the masses of scalar bosons are given by

    The interaction vertices among the Standard Model Higgs boson h,the inert scalar bosons H±,H,and A are the following:

    Being electroweak doublets,they also have gauge interactions,but they do not interact directly with quarks or leptons.

    Assuming the mass hierarchy mH±>mA>mHfor the inert scalar bosons,the stable H appears as missing energy after the decays of A and H±.Since there is no term linear in A or H in Eq.(8),the decay of A only occur through the gauge interaction

    As for H±,its gauge interactions with H and A are given by

    Hence the dominant decays of H±are into W±H and W±A,then the inert scalar A subsequently decays to ZH.

    The IDM scalar sector can be specified by a total of six free parameters:

    We introduce the useful abbreviations λl=(1/2)(λ3+λ4+ λ5)and λs=(1/2)(λ3+ λ4? λ5).Through the above equations,the six parameters can be changed into a set of more meaningful parameters,

    3 Constraints on the Model Parameters

    In this section,we summarize all the theoretical and phenomenological constraints on the scalar potential,which are included in the scan of the parameter space of the IDM.

    First of all,perturbative unitarity for IDM requires that all coupling parameters should be less than 4π.[29]

    Secondly,the physical vacuum of the scalar potential should be stable,which requires[30?32]

    The S-matrix unitarity of 2→2 scalar scattering matrix at tree level requires the scalar coupling satis fi ed that[33?34]

    The global electroweak fit through the oblique S,T,U parameters is a common approach to constrain new physics beyond SM.When the parameters S,T,U remain in the region?S=0.03±0.09,?T=0.07±0.08(?U is fixed to zero),the authors have calculated the contributions of the oblique parameters for IDM in Ref.[35].The results show that the mass splitting among the scalar particles in the IDM can not be large,even if the mass of H0reaches 500 GeV.[36]

    Besides above theoretical constraints on the parameters of the IDM,the high energy collider also gives the experimental limits to this model.The experimental limitations at LEP first come from the measurements of Z→AH,Z→H+H?,W±→AH±and W±→HH±decay,and the results show that there are no signals beyond the standard model.As a good approximations,these imply that the mass of these scalar particles must be satisfied:MA0+MH0≥MZ,2MH±≥MZ,MH±+MH,A≥MW.Secondly,a model-independent lower limit for the mass of the charged scalars is provided from chargino searches at LEPII:MH±&70 GeV.[37]Searches for charginos and neutralinos at LEPII also provide the bound on MH:if MH<80 GeV then MA?MHshould be<8 GeV,or else,MAshould be>110 GeV.[38]

    The experimental limitations at the LHC mainly come from the decay of Standard Model Higgs.In the IDM,the new scalar fields affect the width of Higgs decay to diphoton or the Higgs invisible decay branching ratio.[35,39?41]The limits from the new scalar and SM Higgs coupling require the new scalar boson masses below Mh/2,and this has little limitation for the scalar particles mass above Mh/2.Direct dilepton decay have also been used to restrict the scalar particle mass in the region of MH.60 GeV and MA.150 GeV.[21,42]

    From above constraints,we find that the IDM is strongly restricted if the new scalar particle masses are at sub 100 GeV and not strict constrained above 500 GeV.In addition,the astrophysical constraints are reviewed in Ref.[31].

    4 Signal and Background

    In this section,we perform the Monte Carlo simulation and explore the sensitivity of 14 TeV LHC through the channel,

    where ?=e,μ.The lightest scalar particle H,as a candidate of dark matter,will escape the detector as the missing energy.The W boson is reconstructed using its leptonic decays into electron or muon and corresponding neutrino.The typical Feynman diagrams of production and decay chain are presented in Fig.1.We can see that this process can be used to probe the hHH,H+W?H and HHW+W?coupling.

    The Feynman Rules are extracted by the package FeynRules[43]from the Lagrangian of IDM.These Feynman Rules are generated into Universal FeynRules Output(UFO) files[44]and then add into the Monte Carlo event generator MadGraph@NLO(MG5)[45]for the generation of event samples.All the signal and backgrounds events are generated at LO with the CTEQ6L parton distribution function(PDF)and the renormalization and factorization scales are set dynamically by default along with basic acceptance cuts employed.PYTHIA6[46]is utilized for parton shower and hadronization with the options of ISR and RSR included.Delphes[47]is then employed to account for the detector simulations with the CMS card and MadAnalysis5 for analysis,where the(mis-)tagging efficiencies and fake rates are assumed to be their default values in Delphes,which is formulated as a function of the transverse momentum and rapidity of the jets.The anti-ktalgorithm[48]with the jet radius of 0.5 is used to reconstruct jets.The IDM mediator width is automatically computed by using the MadWidth module for each parameter point.The SM input parameters relevant in our work are taken as:

    We choose{mH±,mA,mH,mh,λl,λ2}as the input physical parameters:mH±,mA,mHare the Z2odd scalar particles masses,the couplings λ2and λlcorrespond to self-interaction in the dark sector and interaction between the dark matter and SM-like Higgs boson,respectively.Considering all the dark matter and collider constraints available presently,the following benchmark points(BP)are selected for our study as in Ref.[22],which is based on the the work in Refs.[18,49].

    Benchmark Points are listed in the Table:

    Fig.1 The Feynman diagrams for process pp→HHW±in IDM including the leptonic decay of W boson.

    The mass of the SM-like Higgs particle is always set to the value Mh=125.1 GeV.We have fixed the mass of the dark matter candidate to be mH=65 GeV,in order to avoid the invisible decay of the SM Higgs boson to a pair of DM.However,we have confirmed that,varying the mass slightly,within the window available,as described above does not bring in any significant change in our conclusions.We have then chosen different representative values of mH+,the main object of our study.This then naturally limits the value of mAto be close to mH+.The values considered in the BP’s are obtained from a random scan,satisfying all the dark matter and collider constraints mentioned above.The cross sections of the lightest scalar particle H pair associated a W boson production at the LHC with=14 TeV for these benchmark points are given in Table 1.

    Table 1 The cross sections of the pp → HHW±(→ l±ν)production in the IDM at the LHC with=14 TeV for these benchmark points are given.

    Table 1 The cross sections of the pp → HHW±(→ l±ν)production in the IDM at the LHC with=14 TeV for these benchmark points are given.

    BP1 BP2 BP3 BP4 BP5 BP6 σ/fb 0.1523(2)70.5(1)25.00(3) 7.166(8)2.774(3)1.322(2)

    4.1 Background

    The primary source of background for the signal is come from the SM W → ?ν decays with ?=e,μ.Meanwhile,a W → τν sample,where the τ-lepton decays to an electron or a muon,can not be separated from prompt leptons and missing energy.Top-quark pair production is another source of high-pTleptons andMultijet background(QCD),enriched in electrons/photons and muons,has by far the largest cross section,it is efficiently rejected by the isolation requirements imposed to select the lepton candidates as well as the requirement on the ET.Despite the large suppression of these events,the misidenti fi ca-tion of jets as leptons(especially as electrons)still occurs.Drell-Yan production of dileptons(?=e,μ)constitutes a background when one lepton escapes detection.Contributions from Dibosons(WW,WZ,ZZ)decaying to a state with at least one lepton can not be ignored.In the electron channel,a γ+jet event sample is used to estimate the e ff ects of photons misidentified as electrons,which are largely rejected by the requirement of two-body decay kinematics.

    In our simulation,we generate 100,000 events for the signals and 100,000 events for all the backgrounds.We fi rst employ some basic cuts for the selection of events:

    whereand ηj,lare the transverse momentum and the pseudorapidity of the jet and leptons,respectively.is the particle separation among the objects(the jet,the lepton,and the photons)in the final state with??,and?η being the separation in the azimuth angle and rapidity,respectively.The ηl,jacceptance region avoids the gap between barrel and endcap,where the misidentification probability is the highest.

    Fig.2 (Color online)Normalized distributions of numbers of lepton N(?)and b quark N(b),the transverse missing energy ET,the azimuthal angle between the directions of the missing transverse energy ??(?,ET),the leptonic transverse momentum ,the ratio of /the total transverse hadronic energy HT;and the transverse mass of lepton-ETsystem MT(?,in the signals and backgrounds at 14 TeV LHC.

    According to the distribution differences between the signal and backgrounds,we can improve the ratio of signal to backgrounds by making suitable kinematical cuts.Through the investigation,we find that the backgrounds of W decay to τ-lepton,Multijet(QCD)and γ+jet event are suppressed seriously after suitable cuts,and can be neglected.Therefore,we will not list the these three backgrounds in the following analysis.In Fig.2,we show the distributions of some kinematical variables for the signal and backgrounds at 14 TeV LHC.N(?)and N(b)are the numbers of lepton and b quark. The total transverse hadronic energy HTis a global observable,which is defined by

    In the leptonic decay channel,the kinematic variable transverse mass of the lepton-ETis defined,

    where ??l,ETis the azimuthal opening angle between the directions of the missing transverse energy and the charged lepton. The distributions of the observable MT(?,ET),ETand PT(l)are similar.In fact,these variables are not completely independent.We only need to chose one of them,then select the suitable cut to suppress the SM backgrounds.From Fig.2,we find the total transverse hadronic energy HTcan significantly reduce all the SM background except ttˉ background.The ttˉ background can not be suppressed by changing other observables,such as MT(?,ET),ET,PT(l).We first select the events with N(l)=1,N(b)=0.Through requiring the number of final state only one lepton and one b quark,we can suppress amounts of Standard Model backgrounds,especially the background of top-quark pair production.Next,we require the total transverse hadronic energy HT>150 GeV.All the SM backgrounds are suppressed seriously.Finally,we require the transverse missing energy ET>40 GeV to improve the discovery significance

    For a short summary,we list all the cut-based selections here:

    (i)Basic cut:pjT>25 GeV,p?T>20 GeV,|ηj|<2.5,|η?|<2 and ?Rij>0.4(i,j= ?,j,γ).

    (ii)Cut 1 means the basic cuts plus missing N(?)=1 and N(b)=0.

    (iii)Cut 2 means Cut 1 plus requiring the total transverse hadronic energy HT>150 GeV.

    (iv)Cut 3 means Cut 2 plus requiring the transverse missing energy ET>40 GeV.

    Table 2 The number of events for the signal(HHW)in BP2 and backgrounds(W → ?ν,tˉt,DY and Diboson)after the cut flows are listed in the brackets at the 14 TeV LHC with integrated luminosity L=3000 fb?1.The values of discovery significance S at each step of cut are also shown.

    The results of the number of events(with luminosity=3000 fb?1)are shown in Table 2 at each step of cut.The values of the discovery significanceare also shown,where S and B are the numbers of signal and total background events,respectively.From the result in the table,we find that the backgrounds mainly come from W lepton decay channel in SM.After applying all select cuts,the backgrounds can be reduced to ten thousandth.For the BP2,the discovery significancecan reach 19.26σ.Thus,we can observe the IDM effect though the neutral scalar H pair associated W in some parameter space with large luminosity at the 14 TeV LHC.The statistical significance are affected significantly by the systematic error.If the systematic error is considered,the statistical significance uncertainty needs to be added to this part,which is defined(S??B)/(2(S+B)3/2),where?B is the systematic error on the background number of events.If we take?B as 5%of the background number of events,statistical significance uncertainty will arrive 0.484 after cut 3 in Table 2.

    Fig. 3 (Color online) Contour plots in plane mH+ ?mA with 3σ discovery significance for process pp → HHW production at 14 TeV LHC with integrated luminosity of 3000 fb-1.

    In Fig.3,we plot the 3σ discovery reach in the plane mH+?mAwith the integrated luminosity of 3000 fb?1.we investigate the effects of coupling parameter λ2and λLand find that the cross section has little change with the varying λ2and λL.In this paper,we assume the mass hierarchy mH±>mA>mH.As in the previous benchmark points,we set the lightest scalar Higgs mH=65 GeV.Thus,the minimal value of mAis 65 GeV,the maximal value of mAis equal mH±.In Fig.3,The two red lines represent the line mH+=mAand mA=65 GeV.The other two black lines are the 3σ discovery limit.From Fig.3,we find that,in the range of 120 GeV

    5 Summary

    The origin of dark matter is one of the most compelling mysteries in our understanding of the universe now.High energy colliders provide ideal facilities to search for DM particle.The Inert Doublet Model,which is one of the most simple extension of the Standard Model,provides a scalar DM particle candidate.In this paper,we have studied the lightest scalar particle H pair associated a W boson production in IDM at the 14 TeV LHC,in which H is the DM particle,W will decay to leptons or hadrons.We focus on the leptonic channel of W boson.The SM main backgrounds include single W leptonic decay,top pair production,Drell-Yan process,and Diboson leptonic decay.We implemented the Multivariate Analysis(MVA)method for selecting suitable cuts to suppress these SM backgrounds and improve the discovery significance.We also gave the contour plots in plane mH+?mAwith 3σ discovery significance at 14 TeV LHC with integrated luminosity of 3000 fb?1and found that it has potential for observing the mono-W signal in the range of 120 GeV

    [1]G.Bertone,D.Hooper and J.Silk,Phys.Rept.405(2005)279,[hep-ph/0404175].

    [2]J.L.Feng and J.Kumar,Phys.Rev.Lett.101(2008)231301,[arXiv:0803.4196].

    [3]E.Ma,Phys.Rev.D 73(2006)077301,[hep-ph/0601225].

    [4]R.Barbieri,L.J.Hall,and V.S.Rychkov,Phys.Rev.D 74(2006)015007,[hep-ph/0603188].

    [5]M.Cirelli,N.Fornengo,and A.Strumia,Nucl.Phys.B 753(2006)178,[hep-ph/0512090].

    [6]L.Lopez Honorez,E.Nezri,J.F.Oliver,and M.H.G.Tytgat,JCAP 0702(2007)028,[hep-ph/0612275].

    [7]L.Lopez Honorez and C.E.Yaguna,JHEP 09(2010)046,arXiv:1003.3125[hep-ph].

    [8]L.Lopez Honorez and C.E.Yaguna,JCAP 1101(2011)002,arXiv:1011.1411[hep-ph].

    [9]A.Dasgupta and D.Borah,Nucl.Phys.B 889(2014)637,arXiv:1404.5261[hep-ph].

    [10]M.A.Diaz,B.Koch,and S.Urrutia-Quiroga,arXiv:1511.04429[hep-ph].

    [11]A.Goudelis,B.Herrmann,and O.St?al,JHEP 1309(2013)106.

    [12]N.Blinov,J.Kozaczuk,D.E.Morrissey,and A.de la Puente,Phys.Rev.D 93(2016)035020.

    [13]T.Abe and R.Sato,JHEP 1503(2015)109.

    [14]E.Aprile[XENON1T Collaboration],Springer Proc.Phys.148(2013)93.

    [15]D.S.Akerib,et al.[LZ Collaboration],arXiv:1509.02910[physics.ins-det].

    [16]C.Garcia-Cely,M.Gustafsson,and A.Ibarra,JCAP 1602(2016)043,[arXiv:1512.02801[hep-ph]].

    [17]A.Arhrib,Y.L.S.Tsai,Q.Yuan,and T.C.Yuan,AMS-02 and LHC,JCAP 1406(2014)030.

    [18]A.Ilnicka,M.Krawczyk,and T.Robens,Phys.Rev.D 93(2016)055026.

    [19]Q.H.Cao,E.Ma,and G.Rajasekaran,Phys.Rev.D 76(2007)095011.

    [20]E.Dolle,X.Miao,S.Su,and B.Thomas,Phys.Rev.D 81(2010)035003.

    [21]G.Belanger,B.Dumont,A.Goudelis,et al.,Phys.Rev.D 91(2015)115011.

    [22]P.Poulose,S.Sahoo,and K.Sridhar,arXiv:1604.03045[hep-ph].

    [23]M.Aoki,S.Kanemura,and H.Yokoya,Phys.Lett.B 725(2013)302.

    [24]M.Hashemi,M.Krawczyk,S.Najjari,and A.F.˙Zarnecki,JHEP 1602(2016)187.

    [25]A.Arhrib,R.Benbrik,J.El Falaki,and A.Jueid,JHEP 1512(2015)007.

    [26]I.F.Ginzburg,K.A.Kanishev,M.Krawczyk,and D.Sokolowska,Phys.Rev.D 82(2010)123533.

    [27]S.Kanemura,T.Kubota,and E.Takasugi,Phys.Lett.B 313(1993)155.

    [28]A.G.Akeroyd,A.Arhrib,and E.M.Naimi,Phys.Lett.B 490(2000)119.

    [29]C.A.Garcia Cely,PhD thesis,Technische Universit¨at München(TUM)(2014).

    [30]J.F.Gunion and H.E.Haber,Phys.Rev.D 67(2003)075019,[hep-ph/0207010].

    [31]M.Gustafsson,PoSCHARGED2010(2010)030,[arXiv:1106.1719].

    [32]N.Khan and S.Rakshit,arXiv:hep-ph/1503.0308.

    [33]I.F.Ginzburg and M.Krawczyk,Phys.Rev.D 72(2005)115013,[hep-ph/0408011].

    [34]G.Branco,P.Ferreira,L.Lavoura,et al.,Phys.Rept.516(2012)1,[arXiv:1106.0034].

    [35]A.Arhrib,R.Benbrik,and N.Gaur,Phys.Rev.D 85(2012)095021,[arXiv:1201.2644].

    [36]T.Hambye,F.S.Ling,L.Lopez Honorez,and J.Rocher,JHEP 0907(2009)090;Erratum:[JHEP 1005(2010)066].

    [37]A.Pierce and J.Thaler,JHEP 0708(2007)026,[hepph/0703056].

    [38]E.Lundstrom,M.Gustafsson,and J.Edsjo,Phys.Rev.D 79(2009)035013.

    [39]B.Swiezewska and M.Krawczyk,Phys.Rev.D 88(2013)035019,[arXiv:1212.4100].

    [40]M.Krawczyk,D.Sokolowska,P.Swaczyna,and B.Swiezewska,JHEP 1309(2013)055,[arXiv:1305.6266].

    [41]A.Goudelis,B.Herrmann,and O.Stal,JHEP 09(2013)106,[arXiv:1303.3010].

    [42]S.Kanemura,M.Kikuchi,and K.Sakurai,Higgs boson couplings,Phys.Rev.D 94(2016)115011,[arXiv:1605.08520[hep-ph]].

    [43]A.Alloul,N.D.Christensen,C.Degrande,et al.,Comput.Phys.Commun.185(2014)2250,[arXiv:1310.1921].

    [44]C.Degrande,C.Duhr,B.Fuks,et al.,Comput.Phys.Commun.183(2012)1201,[arXiv:1108.2040]

    [45]J.Alwall,R.Frederix,S.Frixione,et al.,JHEP 1407(2014)079,[arXiv:1405.0301].

    [46]T.Sjostrand,S.Mrenna,P.Z.Skands,PYTHIA 6.4 Physics and Manual,JHEP 0605(2006)026.

    [47]J.de Favereau,et al,DELPHES 3 Collaboration,DELPHES 3,A modular framework for fast simulation of a generic collider experiment,JHEP 1402(2014)057.

    [48]M.Cacciari,G.P.Salam,and G.Soyez,JHEP 0804(2008)063.

    [49]A.Ilnicka,M.Krawczyk,and T.Robens,arXiv:1505.04734[hep-ph].

    猜你喜歡
    張波李剛萬能
    入木三分
    The Channel Tunnel
    李剛作品
    國畫家(2021年2期)2021-06-04 05:33:54
    Best fight
    萬能衣
    Testing Photons Coupled to Weyl Tensor with Gravitational Time Advancement?
    南城秋意
    赤水源(2018年6期)2018-12-06 08:38:10
    我有一雙萬能的手
    未來的萬能草
    小布老虎(2016年10期)2016-12-01 05:46:45
    你撿到錢了
    喜劇世界(2016年15期)2016-11-26 17:08:36
    精品亚洲成国产av| 久久av网站| 亚洲精品国产av蜜桃| 春色校园在线视频观看| 有码 亚洲区| 一区在线观看完整版| 国产精品三级大全| 国产精品99久久99久久久不卡 | 精品视频人人做人人爽| 叶爱在线成人免费视频播放| 亚洲综合色惰| 制服人妻中文乱码| 国产亚洲一区二区精品| 欧美变态另类bdsm刘玥| a级片在线免费高清观看视频| 尾随美女入室| 免费人妻精品一区二区三区视频| 伦理电影免费视频| 777久久人妻少妇嫩草av网站| 老女人水多毛片| 伦理电影大哥的女人| 成人手机av| www.熟女人妻精品国产| 五月天丁香电影| 国产亚洲精品第一综合不卡| 欧美黄色片欧美黄色片| 精品福利永久在线观看| 国产精品 欧美亚洲| 亚洲国产最新在线播放| 亚洲精品第二区| 成年女人在线观看亚洲视频| 最近最新中文字幕大全免费视频 | 亚洲精品日韩在线中文字幕| 激情五月婷婷亚洲| 一边摸一边做爽爽视频免费| 亚洲男人天堂网一区| 午夜日本视频在线| 欧美国产精品一级二级三级| 国产精品一二三区在线看| 国产精品国产av在线观看| 成人毛片60女人毛片免费| 亚洲av.av天堂| 卡戴珊不雅视频在线播放| 蜜桃国产av成人99| 九草在线视频观看| 精品一区二区三区四区五区乱码 | av免费观看日本| 亚洲国产精品一区三区| 麻豆精品久久久久久蜜桃| 80岁老熟妇乱子伦牲交| 18在线观看网站| 国产精品欧美亚洲77777| www日本在线高清视频| 男女午夜视频在线观看| 午夜福利在线观看免费完整高清在| 亚洲国产av新网站| 久久国内精品自在自线图片| 精品一品国产午夜福利视频| 91午夜精品亚洲一区二区三区| 亚洲精品国产一区二区精华液| 亚洲四区av| 国产日韩欧美亚洲二区| 制服丝袜香蕉在线| 欧美另类一区| 美女视频免费永久观看网站| 亚洲精品一二三| 伊人亚洲综合成人网| 啦啦啦在线观看免费高清www| 久久国内精品自在自线图片| av视频免费观看在线观看| 在线看a的网站| 久久久国产一区二区| 天堂8中文在线网| 亚洲欧美一区二区三区久久| 在线观看一区二区三区激情| 91午夜精品亚洲一区二区三区| 男女国产视频网站| 久久久久久免费高清国产稀缺| 国产日韩欧美视频二区| 国产在线视频一区二区| 一区二区av电影网| 日本欧美国产在线视频| 人妻 亚洲 视频| 纵有疾风起免费观看全集完整版| 伦理电影免费视频| 晚上一个人看的免费电影| 人妻一区二区av| 亚洲色图 男人天堂 中文字幕| 天堂8中文在线网| 国产一级毛片在线| 国产成人精品在线电影| 777米奇影视久久| 久久国内精品自在自线图片| 亚洲视频免费观看视频| 欧美日韩精品成人综合77777| 91在线精品国自产拍蜜月| 飞空精品影院首页| 人体艺术视频欧美日本| 一本—道久久a久久精品蜜桃钙片| 王馨瑶露胸无遮挡在线观看| 国产精品香港三级国产av潘金莲 | 亚洲人成77777在线视频| 日韩制服骚丝袜av| 国产片特级美女逼逼视频| 精品一品国产午夜福利视频| 免费观看a级毛片全部| 国精品久久久久久国模美| 黑人巨大精品欧美一区二区蜜桃| 成年美女黄网站色视频大全免费| 国产片内射在线| 国产精品一二三区在线看| 精品少妇黑人巨大在线播放| 亚洲综合色惰| 侵犯人妻中文字幕一二三四区| 国产不卡av网站在线观看| 大香蕉久久成人网| 中文字幕av电影在线播放| 18禁观看日本| 亚洲欧美一区二区三区黑人 | 欧美人与善性xxx| 国产精品无大码| 日本爱情动作片www.在线观看| 男人舔女人的私密视频| 国产福利在线免费观看视频| 久久综合国产亚洲精品| 午夜福利视频在线观看免费| 亚洲av中文av极速乱| 日韩成人av中文字幕在线观看| 国产精品蜜桃在线观看| 大话2 男鬼变身卡| 可以免费在线观看a视频的电影网站 | 90打野战视频偷拍视频| 亚洲欧洲国产日韩| 亚洲精品国产av成人精品| 天天影视国产精品| 电影成人av| 久久久久人妻精品一区果冻| 久久久久久久大尺度免费视频| 波野结衣二区三区在线| 2018国产大陆天天弄谢| 美女视频免费永久观看网站| 人体艺术视频欧美日本| 有码 亚洲区| 三级国产精品片| 老汉色av国产亚洲站长工具| 亚洲精品乱久久久久久| 免费黄色在线免费观看| 十八禁网站网址无遮挡| 美女国产视频在线观看| 亚洲五月色婷婷综合| 在线观看人妻少妇| av.在线天堂| 精品久久蜜臀av无| av卡一久久| 伊人久久国产一区二区| 婷婷色麻豆天堂久久| av在线播放精品| 国产亚洲精品第一综合不卡| 亚洲精品久久久久久婷婷小说| 久久久久久久久免费视频了| 一个人免费看片子| 91午夜精品亚洲一区二区三区| 我的亚洲天堂| 亚洲av在线观看美女高潮| 日本-黄色视频高清免费观看| www.精华液| 国产精品久久久久久精品古装| 午夜福利在线免费观看网站| www.熟女人妻精品国产| 国产亚洲精品第一综合不卡| 亚洲精品日韩在线中文字幕| 美国免费a级毛片| 日韩一区二区视频免费看| 国产精品偷伦视频观看了| 黄色毛片三级朝国网站| 另类亚洲欧美激情| 欧美日韩一级在线毛片| 国产 精品1| 欧美+日韩+精品| 亚洲国产av新网站| 亚洲三区欧美一区| 你懂的网址亚洲精品在线观看| 国产精品 欧美亚洲| 欧美日韩亚洲高清精品| 久久人妻熟女aⅴ| 精品一区在线观看国产| 涩涩av久久男人的天堂| 只有这里有精品99| 热re99久久国产66热| 青春草视频在线免费观看| 久久99蜜桃精品久久| 久久午夜福利片| 久久精品熟女亚洲av麻豆精品| 在线观看免费日韩欧美大片| 国产精品久久久久久av不卡| 国产又色又爽无遮挡免| 七月丁香在线播放| 少妇熟女欧美另类| 国产av码专区亚洲av| 黑人猛操日本美女一级片| 国产无遮挡羞羞视频在线观看| 熟女电影av网| 亚洲精品久久午夜乱码| 亚洲第一av免费看| 成人手机av| 午夜91福利影院| 在线观看免费视频网站a站| 免费人妻精品一区二区三区视频| 中文乱码字字幕精品一区二区三区| 欧美人与善性xxx| 一本色道久久久久久精品综合| 一二三四在线观看免费中文在| 国产成人一区二区在线| 又粗又硬又长又爽又黄的视频| 啦啦啦啦在线视频资源| 满18在线观看网站| 精品少妇内射三级| h视频一区二区三区| 91aial.com中文字幕在线观看| av电影中文网址| 日韩在线高清观看一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 少妇 在线观看| 女性生殖器流出的白浆| 欧美黄色片欧美黄色片| 久久久国产一区二区| 女的被弄到高潮叫床怎么办| 麻豆av在线久日| 美女福利国产在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 水蜜桃什么品种好| 人体艺术视频欧美日本| 国精品久久久久久国模美| 国产色婷婷99| 搡女人真爽免费视频火全软件| 亚洲欧美中文字幕日韩二区| 99精国产麻豆久久婷婷| 高清不卡的av网站| 午夜免费男女啪啪视频观看| 少妇的丰满在线观看| 亚洲精品中文字幕在线视频| 天天躁夜夜躁狠狠久久av| 男男h啪啪无遮挡| 精品人妻在线不人妻| 搡女人真爽免费视频火全软件| 久久精品夜色国产| 欧美xxⅹ黑人| 精品国产国语对白av| 久久久欧美国产精品| 美女国产视频在线观看| 啦啦啦啦在线视频资源| 亚洲一区二区三区欧美精品| 国产精品熟女久久久久浪| 久久精品国产亚洲av涩爱| 午夜激情久久久久久久| 亚洲伊人色综图| 亚洲精品久久久久久婷婷小说| 国产在视频线精品| 国产成人精品在线电影| av在线播放精品| 久久久精品免费免费高清| 精品久久久久久电影网| 午夜精品国产一区二区电影| 2022亚洲国产成人精品| 热99国产精品久久久久久7| 日本黄色日本黄色录像| 青春草亚洲视频在线观看| 亚洲国产毛片av蜜桃av| 国产麻豆69| 天堂俺去俺来也www色官网| 国产免费福利视频在线观看| 亚洲欧美一区二区三区久久| 国产免费现黄频在线看| 青青草视频在线视频观看| 久久狼人影院| 精品午夜福利在线看| 国产欧美日韩一区二区三区在线| 男人操女人黄网站| 建设人人有责人人尽责人人享有的| 欧美xxⅹ黑人| 高清欧美精品videossex| 久久久久精品人妻al黑| 天堂8中文在线网| 一区二区日韩欧美中文字幕| 爱豆传媒免费全集在线观看| 精品亚洲成a人片在线观看| 如日韩欧美国产精品一区二区三区| av女优亚洲男人天堂| 精品少妇黑人巨大在线播放| 亚洲综合色惰| 美国免费a级毛片| 狠狠精品人妻久久久久久综合| 久久精品国产亚洲av涩爱| 又大又黄又爽视频免费| 99久久综合免费| 午夜影院在线不卡| 精品人妻偷拍中文字幕| 成人18禁高潮啪啪吃奶动态图| 欧美成人精品欧美一级黄| 99国产综合亚洲精品| 大片电影免费在线观看免费| 五月天丁香电影| 热99久久久久精品小说推荐| 婷婷色综合大香蕉| 精品国产国语对白av| 美女中出高潮动态图| av在线观看视频网站免费| 国产av国产精品国产| 午夜福利视频在线观看免费| 婷婷色麻豆天堂久久| 国产免费一区二区三区四区乱码| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲精品在线美女| 久久精品亚洲av国产电影网| 一区二区三区激情视频| 超色免费av| 97精品久久久久久久久久精品| 国产成人精品久久二区二区91 | 丝袜脚勾引网站| 久久人妻熟女aⅴ| videossex国产| 日本黄色日本黄色录像| av国产精品久久久久影院| 亚洲第一青青草原| 中国国产av一级| 人妻 亚洲 视频| 国产男人的电影天堂91| 男人添女人高潮全过程视频| 中文精品一卡2卡3卡4更新| 久久久国产欧美日韩av| 日韩不卡一区二区三区视频在线| 丝瓜视频免费看黄片| 亚洲熟女精品中文字幕| 亚洲国产欧美日韩在线播放| av在线观看视频网站免费| 国产精品99久久99久久久不卡 | 熟女少妇亚洲综合色aaa.| 伊人久久大香线蕉亚洲五| 午夜av观看不卡| 老司机影院成人| 午夜福利一区二区在线看| 中文字幕人妻丝袜制服| 各种免费的搞黄视频| 国产在线一区二区三区精| 最新中文字幕久久久久| 三级国产精品片| 婷婷色麻豆天堂久久| 午夜福利影视在线免费观看| 黄频高清免费视频| 热re99久久国产66热| 女性生殖器流出的白浆| 国产精品女同一区二区软件| 久久亚洲国产成人精品v| 各种免费的搞黄视频| 纯流量卡能插随身wifi吗| 五月伊人婷婷丁香| 麻豆精品久久久久久蜜桃| 国产福利在线免费观看视频| 免费日韩欧美在线观看| 中文字幕人妻丝袜制服| 搡老乐熟女国产| 宅男免费午夜| 2018国产大陆天天弄谢| 午夜精品国产一区二区电影| 在线观看免费日韩欧美大片| 亚洲精品第二区| 亚洲激情五月婷婷啪啪| 五月天丁香电影| 久久99一区二区三区| 99九九在线精品视频| 老汉色av国产亚洲站长工具| xxxhd国产人妻xxx| 热99久久久久精品小说推荐| 久久久国产一区二区| 久久狼人影院| 亚洲精品乱久久久久久| 精品视频人人做人人爽| 国产精品亚洲av一区麻豆 | 女人高潮潮喷娇喘18禁视频| 美女主播在线视频| 香蕉精品网在线| 1024视频免费在线观看| 国产精品熟女久久久久浪| videosex国产| 日本av手机在线免费观看| 十八禁高潮呻吟视频| 亚洲av男天堂| tube8黄色片| 国产精品秋霞免费鲁丝片| 国产黄色视频一区二区在线观看| 18在线观看网站| 下体分泌物呈黄色| 性高湖久久久久久久久免费观看| 亚洲精品av麻豆狂野| 国产在线免费精品| 久久精品久久精品一区二区三区| 国产毛片在线视频| 亚洲欧洲精品一区二区精品久久久 | 久久热在线av| 免费少妇av软件| 亚洲内射少妇av| 丁香六月天网| 亚洲内射少妇av| 欧美精品高潮呻吟av久久| 亚洲欧洲国产日韩| av在线老鸭窝| 菩萨蛮人人尽说江南好唐韦庄| 99久久人妻综合| 波多野结衣一区麻豆| 人妻少妇偷人精品九色| 最新的欧美精品一区二区| 日韩中文字幕欧美一区二区 | 热99久久久久精品小说推荐| 精品第一国产精品| 考比视频在线观看| 黄色怎么调成土黄色| 不卡视频在线观看欧美| 黄色怎么调成土黄色| 欧美激情极品国产一区二区三区| 啦啦啦中文免费视频观看日本| 国产白丝娇喘喷水9色精品| 久久久久久久精品精品| 国产精品一区二区在线观看99| 久久精品久久精品一区二区三区| 久久久久久久久久久免费av| 国产成人a∨麻豆精品| 熟女电影av网| 亚洲欧美清纯卡通| 最近最新中文字幕大全免费视频 | 日韩av免费高清视频| 高清在线视频一区二区三区| xxx大片免费视频| 国产在线一区二区三区精| 精品一区二区三区四区五区乱码 | 精品午夜福利在线看| 在线观看免费视频网站a站| 欧美精品国产亚洲| 尾随美女入室| 亚洲国产精品一区三区| 五月开心婷婷网| 一二三四中文在线观看免费高清| 久久精品国产亚洲av涩爱| 毛片一级片免费看久久久久| 中文字幕人妻熟女乱码| 妹子高潮喷水视频| 免费观看a级毛片全部| av线在线观看网站| 日本色播在线视频| 麻豆乱淫一区二区| 久久女婷五月综合色啪小说| 午夜久久久在线观看| 免费黄网站久久成人精品| 美女脱内裤让男人舔精品视频| 黄片播放在线免费| 免费黄频网站在线观看国产| 欧美亚洲 丝袜 人妻 在线| 久久精品国产综合久久久| 国产在线视频一区二区| 两个人看的免费小视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲一码二码三码区别大吗| 高清不卡的av网站| 丝袜喷水一区| 国产一区二区三区av在线| 美国免费a级毛片| 99国产精品免费福利视频| 欧美精品av麻豆av| 乱人伦中国视频| 久久久亚洲精品成人影院| 欧美国产精品va在线观看不卡| 欧美黄色片欧美黄色片| 国产亚洲欧美精品永久| 新久久久久国产一级毛片| 亚洲欧洲国产日韩| 99久久人妻综合| 大片电影免费在线观看免费| 国产av一区二区精品久久| 午夜免费鲁丝| 亚洲国产日韩一区二区| 亚洲精品国产色婷婷电影| 黄色配什么色好看| 国产av国产精品国产| 狠狠婷婷综合久久久久久88av| 美国免费a级毛片| 免费高清在线观看日韩| 亚洲国产色片| 制服诱惑二区| 熟妇人妻不卡中文字幕| 欧美精品国产亚洲| 亚洲久久久国产精品| 黑人欧美特级aaaaaa片| 黑丝袜美女国产一区| 国产精品99久久99久久久不卡 | 国产精品秋霞免费鲁丝片| 亚洲国产看品久久| 成人国语在线视频| 久久亚洲国产成人精品v| 亚洲国产精品一区三区| 国产av精品麻豆| 久久久久精品性色| 亚洲av国产av综合av卡| 狠狠精品人妻久久久久久综合| 日韩精品有码人妻一区| 精品一区二区三卡| 亚洲欧洲精品一区二区精品久久久 | 日韩欧美精品免费久久| 精品人妻偷拍中文字幕| 国产精品一二三区在线看| 菩萨蛮人人尽说江南好唐韦庄| 国产精品一二三区在线看| 日本vs欧美在线观看视频| 丁香六月天网| 两个人看的免费小视频| 国产精品av久久久久免费| 国产精品嫩草影院av在线观看| 只有这里有精品99| 精品亚洲成国产av| 国产精品女同一区二区软件| 日本免费在线观看一区| 韩国高清视频一区二区三区| 中文字幕人妻熟女乱码| 男女无遮挡免费网站观看| 亚洲精品久久午夜乱码| 国产精品一区二区在线观看99| 国产精品99久久99久久久不卡 | av国产精品久久久久影院| 欧美激情极品国产一区二区三区| 美女国产高潮福利片在线看| 波多野结衣一区麻豆| 亚洲欧美色中文字幕在线| 国产综合精华液| 岛国毛片在线播放| 欧美日韩精品网址| 最新中文字幕久久久久| 免费黄频网站在线观看国产| 久久人人爽av亚洲精品天堂| 免费大片黄手机在线观看| 女性被躁到高潮视频| 亚洲熟女精品中文字幕| 久久精品国产鲁丝片午夜精品| 91久久精品国产一区二区三区| 99re6热这里在线精品视频| 99久国产av精品国产电影| 一区二区三区精品91| 亚洲精品国产av蜜桃| 国产精品三级大全| 性高湖久久久久久久久免费观看| 国产黄色视频一区二区在线观看| 久久久精品国产亚洲av高清涩受| 另类亚洲欧美激情| 一级毛片我不卡| 成人亚洲精品一区在线观看| 免费日韩欧美在线观看| 电影成人av| 啦啦啦啦在线视频资源| 在线观看三级黄色| 黄色一级大片看看| 亚洲婷婷狠狠爱综合网| 亚洲一码二码三码区别大吗| 999久久久国产精品视频| 国产成人免费观看mmmm| 人人妻人人爽人人添夜夜欢视频| 不卡av一区二区三区| 日韩一本色道免费dvd| 欧美成人午夜免费资源| 国产视频首页在线观看| 欧美激情高清一区二区三区 | 国产精品熟女久久久久浪| 亚洲天堂av无毛| 韩国精品一区二区三区| av一本久久久久| 尾随美女入室| 免费日韩欧美在线观看| 99热国产这里只有精品6| 日本91视频免费播放| 国产综合精华液| 亚洲中文av在线| 夜夜骑夜夜射夜夜干| 精品国产国语对白av| 国产女主播在线喷水免费视频网站| 中文字幕亚洲精品专区| 亚洲综合色惰| 国产精品二区激情视频| 曰老女人黄片| 久久99蜜桃精品久久| 国产色婷婷99| 9色porny在线观看| 日本免费在线观看一区| 欧美日韩亚洲高清精品| 爱豆传媒免费全集在线观看| 岛国毛片在线播放| 一边摸一边做爽爽视频免费| 香蕉国产在线看| 在线观看免费视频网站a站| 在线观看国产h片| 夫妻性生交免费视频一级片| 啦啦啦啦在线视频资源| 欧美日韩亚洲国产一区二区在线观看 | 亚洲av国产av综合av卡| 如何舔出高潮| 色哟哟·www| 精品国产露脸久久av麻豆| 亚洲五月色婷婷综合| 成年女人毛片免费观看观看9 | 男女高潮啪啪啪动态图| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 涩涩av久久男人的天堂| 人人妻人人添人人爽欧美一区卜| 色94色欧美一区二区| 久久久精品区二区三区| 国产精品免费大片| 亚洲精品美女久久av网站| 侵犯人妻中文字幕一二三四区| 久久久久视频综合| 久久毛片免费看一区二区三区|