• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generalized Lagrange Jacobi Gauss-Lobatto(GLJGL)Collocation Method for Solving Linear and Nonlinear Fokker-Planck Equations

    2018-06-11 12:21:02ParandLatifiMoayeriandDelkhosh
    Communications in Theoretical Physics 2018年5期

    K.Parand, S.Lati fi, M.M.Moayeri, and M.Delkhosh

    1Department of Computer Sciences,Shahid Beheshti University,G.C.Tehran,Iran

    2Department of Cognitive Modeling,Institute for Cognitive and Brain Sciences,Shahid Beheshti University,G.C.Tehran,Iran

    1 Introduction

    In order to present the partial differential equation that is solved numerically, firstly,we give an introduction to the linear and nonlinear Fokker-Planck equations(FPEs)and provide a brief review and history of these equations in the following subsection.

    1.1 The Governing Equations

    The solution of the FPEs is important in various fields of natural science,including astrophysics problems,biological applications,chemical physics,polymer,circuit theory,dielectric relaxation,economics,electron relaxation in gases,nucleation,optical bistability,dynamics,quantum optics,reactive systems,solid-state physics,and numerous other applications.[1]The origin and history of FPEs go back to the time when Fokker-Planck described the Brownian motion of particles.[1?2]The theory of Brownian motion exists in many areas of physics and chemistry,and particularly in those that deal with the nature of metastable states and the rates at which these states decay.[3]Kramers equation is a special form of the FPEs utilized to describe the Brownian motion of a potential.[4]

    The general form of the FPEs,for the variable x and t,is

    where A(x)and B(x)are referred to as the drift and diffusion coefficients and in case the drift and diffusion coefficients depended on time we can show it as:

    The above equation is considered as the equation of motion for the distribution function y(x,t),and is also called the forward Kolmogorov equation.

    In addition to the forward Kolmogorov equation,there is another form of the equation called backward Kolmogorov equation.

    The more general forms of FPEs are its nonlinear form of the equation.The nonlinear FPEs may be derived from the principles of linear nonequilibrium thermodynamics.[5]Nonlinear FPEs have important applications and advantages in miscellaneous fields of sciences:biophysics,neurosciences,engineering,laser physics,nonlinear hydrodynamics,plasma physics,pattern formation,poly-mer physics,population dynamics,psychology,surface physics.[1,6]

    In the nonlinear FPEs,the equation also depends on y where this dependency happens in the drift and di ff usion coefficients.The general form of this equation is

    by which

    Although there can be analytical solutions for the FPEs,it is difficult to result in solutions when the number of variables are large and no separation of variables methods are demanded.

    1.2 The Literature Review on the FPEs

    In the early 1990s,Palleschi et al.[7?8]investigated FPEs. They discussed a fast and accurate algorithm for the numerical solution of Fokker-Planck-like equation.Vanaja[9]presented an iterative solution method for solving FPEs.Zorzano et al.[10]used the finite difference to investigate two-dimensional of this equation.Dehghan et al.[11]employed the He’s variational iteration method(VIM)to give a solution for this equation.Tatari et al.[12]applied the Adomian decomposition method for solving the FPEs.Using the cubic B-spline scaling functions,Lakestani et al.[2]obtained the numerical solution of FPEs.Kazem et al.[6]utilized RBF to solve the equation.

    Other insights for solving FPEs are numerical techniques.Among them,Wehner[13]applied path integrals to solve the nonlinear FPEs.Fourier transformations were employed by Brey et al.[14]Zhang et al.[15]applied distributed approximating functionals to solve the nonlinear FPEs.Further to these,for solving the one-dimensional nonlinear FPEs,the finite difference schemes[16]are also applied.

    In recent years,dozens of scientists are attracted to Spectral and pseudo spectral methods.[17?18]Spectral methods are providing the solution of the problem with the aid of truncated series of smooth global functions;[19?20]They provide such an accurate approximation for a smooth solution with relatively few degrees of freedom.They are widely employed in the approximation of the solution of differential equations,variational problems,and function approximation.The reason existed beyond this accuracy is that the spectral coefficients tend to zero faster than any algebraic power of their index n.[21]As said in such papers,spectral methods can fall into 3 categories:Collocation,Galerkin,and Tau methods[22]Collocation method provides highly accurate solutions to nonlinear differential equations.[23?26]There are only two main steps to approximate a problem in collocation methods:First,as a common approach,appropriate nodes(Gauss/Gauss-Radau/Gauss-Lobatto)are chosen to represent a finite or discrete form of the differential equations.

    Second,a system of algebraic equations from the discretization of the original equation is obtained.[27?29]The Tau spectral method is one of the most important methods used to approximate numerical solutions of various differential equations.This method approximates the solution as an expansion of certain orthogonal polynomials/functions and the coefficients,in the expansion,are considered so as to satisfy the differential equation as accurately as possible.[30]Spectral Tau method is,somehow,similar to Galerkin methods in the way that the differential equation is enforced.[21]In Galerkin Spectral method,a finite dimensional subspace of the Hilbert space(trial function space)are selected and trail and test functions are regarded the same.[31]

    Moreover,some numerical methods like Finite difference method(FDM)and Finite element method(FEM)that are implemented locally and require a network of data.Such methods like Meshfree methods do not require to build a network of data.[32?33]Comparing to these mentioned numerical methods,spectral methods are globally performing and they are continuous and do not need network construction.

    In addition to spectral methods,pseudospectral methods have been of high interest to authors presently.[34?37]

    Actually,in standard pseudospectral methods,interpolation operators are used to reduce the cost of computation of the inner product,in some spectral methods.For this purpose,a set of distinct interpolation pointsis defined,where the corresponding Lagrange interpolants are achieved.In addition to this,in collocation points,the residual function is set to vanish on the same set of points.Generally speaking,these collocation points do not need to be the same as the interpolation points;however,to have the Kronecker property,they are considered to be the same:therefore,by this trick,they reduce computational cost remarkably.[38?39]

    1.3 The Main Aim of This Paper

    In this study,we develop an exponentially accurate generalized pseudospectral method for solving the linear and nonlinear FPEs:This method is a generalization of the classical Lagrange interpolation method.To reach this goal,in Sec.2 some preliminaries of Jacobi polynomials are brought.In this section,we introduce the GL Functions and develop the GLJGL collocation scheme.Section 3 describes the numerical method;it explains the methodology and estimation of the error.We carry out numerical experiments to validate the presented collocation scheme.Subsequently,the analysis will be implemented to linear and nonlinear FPEs.Finally,some concluding remarks are given in Sec.5.

    2 Preliminaries and Notations

    2.1 Jacobi Polynomials

    The Jacobi polynomials are the eigenfunctions of a singular Sturm-Liouville equation. There are several particular cases of them,such as Legendre,the four kinds of Chebyshev,and Gegenbauer polynomials.Jacobi polynomials are defined on[?1,1]and are of interest recently.[36,40?43]The recursive formula for Jacobi polynomials is as follows:[44]

    with the properties as:

    and its weight function is wα,β(x)=(1 ? x)α(1+x)β.

    Moreover,the Jacobi polynomials are orthogonal on[?1,1]:

    where δm,nis the Kronecker delta function.

    The set of Jacobi polynomials makes a completeorthogonal system for any g(x) ∈there is an expansion as follows.

    where

    2.2 Generalized Lagrange(GL)functions

    In this section,generally,the GL functions are introduced and suitable formulas for the first-and second-order derivative matrices of these functions are presented.

    Definition 1 Considering the generalized Lagrange(GL)functions formula can be shown as:[38?39]

    where κj=u′j/?uw(xj), ?uw(x)=(1/u′)?xw(x),and u(x)is a continuous and sufficiently differentiable function which will be chosen to fit in the problem’s characteristics.For simplicity u=u(x)and ui=u(xi)are considered.The GL functions have the Kronecker property:

    Theorem 1 Considering the GL functions Luj(x)in Eq.(13),one can exhibit the first-order derivative matrices of GL functions as

    where

    Proof As the GL functions defined in Eq.(13),the first-order derivative formula for the case kj can be achieved as follows:

    But,when k=j,with L’H?opital’s rule:

    This completes the proof. ?

    2.3 Generalized Lagrange Jacobi Gauss-Lobatto(GLJGL)Collocation Method

    In case of GLJGL collocation method,w(x)in Eq.(13)can be restated as:

    where λ is a real constant and to simplify the notation,we write

    with the following important properties:

    Then,we have:

    Recalling thatand using formulas in Eq.(15)–(20),we find the entry of the first-order derivative matrix of GL functions as:

    Theorem 2 Let D(1)be the above matrix( first order derivative matrix of GL functions)and define matrix Q such thatthen,the second-order derivative matrix of GL functions can be formulated as:

    Proof See Ref.[38]. ?

    3 Numerical Method

    In this section, firstly,the time discretization method is recalled.Secondly,GLJGL collocation method is implemented to solve the FPEs.In a matrix form,the method has been presented and the error of this method is estimated.

    3.1 Discretization

    For solving the FPEs,we first discretize the time domain;to do this,we apply the Crank-Nicolson method.The main reason for choosing this method is its good convergence order and its unconditional stability.[45]To apply this method, firstly,we approximate and simplify the first-order derivative of y(x,t),with respect to the time variable,and deriving a formula from finite difference approximations as follows:

    The domain ? × [0,T)is decomposed as ? × [0,T)=and?t=T/s:The error of this approximation is of order O(?t).From now on,for simplicity yi(x)=y(x,Ti).

    Considering FPEs,one can read in which E0,k,E1,iand E2,iare the coefficient specified in the “Numerical Examples” section;in linear FPEs,E0,i=0.

    Implementing Crank-Nicolson on FPEs

    and can be simplified as

    By applying this method,the problem can be discretized in small time levels.As shown,time variable is discretized using Crank-Nicolson method.In each time level,we are to approximate the FPEs.Solving in sufficiently large time levels,brings in a good approximation for FPEs.

    3.2 Implementation of GLJGL Collocation Method for Solving FPEs

    As said in the previous subsection,in each time level,we approximate the solution of FPEs,and therefore,the time variable is omitted from the equation.In each time step,we approximate an equation like in Eq.(25).The unknown yi+1(x)is approximated as

    where

    As y(x,0)=y0(x)=f(x)we can calculate f(x)=LA0,and by collocating n+1 nodes we can result in:

    By the aid of these,we can write Eq.(25)as

    The boundary conditions,by considering Guass-Lobatto scheme and Eq.(26),are specified as:

    therefore,by collocating n+1 points and de fi ning

    then,the matrix form of Eqs.(28)and(29)will be

    The first and last row of matrices H0,H1,H2,and first and last elements of vector R are defined as if they satisfy the boundary condition of FPEs.

    Hence,we can achieve the numerical solution of y(x,t)at each time level.Notice that,at time level 0 the solution is computed from the initial condition;This is shown in Eq.(27).From the solution of the system in Eq.(30),at each time level,for the next time levels,we will achieve the unknown values.In other words,it means that by solving this system,in each step of i+1,the unknown coefficients Ai+1will be found.

    This system of equations is solved by applying a proper method like Newton methods.To show the accuracy of this method,some examples in the next section,are illustrated.

    3.3 Error Estimation

    Theorem 3 Let x0=a,xn=b andbe the rootsshifting Jacobi polynomialfrom[?1,1]to[a,b].Then,there exists a unique set of quadrature weights if ned by Jie Shen[46](Jacobi Gauss-Lobatto quadratures),such that for all functions p(x)of degree 2n?1

    where w(x)is the weight function and here this weight function is wα,β(u(x)).This is worth noticing that

    {ti,are Jacobi Gauss-Lobatto quadratures nodes and weights.

    Proof See Ref.[46]. ?

    In FPEs[a,b]=[0,1],u(x)=2x?1,then∫

    based in the last theorem,when p(x)∈Pm,m>2n?1,the above relation between integral and summation is not exact;it produces an error term as

    where ξ∈(a,b).Hence,

    For two arbitrary functions g1(x)and g2(x)we define

    then forwe have

    In the same fashion,for

    Now,by multiplying Eq.(25)with(x)wα,β(x)and integration in both sides:

    With Eqs.(26)and(33)the following relations in xkwill be obtained:(j=i,i+1)

    in which D[k,:]means that the k-th row of matrix D is taken.Now,by taking xkinto account.k=0,...,n

    Comparing with the system in Eq.(30)we solved,V is the error term vector:V is defined as:

    for k=1,...,n?1,and v0=0,vn=0.

    As er[q(x)]=0,as long as q(x)∈Pm,m≤2n?1.Obviously,if any of the above terms’degree is less and equal than 2n?1,the error of that term will be zero.In numerical examples,this error is shown and discussed.

    4 Numerical Examples

    In this section,in order to illustrate the performance of the GLJGL collocation method,we give some computations based on preceding sections,to support our theoretical discussion.By the aid of the presented method,linear and nonlinear forms of FPEs are solved.To illustrate the good accuracy of these methods,we apply different error criteria:The root-mean-square(RMS),Ne,and L2errors.

    where y(xj)and yn(xj)are exact and approximate value of FPEs on equidistant xj,j=1,...,r.

    As FPEs are defined over[0,1],the shifting function u(x),considered in Subsecs.2.2 and 2.3,is u(x)=2x?1.

    The CPU time for calculation of matrices D(1)and D(2),defined in Subsec.2.3,is brought in Table 1.

    Table 1 CPU time(sec)for calculation of derivative matrices for different values of n.

    The CPU time is performed on a DELL laptop with the configuration:Intel(R)Core(TM)i7-2670QM CPU,2.20 GHz;and 6 GB RAM.

    Example 1 Consider Refs.[2,6,11]Eq.(1)with:A(x)=?1,B(x)=1,f(x)=x,x∈[0,1].

    The exact solution of this test problem is y(x,t)=x+t.In this example E0,k=0,E1,k=?A(xk)=1,and E2,k=B(xk)=1 for k=1,...,n?1.

    As stated earlier,if the order of terms in Eq.(35)is less than 2n,the error terms vanish;so,the error vector for Ex.1,V in Eq.(35),can be simplified as

    In Table 2,the numerical absolute errors of Example 1,and their comparison with B-Spline method are displayed.Table 3,by representing the values of RMS and Neerrors,reveals the difference between the presented method and both HRBF and Kansa’s approaches.[6]

    In Fig.1,RMS,L2and Neerrors,for different values of n and?t,have been illustrated.Figure 2 shows the plot of error for Ex.1.

    Table 2 Numerical absolute errors of the method for Ex.1,in comparison with B-Spline method.[2]n=20,?t=0.01,α=0,β=1.

    Fig.1 Plot of results for Ex.1,α=0,β=1,r=20.(a)Value of error measurements for different values of?t.n=20 is fixed;(b)Value of error measurements for different values of n.?t=0.01 is fixed.

    Fig.2 Plot of absolute error of Ex.1,α=0,β=1,r=20,?t=0.01,n=20.

    Example 2 Consider Refs.[2,6,11]the backward Kolmogorov Eq.(4)with:A(x,t)=?(x+1),B(x,t)=x2et,f(x)=x+1,x∈[0,1].

    The exact solution of this test problem is y(x,t)=(x+1)et.In this example E0,k=0,E1,k=?A(xk,t)=

    Table 4 depicts the numerical absolute errors of Ex.2 and draws a distinction with the presented method and BSpline method.For showing the accuracy,the differences between the presented method and HRBF and Kansa’s approaches[6]are shown by calculating RMS and Nein Table 5.In Fig.3,the error measurements RMS,L2and Neare shown for different n and?t.In this figure,CPU times have been depicted for different n and?t.It explicitly says that when n increases or?t decreases,the time of solving the system of Eq.(30)increases.As it shows,when?t tends to a smaller value,it affects and decreases all RMS,Ne,L2and absolute errors.The plot of absolute error for Ex.2 is also shown in Fig.4.

    Table 3 Values of RMS and Nefor Ex.1 in comparison with HRBF and Kansa’s approaches.r=20,?t=0.01.

    Table 4 Numerical absolute errors of the method for Ex.2,in comparison with B-Spline method.[2]n=20,?t=0.01,α=0,β=1.

    Fig.3 Plot illustration results of Ex.2,α=0,β=1,r=20.(a)CPU times for solving Eq.(30)for different values of?t and n.(b)Value of error measurements for different values of?t.n=20 is fixed.(c)Plot of absolute error for different values of?t.n=20 is fixed.(d)Value of error measurements for different values of n.?t=0.01 is fixed.

    Fig.4 Plot of absolute error of Ex.2 for 15 collocation points.α=0,β=1,?t=0.01.

    Example 3 Consider Refs.[2,6,11]the nonlinear Eq.(5)with:A(x,t,y)=(7/2)y,B(x,t,y)=xy,f(x)=x,x∈[0,1].

    The exact solution of this test problem is y(x,t)=x/(1+t).By this consideration,Eq.(5)can be rewritten as

    By Eqs.(23)and(36)one can set:

    The error vector,V in Eq.(35),for Ex.2 and 3 is

    By the aid of Table 6.the numerical absolute errors for Ex.3 demonstrated and a comparison with the B-Spline method is made.For this example,also,RMS and Neare compared with the ones provided by HRBF[6]in Table 7.

    Table 5 Values of RMS and Nefor Ex.2 in comparison with HRBF and Kansa’s approaches.r=50,?t=0.01.

    Table 6 Numerical absolute errors of the method for Ex.3,in comparison with B-Spline method.[2]n=10,?t=0.001,α=1,β=1.

    Table 7 Values of RMS and Nefor Ex.3 in comparison with HRBF approach.r=50,?t=0.001.

    Fig.5 Plot illustration results of Ex.3,α=1,β=1,r=50.(a)CPU times for solving Eq.(30)for different values of?t and n.(b)Value of error measurements for different values of?t.n=10 is fixed.(c)Plot of absolute error for different values of?t.n=10 is fixed.(d)Value of error measurements for different values of n.?t=0.001 is fixed.

    Fig.6 Plot of absolute error of Ex.3 for 7 collocation points.α=1,β=1,?t=0.001.

    Figure 5 shows the values of RMS,L2and Neerrors for different n and?t.This Figure,illustrates the CPU times for solving the system of Eq.(30)for different n and?t.It shows that when n increases or?t decreases,the time of obtaining solution will increase.The fact is,as?t becomes smaller,RMS,Ne,L2and absolute errors decrease.The plot of absolute error for Ex.3 is also shown in Fig.6.

    Example 4 Consider Refs.[2,6,11]the nonlinear Eq.(5)with:A(x,t,y)=4(y/x)?x/3,B(x,t,y)=y,f(x)=x2,x∈[0,1].

    The exact solution of this test problem is y(x,t)=x2et.This nonlinear FPEs can be restated as

    It must be noted that:the way this relation is factorized is playing a central role in the exactness of solution.By Eqs.(23)and(37):

    For Ex.4,the error vector specified in Eq.(35)is

    for k=1,...,n?1 and v0=0,vn=0.

    In Table 8,the numerical absolute errors for Ex.4 demonstrated and a comparison with the B-Spline method is given.The error measurements RMS and Neare calculated by the presented method and HRBF[6]method and the results depicted in Table 9.Figure 7 illustrates the values of RMS,L2and Neerrors for different n and?t.This Figure,also,illustrates the CPU times for solving the system of Eq.(30)for different n and?t.It implies that when n increases or?t decreases,the time of obtaining solution increases.In fact,when?t becomes smaller,RMS,Ne,L2and absolute errors will decrease.The plot of absolute error for Ex.4 is also shown in Fig.8.

    Fig.7 Plot illustration results of Ex.4,α=1,β=1,r=50.(a)CPU times for solving Eq.(30)for different values of?t and n.(b)Value of error measurements for different values of?t.n=7 is fixed.(c)Plot of absolute error for different values of?t.n=7 is fixed.(d)Value of error measurements for different values of n.?t=0.001 is fixed.

    Table 8 Numerical absolute errors of the method for Ex.4,in comparison with B-Spline method.[2]n=7,?t=0.001,α=1,β=1.

    Table 9 Values of RMS and Nefor Ex.4 in comparison with HRBF approach.r=50,?t=0.001.

    Fig.8 Plot of absolute error of Ex.4,α=1,β=1,?t=0.001,n=7.

    5 Conclusion

    The(linear and nonlinear)FPEs have many applications in science and engineering.So,in this work,a numerical method based on GLJGL collocation method is discussed and developed to investigate FPEs.Firstly,we introduced GL functions with the Kronecker property.The advantages of using GL functions can be:

    (i)These functions are the generalization of the classical Lagrange polynomials and corresponding differentiation matrices of D(1)and D(2),as shown,can be reached by specific formulas;this helps create and introduce a derivative-free method.

    (ii)With different consideration of u(x),different basis of GL functions are provided;therefore,different problems defined on various intervals can be solved.

    (iii) The accuracy of the presented method by GL function has exponential convergence rate.

    Moreover,the time derivative of the FPEs is discretized using Crank-Nicolson method.The main reason for using Crank-Nicolson method is its unconditional stability.[3,45]

    By the aid of Crank-Nicolson technique,we solved the linear and nonlinear types of FPEs with GLJGL collocation method.We apply the pseudospectral method in a matrix based manner where the matrix based structure of the present method makes it easy to implement.Also,to show the accuracy and ability of the proposed method,several examples are solved.

    Several examples are given and the results obtained using the method introduced in this article show that the new proposed numerical procedure is efficient

    The results showed that the approximate solutions of the GLJGL collocation method can be acceptable and provides very accurate results even with using a small number of collocation points.To illustrate the suitable accuracy of the proposed method,we used three different error criteria,namely,RMS,L2and Ne.Additionally,the obtained results have been compared with B-Spline,HRBF and Kansa methods,showing the accuracy and reliability of the presented method.

    This method can also be used as a powerful tool for investigation of other problems.

    [1]H.Risken,The Fokker-Planck Equation:Method of Solution and Applications,Springer Verlag,Belin,Heidelberg(1989).

    [2]M.Lakestani and M.Dehghan,Numer.Method.Part.D.E 25(2009)418.

    [3]M.Dehghan and V.Mohammadi,Eng.Anal.Bound.Elem.47(2014)38.

    [4]S.Jenks,Introduction to Kramers Equation,Drexel University,Philadelphia(2006).

    [5]A Compte and D Jou,J.Phys.A-Math.Gen.29(1996)4321.

    [6]S.Kazem,J.A.Rad,and K.Parand,Eng.Anal.Bound.Elem.36(2012)181.

    [7]V.Palleschi,F.Sarri,G.Marcozzi,and M.R.Torquati,Phys.Lett.A 146(1990)378.

    [8]V.Palleschi and N.de Rosa,Phys.Lett.A 163(1992)381.

    [9]V.Vanaja,Appl.Numer.Math.9(1992)533.

    [10]M.P.Zorzano,H.Mais,and L.Vazquez,Appl.Math.Comput.98(1999)109.

    [11]M.Dehghan and M.Tatari,Physica Scripta 74(2006)310.

    [12]M.Tatari,M.Dehghan,and M.Razzaghi,Math.Comput.Model.45(2007)639.

    [13]M.F.Wehner and W.G.Wolfer,Phys.Rev.A 35(1987)1795.

    [14]J.J.Brey,J.M.Casado,and M.Morillo,Phys.A 128(1984)497.

    [15]D.S.Zhang,G.W.Wei,D.J.Kouri,and D.K.Ho ff man,Phys.Rev.E 56(1997)1197.

    [16]A.N.Drozdov and M.Morillo,Phys.Rev.E 54(1996)931.

    [17]A.H.Bhrawy,M.A.Abdelkawy,J.T.Machado,and A.Z.M.Amin,Comput.Math.Appl.2016:doi.org/10.1016/j.camwa.2016.04.011.

    [18]A.H.Bhrawy,Numer.Algorithm.73(2016)91.

    [19]K.Parand and M.Delkhosh,J.Comput.Appl.Math.317(2017)624.

    [20]K.Parand and M.Delkhosh,Boletim da Sociedade Paranaense de Matem′atica 36(2018)33.

    [21]A.H.Bhrawy and M.M.Al-Shomrani,Adv.Di ff er.E 2012(2012)8.

    [22]E.H.Doha and A.H.Bhrawy,Appl.Numer.Math.58(2008)1224.

    [23]A.H.Bhrawy and M.M.Alghamdi,Boundary Value Prob.2012(2012)62.

    [24]H.Tal-Ezer,J.Numer.Anal.23(1986)11.

    [25]H.Tal-Ezer,J.Numer.Anal.26(1989)1.

    [26]A.H.Bhrawy and M.M.Al-Shomrani,Abstr.Appl.Anal.(2012).

    [27]A.H.Bhrawy,E.H.Doha,M.A.Abdelkawy,and R.A.Van Gorder,Appl.Math.Model.40(2016)1703.

    [28]K.Parand,M.Delkhosh,and M.Nikarya,Tbilisi Math.J.10(2017)31.

    [29]F.Baharifard,S.Kazem,and K.Parand,Inter.J.Appl.Comput.Math.2(2016)679.

    [30]E.H.Doha,A.H.Bhrawy,D.Baleanu,and S.S.Ezz-Eldien,Adv.Di ff er.E 2014(2014)231.

    [31]J.P.Boyd,Chebyshev and Fourier Spectral Methods,Second Edition,Dover,New York(2000).

    [32]K.Parand and M.Hemami,Int.J.Appl.Comput.Math.3(2016)1053.

    [33]K.Parand and M.Hemami,Iranian J.Sci.Technol.T.A.Science 41(2015)677.

    [34]M.A.Saker,Romanian J.Phys.2017(2017)105.

    [35]A.H.Bhrawy,M.A.Abdelkawy,and F.Mallawi,Boundary Value Prob.2015(2015)103.

    [36]E.H.Doha,A.H.Bhrawy,and M.A.Abdelkawy,J.Comput.Nonlin.Dyn.10(2015)021016.

    [37]K.Parand,S.Lati fi,and M.M.Moayeri,SeMA J.(2017).

    [38]M.Delkhosh and K.Parand,Generalized Pseudospectral Method:Theory and Application,Submitted.

    [39]K.Parand,S.Lati fi,M.Delkhosh,and M.M.Moayeri,Eur.Phys.J.Plus.133(2018)28.

    [40]A.H.Bhrawy and M.Zaky,Math.Method Appl.Sci.39(2015)1765.

    [41]A.H.Bhrawy,J.F.Alzaidy,M.A.Abdelkawy,and A.Biswas,Nonlin.Dyn.84(2016)1553.

    [42]A.H.Bhrawy,E.H.Doha,S.S.Ezz-Eldien,and M.A.Abdelkawy,Comput.Model.Eng.Sci.104(2015)185.

    [43]A.H.Bhrawy,E.H.Doha,D.Baleanu,and R.M.Hafez,Math.Method Appl.Sci.38(2015)3022.

    [44]E.H.Doha,A.H.Bhrawy,and S.S.Ezz-Eldien,Appl.Math.Model.36(2012)4931.

    [45]A.R.Mitchell and D.F.Griffiths,The Finite Di ff erence Methods in Partial differential Equations,John Wiley,Chichester(1980).

    [46]J.Shen,T.Tang,and L.L.Wang,Spectral Methods:Algorithms,Analysis and Applications,Springer Sci.Bus.Media.41(2011).

    丝袜人妻中文字幕| 91成人精品电影| 一边摸一边抽搐一进一出视频| 熟妇人妻久久中文字幕3abv| 国产精品一区二区免费欧美| 色播在线永久视频| 欧美不卡视频在线免费观看 | 久久精品人人爽人人爽视色| 国产精品久久久久久精品电影 | 97人妻天天添夜夜摸| 中文字幕最新亚洲高清| 日韩高清综合在线| 一二三四社区在线视频社区8| 亚洲三区欧美一区| 亚洲国产中文字幕在线视频| 90打野战视频偷拍视频| 一区福利在线观看| 9热在线视频观看99| 亚洲男人的天堂狠狠| 免费看十八禁软件| 亚洲久久久国产精品| 精品国产超薄肉色丝袜足j| 99精品在免费线老司机午夜| 精品一区二区三区四区五区乱码| 亚洲九九香蕉| 在线观看一区二区三区| 久久香蕉精品热| 脱女人内裤的视频| 老司机午夜十八禁免费视频| 国产伦人伦偷精品视频| 两个人免费观看高清视频| 亚洲电影在线观看av| 一级毛片女人18水好多| 亚洲人成伊人成综合网2020| 搡老妇女老女人老熟妇| 日韩欧美一区二区三区在线观看| 精品国产超薄肉色丝袜足j| 中文字幕高清在线视频| 人妻久久中文字幕网| 十八禁人妻一区二区| 欧美激情极品国产一区二区三区| 久久欧美精品欧美久久欧美| 色婷婷久久久亚洲欧美| 亚洲全国av大片| 国产亚洲精品一区二区www| 午夜成年电影在线免费观看| 成年人黄色毛片网站| 97超级碰碰碰精品色视频在线观看| 十八禁人妻一区二区| 91成年电影在线观看| 一a级毛片在线观看| 不卡一级毛片| 91九色精品人成在线观看| 大码成人一级视频| 午夜免费激情av| 色综合站精品国产| 中文字幕人成人乱码亚洲影| 妹子高潮喷水视频| 亚洲一区二区三区不卡视频| 国内久久婷婷六月综合欲色啪| av福利片在线| 亚洲aⅴ乱码一区二区在线播放 | 免费久久久久久久精品成人欧美视频| 给我免费播放毛片高清在线观看| 久久久久久大精品| 一区二区日韩欧美中文字幕| ponron亚洲| 岛国在线观看网站| 日韩大尺度精品在线看网址 | 自线自在国产av| 9热在线视频观看99| 中文字幕av电影在线播放| 亚洲第一欧美日韩一区二区三区| 亚洲五月婷婷丁香| 极品教师在线免费播放| 国产91精品成人一区二区三区| 欧美+亚洲+日韩+国产| 国产精品国产高清国产av| 高潮久久久久久久久久久不卡| 欧美黄色淫秽网站| 两性夫妻黄色片| 国产精品自产拍在线观看55亚洲| 久热这里只有精品99| 天天躁夜夜躁狠狠躁躁| 亚洲午夜精品一区,二区,三区| 看片在线看免费视频| 亚洲第一电影网av| 性少妇av在线| 久久久久九九精品影院| 欧美激情高清一区二区三区| 美女高潮喷水抽搐中文字幕| 亚洲国产毛片av蜜桃av| 久久久久久免费高清国产稀缺| 少妇熟女aⅴ在线视频| 中文字幕久久专区| 精品久久久久久成人av| 日本一区二区免费在线视频| 亚洲精品久久国产高清桃花| 午夜亚洲福利在线播放| 最新在线观看一区二区三区| 亚洲国产欧美一区二区综合| 90打野战视频偷拍视频| 精品乱码久久久久久99久播| 日本欧美视频一区| 国产精品综合久久久久久久免费 | 日韩成人在线观看一区二区三区| 在线观看免费视频日本深夜| 国产成+人综合+亚洲专区| 亚洲欧美日韩高清在线视频| 成熟少妇高潮喷水视频| 三级毛片av免费| 午夜免费激情av| 亚洲国产精品成人综合色| 国产精品爽爽va在线观看网站 | 国产精品99久久99久久久不卡| 9191精品国产免费久久| 久久久久久久久免费视频了| 老司机福利观看| 国产精品秋霞免费鲁丝片| 久久久久九九精品影院| 亚洲av熟女| 一个人免费在线观看的高清视频| 亚洲第一青青草原| 久久亚洲精品不卡| 村上凉子中文字幕在线| 999精品在线视频| 欧美成人午夜精品| 757午夜福利合集在线观看| 麻豆一二三区av精品| 国产在线精品亚洲第一网站| 校园春色视频在线观看| 国产区一区二久久| 亚洲情色 制服丝袜| 人妻丰满熟妇av一区二区三区| 国产精品永久免费网站| 成年女人毛片免费观看观看9| 国产精品美女特级片免费视频播放器 | 亚洲全国av大片| 欧美亚洲日本最大视频资源| 国产视频一区二区在线看| 国产精品乱码一区二三区的特点 | 国产精品一区二区三区四区久久 | 亚洲最大成人中文| 91精品国产国语对白视频| 久久午夜综合久久蜜桃| 校园春色视频在线观看| 久久草成人影院| 操美女的视频在线观看| 非洲黑人性xxxx精品又粗又长| 中文字幕人妻熟女乱码| 香蕉国产在线看| 亚洲人成电影观看| 一个人观看的视频www高清免费观看 | 一本综合久久免费| 精品国产国语对白av| 免费一级毛片在线播放高清视频 | 国产蜜桃级精品一区二区三区| 国产不卡一卡二| 国产成人系列免费观看| 日韩成人在线观看一区二区三区| 国产男靠女视频免费网站| 乱人伦中国视频| 大型黄色视频在线免费观看| 老汉色∧v一级毛片| 999久久久精品免费观看国产| 欧美成人午夜精品| 国产精品亚洲一级av第二区| 亚洲欧美日韩另类电影网站| 久久国产精品影院| 国产精品国产高清国产av| 少妇熟女aⅴ在线视频| 欧美性长视频在线观看| 99国产精品一区二区三区| 日韩国内少妇激情av| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久久人人人人人| 午夜视频精品福利| 999久久久国产精品视频| 自线自在国产av| 天天躁夜夜躁狠狠躁躁| 久久人人97超碰香蕉20202| 男人舔女人的私密视频| 老熟妇仑乱视频hdxx| 999久久久国产精品视频| 亚洲精品在线观看二区| 一级a爱视频在线免费观看| 国产成+人综合+亚洲专区| 精品久久久精品久久久| 丝袜美足系列| 中文字幕高清在线视频| 黄色毛片三级朝国网站| 久久青草综合色| 国内精品久久久久精免费| 人人澡人人妻人| 久久影院123| 最新美女视频免费是黄的| 中文字幕最新亚洲高清| 伦理电影免费视频| 中文字幕最新亚洲高清| 日韩欧美国产在线观看| 欧洲精品卡2卡3卡4卡5卡区| 精品久久久久久成人av| svipshipincom国产片| 成熟少妇高潮喷水视频| 欧美中文综合在线视频| 国产精品一区二区在线不卡| 欧美一级a爱片免费观看看 | 国产欧美日韩精品亚洲av| av有码第一页| 黄色视频,在线免费观看| 搡老妇女老女人老熟妇| cao死你这个sao货| 亚洲人成电影观看| 在线观看日韩欧美| 亚洲成a人片在线一区二区| 国产单亲对白刺激| 熟女少妇亚洲综合色aaa.| 高清在线国产一区| 日韩大尺度精品在线看网址 | 亚洲av成人av| 亚洲人成77777在线视频| 久久精品国产亚洲av高清一级| 一个人观看的视频www高清免费观看 | 成年版毛片免费区| 中文亚洲av片在线观看爽| 身体一侧抽搐| 亚洲少妇的诱惑av| av欧美777| 亚洲久久久国产精品| 亚洲狠狠婷婷综合久久图片| 搡老妇女老女人老熟妇| 一级,二级,三级黄色视频| 中国美女看黄片| 精品熟女少妇八av免费久了| 夜夜夜夜夜久久久久| 日韩欧美在线二视频| 欧美一级a爱片免费观看看 | 欧美日韩中文字幕国产精品一区二区三区 | 亚洲av成人av| 免费看美女性在线毛片视频| 亚洲国产欧美一区二区综合| 如日韩欧美国产精品一区二区三区| 日本一区二区免费在线视频| 国产成人欧美在线观看| 高清在线国产一区| 久久国产亚洲av麻豆专区| 久久精品亚洲熟妇少妇任你| 久久香蕉精品热| 日韩欧美国产一区二区入口| 一a级毛片在线观看| 亚洲av成人av| 免费女性裸体啪啪无遮挡网站| av超薄肉色丝袜交足视频| 制服诱惑二区| 久久精品国产99精品国产亚洲性色 | 欧美丝袜亚洲另类 | www.999成人在线观看| 日韩视频一区二区在线观看| 国产精品 国内视频| 国产极品粉嫩免费观看在线| 成熟少妇高潮喷水视频| 我的亚洲天堂| 搞女人的毛片| 亚洲中文字幕一区二区三区有码在线看 | 日日摸夜夜添夜夜添小说| 超碰成人久久| 亚洲一区二区三区色噜噜| 91成人精品电影| 国产精品,欧美在线| 久久精品人人爽人人爽视色| 老鸭窝网址在线观看| 国产欧美日韩综合在线一区二区| 精品午夜福利视频在线观看一区| 久久热在线av| 亚洲自偷自拍图片 自拍| 亚洲三区欧美一区| 久久久国产欧美日韩av| 亚洲伊人色综图| 啦啦啦免费观看视频1| 亚洲av成人av| 亚洲一码二码三码区别大吗| 欧美色视频一区免费| 亚洲av电影不卡..在线观看| 成人欧美大片| 国产精品一区二区精品视频观看| 伊人久久大香线蕉亚洲五| 日韩精品免费视频一区二区三区| 国产一区二区激情短视频| av超薄肉色丝袜交足视频| 非洲黑人性xxxx精品又粗又长| 黄色丝袜av网址大全| 欧美精品啪啪一区二区三区| 国产精品,欧美在线| 国产亚洲精品久久久久5区| 亚洲色图 男人天堂 中文字幕| 人妻久久中文字幕网| 波多野结衣巨乳人妻| 国产亚洲av高清不卡| 亚洲国产精品sss在线观看| 国产欧美日韩精品亚洲av| 国产精品久久久久久人妻精品电影| 一进一出抽搐动态| 国产av一区在线观看免费| av电影中文网址| 亚洲一区二区三区色噜噜| 精品一品国产午夜福利视频| 嫩草影院精品99| 国产av又大| 色尼玛亚洲综合影院| 女人爽到高潮嗷嗷叫在线视频| 一边摸一边做爽爽视频免费| 日韩成人在线观看一区二区三区| 午夜福利,免费看| 69av精品久久久久久| 亚洲人成伊人成综合网2020| 欧美久久黑人一区二区| 9热在线视频观看99| 最好的美女福利视频网| АⅤ资源中文在线天堂| 日本 欧美在线| 性欧美人与动物交配| 国产1区2区3区精品| 国产亚洲av高清不卡| 美女午夜性视频免费| 日韩视频一区二区在线观看| 99在线视频只有这里精品首页| 日本在线视频免费播放| 欧美乱色亚洲激情| 999久久久国产精品视频| 亚洲,欧美精品.| 亚洲黑人精品在线| 桃色一区二区三区在线观看| 黄色a级毛片大全视频| 在线观看66精品国产| 在线视频色国产色| 美女高潮到喷水免费观看| 大香蕉久久成人网| 婷婷丁香在线五月| 99久久99久久久精品蜜桃| 少妇粗大呻吟视频| 88av欧美| 国产成人影院久久av| 国产激情久久老熟女| 天天一区二区日本电影三级 | 别揉我奶头~嗯~啊~动态视频| 制服人妻中文乱码| 亚洲欧美精品综合一区二区三区| 97人妻精品一区二区三区麻豆 | 神马国产精品三级电影在线观看 | 精品午夜福利视频在线观看一区| 国产亚洲精品av在线| 日韩免费av在线播放| 亚洲精品美女久久久久99蜜臀| 日韩高清综合在线| 国产精品 欧美亚洲| 中文字幕精品免费在线观看视频| 大型黄色视频在线免费观看| 亚洲激情在线av| 亚洲黑人精品在线| 可以免费在线观看a视频的电影网站| 免费一级毛片在线播放高清视频 | 搡老妇女老女人老熟妇| 老司机午夜十八禁免费视频| 窝窝影院91人妻| 身体一侧抽搐| 美女高潮喷水抽搐中文字幕| 18美女黄网站色大片免费观看| 色av中文字幕| 久久精品亚洲熟妇少妇任你| 国产三级在线视频| 国产一区二区在线av高清观看| 精品欧美国产一区二区三| 国产日韩一区二区三区精品不卡| 97人妻天天添夜夜摸| 男女下面进入的视频免费午夜 | 午夜两性在线视频| 一区福利在线观看| 免费搜索国产男女视频| 自拍欧美九色日韩亚洲蝌蚪91| 黑人操中国人逼视频| 嫩草影视91久久| 国产午夜精品久久久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲情色 制服丝袜| 亚洲成人免费电影在线观看| 少妇被粗大的猛进出69影院| 免费看十八禁软件| 制服人妻中文乱码| 妹子高潮喷水视频| 久久久水蜜桃国产精品网| 亚洲人成电影免费在线| 丁香六月欧美| 伊人久久大香线蕉亚洲五| 90打野战视频偷拍视频| 免费不卡黄色视频| 女人爽到高潮嗷嗷叫在线视频| 一级a爱片免费观看的视频| 国产午夜精品久久久久久| 在线观看免费午夜福利视频| 一级毛片高清免费大全| 人人妻,人人澡人人爽秒播| 国产精品精品国产色婷婷| 在线av久久热| 岛国在线观看网站| 午夜福利一区二区在线看| 亚洲精品久久国产高清桃花| 九色国产91popny在线| 丝袜在线中文字幕| 国产三级黄色录像| 很黄的视频免费| 欧美绝顶高潮抽搐喷水| 在线观看一区二区三区| 免费看十八禁软件| 高潮久久久久久久久久久不卡| 国产精品综合久久久久久久免费 | 后天国语完整版免费观看| 成人欧美大片| 亚洲精品一区av在线观看| 亚洲欧美一区二区三区黑人| 国产精品 欧美亚洲| 亚洲熟女毛片儿| 99国产精品免费福利视频| 中文字幕人妻熟女乱码| 中文字幕高清在线视频| 午夜影院日韩av| 满18在线观看网站| 国产精品电影一区二区三区| av欧美777| 日韩一卡2卡3卡4卡2021年| 午夜视频精品福利| 国产欧美日韩一区二区精品| 麻豆成人av在线观看| 一a级毛片在线观看| 90打野战视频偷拍视频| 夜夜夜夜夜久久久久| 黄色 视频免费看| 大型av网站在线播放| 国产伦一二天堂av在线观看| 亚洲国产毛片av蜜桃av| 夜夜爽天天搞| 两个人看的免费小视频| 国产高清视频在线播放一区| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲成a人片在线一区二区| 国产欧美日韩一区二区三区在线| 视频在线观看一区二区三区| 一本大道久久a久久精品| 亚洲精品久久成人aⅴ小说| www.www免费av| 中文字幕av电影在线播放| 人人妻,人人澡人人爽秒播| 日韩视频一区二区在线观看| 免费在线观看黄色视频的| 亚洲精品国产区一区二| 久久性视频一级片| 国产亚洲av高清不卡| 叶爱在线成人免费视频播放| 亚洲av片天天在线观看| 国产高清激情床上av| 欧美另类亚洲清纯唯美| 天天躁夜夜躁狠狠躁躁| 国产精品美女特级片免费视频播放器 | 好看av亚洲va欧美ⅴa在| 女生性感内裤真人,穿戴方法视频| 两个人看的免费小视频| 久久狼人影院| 18禁黄网站禁片午夜丰满| 色婷婷久久久亚洲欧美| 亚洲狠狠婷婷综合久久图片| 日本三级黄在线观看| 一a级毛片在线观看| 三级毛片av免费| 好男人电影高清在线观看| 久99久视频精品免费| 男人舔女人的私密视频| 嫁个100分男人电影在线观看| 亚洲人成网站在线播放欧美日韩| 免费看十八禁软件| 亚洲三区欧美一区| a级毛片在线看网站| 一区二区三区国产精品乱码| 亚洲久久久国产精品| 国产精品一区二区免费欧美| 国产一卡二卡三卡精品| 中出人妻视频一区二区| 亚洲av成人不卡在线观看播放网| 国产亚洲av嫩草精品影院| 欧美精品亚洲一区二区| 极品教师在线免费播放| 精品一区二区三区av网在线观看| 国产主播在线观看一区二区| 成人三级做爰电影| 国产成人av教育| 久热爱精品视频在线9| 亚洲七黄色美女视频| 在线观看舔阴道视频| 国产亚洲欧美在线一区二区| 中文字幕最新亚洲高清| av天堂在线播放| 精品欧美国产一区二区三| 一边摸一边做爽爽视频免费| 俄罗斯特黄特色一大片| 成人精品一区二区免费| 国产精品,欧美在线| 亚洲国产中文字幕在线视频| 午夜影院日韩av| 久久性视频一级片| 亚洲三区欧美一区| 1024视频免费在线观看| 免费无遮挡裸体视频| av视频在线观看入口| 午夜福利影视在线免费观看| АⅤ资源中文在线天堂| 久久国产精品人妻蜜桃| 丁香欧美五月| 久99久视频精品免费| 老熟妇仑乱视频hdxx| 久久久国产成人免费| 久久欧美精品欧美久久欧美| 日韩欧美在线二视频| 亚洲精品国产精品久久久不卡| 欧美国产精品va在线观看不卡| 一区二区三区精品91| 男女午夜视频在线观看| 成人18禁高潮啪啪吃奶动态图| 久久久精品欧美日韩精品| 少妇 在线观看| 国产成人一区二区三区免费视频网站| 婷婷六月久久综合丁香| 丝袜美足系列| www.www免费av| 嫩草影视91久久| 成人18禁在线播放| or卡值多少钱| 久久国产精品影院| 午夜老司机福利片| 欧美午夜高清在线| 好看av亚洲va欧美ⅴa在| 日韩大码丰满熟妇| 精品人妻1区二区| av天堂久久9| 一个人免费在线观看的高清视频| 欧美精品亚洲一区二区| 久99久视频精品免费| av欧美777| 欧美一级a爱片免费观看看 | 日本欧美视频一区| 777久久人妻少妇嫩草av网站| 成年人黄色毛片网站| 国产精品久久久av美女十八| 黄色a级毛片大全视频| 亚洲精品中文字幕一二三四区| 身体一侧抽搐| 99久久综合精品五月天人人| 深夜精品福利| 757午夜福利合集在线观看| 69精品国产乱码久久久| 国产xxxxx性猛交| 看免费av毛片| 老鸭窝网址在线观看| 欧美亚洲日本最大视频资源| 一卡2卡三卡四卡精品乱码亚洲| 久久香蕉国产精品| 在线观看66精品国产| 欧美色欧美亚洲另类二区 | 丝袜美足系列| 18禁裸乳无遮挡免费网站照片 | 久久天堂一区二区三区四区| 亚洲av成人一区二区三| 最近最新中文字幕大全免费视频| 亚洲专区中文字幕在线| 黄色丝袜av网址大全| 国产精品av久久久久免费| 亚洲三区欧美一区| 精品欧美一区二区三区在线| 亚洲久久久国产精品| 激情在线观看视频在线高清| 久久久精品国产亚洲av高清涩受| 色综合亚洲欧美另类图片| 好看av亚洲va欧美ⅴa在| 午夜精品在线福利| av欧美777| netflix在线观看网站| 国产成人影院久久av| 欧美av亚洲av综合av国产av| 欧美最黄视频在线播放免费| a级毛片在线看网站| 神马国产精品三级电影在线观看 | 国产成人欧美在线观看| 亚洲精品美女久久av网站| 激情在线观看视频在线高清| 免费在线观看亚洲国产| 日本精品一区二区三区蜜桃| 欧美不卡视频在线免费观看 | 国产精品 国内视频| 国产男靠女视频免费网站| 黄色a级毛片大全视频| 免费搜索国产男女视频| 国产男靠女视频免费网站| 人妻丰满熟妇av一区二区三区| 国产成人精品无人区| 久久久久亚洲av毛片大全| 91老司机精品| 免费搜索国产男女视频| 男女午夜视频在线观看| 一级毛片女人18水好多| 午夜福利在线观看吧| 人人妻人人澡欧美一区二区 | 一夜夜www| 好男人电影高清在线观看| 黑人欧美特级aaaaaa片| а√天堂www在线а√下载| 欧美一区二区精品小视频在线| 级片在线观看| 露出奶头的视频|