• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generalized Lagrange Jacobi Gauss-Lobatto(GLJGL)Collocation Method for Solving Linear and Nonlinear Fokker-Planck Equations

    2018-06-11 12:21:02ParandLatifiMoayeriandDelkhosh
    Communications in Theoretical Physics 2018年5期

    K.Parand, S.Lati fi, M.M.Moayeri, and M.Delkhosh

    1Department of Computer Sciences,Shahid Beheshti University,G.C.Tehran,Iran

    2Department of Cognitive Modeling,Institute for Cognitive and Brain Sciences,Shahid Beheshti University,G.C.Tehran,Iran

    1 Introduction

    In order to present the partial differential equation that is solved numerically, firstly,we give an introduction to the linear and nonlinear Fokker-Planck equations(FPEs)and provide a brief review and history of these equations in the following subsection.

    1.1 The Governing Equations

    The solution of the FPEs is important in various fields of natural science,including astrophysics problems,biological applications,chemical physics,polymer,circuit theory,dielectric relaxation,economics,electron relaxation in gases,nucleation,optical bistability,dynamics,quantum optics,reactive systems,solid-state physics,and numerous other applications.[1]The origin and history of FPEs go back to the time when Fokker-Planck described the Brownian motion of particles.[1?2]The theory of Brownian motion exists in many areas of physics and chemistry,and particularly in those that deal with the nature of metastable states and the rates at which these states decay.[3]Kramers equation is a special form of the FPEs utilized to describe the Brownian motion of a potential.[4]

    The general form of the FPEs,for the variable x and t,is

    where A(x)and B(x)are referred to as the drift and diffusion coefficients and in case the drift and diffusion coefficients depended on time we can show it as:

    The above equation is considered as the equation of motion for the distribution function y(x,t),and is also called the forward Kolmogorov equation.

    In addition to the forward Kolmogorov equation,there is another form of the equation called backward Kolmogorov equation.

    The more general forms of FPEs are its nonlinear form of the equation.The nonlinear FPEs may be derived from the principles of linear nonequilibrium thermodynamics.[5]Nonlinear FPEs have important applications and advantages in miscellaneous fields of sciences:biophysics,neurosciences,engineering,laser physics,nonlinear hydrodynamics,plasma physics,pattern formation,poly-mer physics,population dynamics,psychology,surface physics.[1,6]

    In the nonlinear FPEs,the equation also depends on y where this dependency happens in the drift and di ff usion coefficients.The general form of this equation is

    by which

    Although there can be analytical solutions for the FPEs,it is difficult to result in solutions when the number of variables are large and no separation of variables methods are demanded.

    1.2 The Literature Review on the FPEs

    In the early 1990s,Palleschi et al.[7?8]investigated FPEs. They discussed a fast and accurate algorithm for the numerical solution of Fokker-Planck-like equation.Vanaja[9]presented an iterative solution method for solving FPEs.Zorzano et al.[10]used the finite difference to investigate two-dimensional of this equation.Dehghan et al.[11]employed the He’s variational iteration method(VIM)to give a solution for this equation.Tatari et al.[12]applied the Adomian decomposition method for solving the FPEs.Using the cubic B-spline scaling functions,Lakestani et al.[2]obtained the numerical solution of FPEs.Kazem et al.[6]utilized RBF to solve the equation.

    Other insights for solving FPEs are numerical techniques.Among them,Wehner[13]applied path integrals to solve the nonlinear FPEs.Fourier transformations were employed by Brey et al.[14]Zhang et al.[15]applied distributed approximating functionals to solve the nonlinear FPEs.Further to these,for solving the one-dimensional nonlinear FPEs,the finite difference schemes[16]are also applied.

    In recent years,dozens of scientists are attracted to Spectral and pseudo spectral methods.[17?18]Spectral methods are providing the solution of the problem with the aid of truncated series of smooth global functions;[19?20]They provide such an accurate approximation for a smooth solution with relatively few degrees of freedom.They are widely employed in the approximation of the solution of differential equations,variational problems,and function approximation.The reason existed beyond this accuracy is that the spectral coefficients tend to zero faster than any algebraic power of their index n.[21]As said in such papers,spectral methods can fall into 3 categories:Collocation,Galerkin,and Tau methods[22]Collocation method provides highly accurate solutions to nonlinear differential equations.[23?26]There are only two main steps to approximate a problem in collocation methods:First,as a common approach,appropriate nodes(Gauss/Gauss-Radau/Gauss-Lobatto)are chosen to represent a finite or discrete form of the differential equations.

    Second,a system of algebraic equations from the discretization of the original equation is obtained.[27?29]The Tau spectral method is one of the most important methods used to approximate numerical solutions of various differential equations.This method approximates the solution as an expansion of certain orthogonal polynomials/functions and the coefficients,in the expansion,are considered so as to satisfy the differential equation as accurately as possible.[30]Spectral Tau method is,somehow,similar to Galerkin methods in the way that the differential equation is enforced.[21]In Galerkin Spectral method,a finite dimensional subspace of the Hilbert space(trial function space)are selected and trail and test functions are regarded the same.[31]

    Moreover,some numerical methods like Finite difference method(FDM)and Finite element method(FEM)that are implemented locally and require a network of data.Such methods like Meshfree methods do not require to build a network of data.[32?33]Comparing to these mentioned numerical methods,spectral methods are globally performing and they are continuous and do not need network construction.

    In addition to spectral methods,pseudospectral methods have been of high interest to authors presently.[34?37]

    Actually,in standard pseudospectral methods,interpolation operators are used to reduce the cost of computation of the inner product,in some spectral methods.For this purpose,a set of distinct interpolation pointsis defined,where the corresponding Lagrange interpolants are achieved.In addition to this,in collocation points,the residual function is set to vanish on the same set of points.Generally speaking,these collocation points do not need to be the same as the interpolation points;however,to have the Kronecker property,they are considered to be the same:therefore,by this trick,they reduce computational cost remarkably.[38?39]

    1.3 The Main Aim of This Paper

    In this study,we develop an exponentially accurate generalized pseudospectral method for solving the linear and nonlinear FPEs:This method is a generalization of the classical Lagrange interpolation method.To reach this goal,in Sec.2 some preliminaries of Jacobi polynomials are brought.In this section,we introduce the GL Functions and develop the GLJGL collocation scheme.Section 3 describes the numerical method;it explains the methodology and estimation of the error.We carry out numerical experiments to validate the presented collocation scheme.Subsequently,the analysis will be implemented to linear and nonlinear FPEs.Finally,some concluding remarks are given in Sec.5.

    2 Preliminaries and Notations

    2.1 Jacobi Polynomials

    The Jacobi polynomials are the eigenfunctions of a singular Sturm-Liouville equation. There are several particular cases of them,such as Legendre,the four kinds of Chebyshev,and Gegenbauer polynomials.Jacobi polynomials are defined on[?1,1]and are of interest recently.[36,40?43]The recursive formula for Jacobi polynomials is as follows:[44]

    with the properties as:

    and its weight function is wα,β(x)=(1 ? x)α(1+x)β.

    Moreover,the Jacobi polynomials are orthogonal on[?1,1]:

    where δm,nis the Kronecker delta function.

    The set of Jacobi polynomials makes a completeorthogonal system for any g(x) ∈there is an expansion as follows.

    where

    2.2 Generalized Lagrange(GL)functions

    In this section,generally,the GL functions are introduced and suitable formulas for the first-and second-order derivative matrices of these functions are presented.

    Definition 1 Considering the generalized Lagrange(GL)functions formula can be shown as:[38?39]

    where κj=u′j/?uw(xj), ?uw(x)=(1/u′)?xw(x),and u(x)is a continuous and sufficiently differentiable function which will be chosen to fit in the problem’s characteristics.For simplicity u=u(x)and ui=u(xi)are considered.The GL functions have the Kronecker property:

    Theorem 1 Considering the GL functions Luj(x)in Eq.(13),one can exhibit the first-order derivative matrices of GL functions as

    where

    Proof As the GL functions defined in Eq.(13),the first-order derivative formula for the case kj can be achieved as follows:

    But,when k=j,with L’H?opital’s rule:

    This completes the proof. ?

    2.3 Generalized Lagrange Jacobi Gauss-Lobatto(GLJGL)Collocation Method

    In case of GLJGL collocation method,w(x)in Eq.(13)can be restated as:

    where λ is a real constant and to simplify the notation,we write

    with the following important properties:

    Then,we have:

    Recalling thatand using formulas in Eq.(15)–(20),we find the entry of the first-order derivative matrix of GL functions as:

    Theorem 2 Let D(1)be the above matrix( first order derivative matrix of GL functions)and define matrix Q such thatthen,the second-order derivative matrix of GL functions can be formulated as:

    Proof See Ref.[38]. ?

    3 Numerical Method

    In this section, firstly,the time discretization method is recalled.Secondly,GLJGL collocation method is implemented to solve the FPEs.In a matrix form,the method has been presented and the error of this method is estimated.

    3.1 Discretization

    For solving the FPEs,we first discretize the time domain;to do this,we apply the Crank-Nicolson method.The main reason for choosing this method is its good convergence order and its unconditional stability.[45]To apply this method, firstly,we approximate and simplify the first-order derivative of y(x,t),with respect to the time variable,and deriving a formula from finite difference approximations as follows:

    The domain ? × [0,T)is decomposed as ? × [0,T)=and?t=T/s:The error of this approximation is of order O(?t).From now on,for simplicity yi(x)=y(x,Ti).

    Considering FPEs,one can read in which E0,k,E1,iand E2,iare the coefficient specified in the “Numerical Examples” section;in linear FPEs,E0,i=0.

    Implementing Crank-Nicolson on FPEs

    and can be simplified as

    By applying this method,the problem can be discretized in small time levels.As shown,time variable is discretized using Crank-Nicolson method.In each time level,we are to approximate the FPEs.Solving in sufficiently large time levels,brings in a good approximation for FPEs.

    3.2 Implementation of GLJGL Collocation Method for Solving FPEs

    As said in the previous subsection,in each time level,we approximate the solution of FPEs,and therefore,the time variable is omitted from the equation.In each time step,we approximate an equation like in Eq.(25).The unknown yi+1(x)is approximated as

    where

    As y(x,0)=y0(x)=f(x)we can calculate f(x)=LA0,and by collocating n+1 nodes we can result in:

    By the aid of these,we can write Eq.(25)as

    The boundary conditions,by considering Guass-Lobatto scheme and Eq.(26),are specified as:

    therefore,by collocating n+1 points and de fi ning

    then,the matrix form of Eqs.(28)and(29)will be

    The first and last row of matrices H0,H1,H2,and first and last elements of vector R are defined as if they satisfy the boundary condition of FPEs.

    Hence,we can achieve the numerical solution of y(x,t)at each time level.Notice that,at time level 0 the solution is computed from the initial condition;This is shown in Eq.(27).From the solution of the system in Eq.(30),at each time level,for the next time levels,we will achieve the unknown values.In other words,it means that by solving this system,in each step of i+1,the unknown coefficients Ai+1will be found.

    This system of equations is solved by applying a proper method like Newton methods.To show the accuracy of this method,some examples in the next section,are illustrated.

    3.3 Error Estimation

    Theorem 3 Let x0=a,xn=b andbe the rootsshifting Jacobi polynomialfrom[?1,1]to[a,b].Then,there exists a unique set of quadrature weights if ned by Jie Shen[46](Jacobi Gauss-Lobatto quadratures),such that for all functions p(x)of degree 2n?1

    where w(x)is the weight function and here this weight function is wα,β(u(x)).This is worth noticing that

    {ti,are Jacobi Gauss-Lobatto quadratures nodes and weights.

    Proof See Ref.[46]. ?

    In FPEs[a,b]=[0,1],u(x)=2x?1,then∫

    based in the last theorem,when p(x)∈Pm,m>2n?1,the above relation between integral and summation is not exact;it produces an error term as

    where ξ∈(a,b).Hence,

    For two arbitrary functions g1(x)and g2(x)we define

    then forwe have

    In the same fashion,for

    Now,by multiplying Eq.(25)with(x)wα,β(x)and integration in both sides:

    With Eqs.(26)and(33)the following relations in xkwill be obtained:(j=i,i+1)

    in which D[k,:]means that the k-th row of matrix D is taken.Now,by taking xkinto account.k=0,...,n

    Comparing with the system in Eq.(30)we solved,V is the error term vector:V is defined as:

    for k=1,...,n?1,and v0=0,vn=0.

    As er[q(x)]=0,as long as q(x)∈Pm,m≤2n?1.Obviously,if any of the above terms’degree is less and equal than 2n?1,the error of that term will be zero.In numerical examples,this error is shown and discussed.

    4 Numerical Examples

    In this section,in order to illustrate the performance of the GLJGL collocation method,we give some computations based on preceding sections,to support our theoretical discussion.By the aid of the presented method,linear and nonlinear forms of FPEs are solved.To illustrate the good accuracy of these methods,we apply different error criteria:The root-mean-square(RMS),Ne,and L2errors.

    where y(xj)and yn(xj)are exact and approximate value of FPEs on equidistant xj,j=1,...,r.

    As FPEs are defined over[0,1],the shifting function u(x),considered in Subsecs.2.2 and 2.3,is u(x)=2x?1.

    The CPU time for calculation of matrices D(1)and D(2),defined in Subsec.2.3,is brought in Table 1.

    Table 1 CPU time(sec)for calculation of derivative matrices for different values of n.

    The CPU time is performed on a DELL laptop with the configuration:Intel(R)Core(TM)i7-2670QM CPU,2.20 GHz;and 6 GB RAM.

    Example 1 Consider Refs.[2,6,11]Eq.(1)with:A(x)=?1,B(x)=1,f(x)=x,x∈[0,1].

    The exact solution of this test problem is y(x,t)=x+t.In this example E0,k=0,E1,k=?A(xk)=1,and E2,k=B(xk)=1 for k=1,...,n?1.

    As stated earlier,if the order of terms in Eq.(35)is less than 2n,the error terms vanish;so,the error vector for Ex.1,V in Eq.(35),can be simplified as

    In Table 2,the numerical absolute errors of Example 1,and their comparison with B-Spline method are displayed.Table 3,by representing the values of RMS and Neerrors,reveals the difference between the presented method and both HRBF and Kansa’s approaches.[6]

    In Fig.1,RMS,L2and Neerrors,for different values of n and?t,have been illustrated.Figure 2 shows the plot of error for Ex.1.

    Table 2 Numerical absolute errors of the method for Ex.1,in comparison with B-Spline method.[2]n=20,?t=0.01,α=0,β=1.

    Fig.1 Plot of results for Ex.1,α=0,β=1,r=20.(a)Value of error measurements for different values of?t.n=20 is fixed;(b)Value of error measurements for different values of n.?t=0.01 is fixed.

    Fig.2 Plot of absolute error of Ex.1,α=0,β=1,r=20,?t=0.01,n=20.

    Example 2 Consider Refs.[2,6,11]the backward Kolmogorov Eq.(4)with:A(x,t)=?(x+1),B(x,t)=x2et,f(x)=x+1,x∈[0,1].

    The exact solution of this test problem is y(x,t)=(x+1)et.In this example E0,k=0,E1,k=?A(xk,t)=

    Table 4 depicts the numerical absolute errors of Ex.2 and draws a distinction with the presented method and BSpline method.For showing the accuracy,the differences between the presented method and HRBF and Kansa’s approaches[6]are shown by calculating RMS and Nein Table 5.In Fig.3,the error measurements RMS,L2and Neare shown for different n and?t.In this figure,CPU times have been depicted for different n and?t.It explicitly says that when n increases or?t decreases,the time of solving the system of Eq.(30)increases.As it shows,when?t tends to a smaller value,it affects and decreases all RMS,Ne,L2and absolute errors.The plot of absolute error for Ex.2 is also shown in Fig.4.

    Table 3 Values of RMS and Nefor Ex.1 in comparison with HRBF and Kansa’s approaches.r=20,?t=0.01.

    Table 4 Numerical absolute errors of the method for Ex.2,in comparison with B-Spline method.[2]n=20,?t=0.01,α=0,β=1.

    Fig.3 Plot illustration results of Ex.2,α=0,β=1,r=20.(a)CPU times for solving Eq.(30)for different values of?t and n.(b)Value of error measurements for different values of?t.n=20 is fixed.(c)Plot of absolute error for different values of?t.n=20 is fixed.(d)Value of error measurements for different values of n.?t=0.01 is fixed.

    Fig.4 Plot of absolute error of Ex.2 for 15 collocation points.α=0,β=1,?t=0.01.

    Example 3 Consider Refs.[2,6,11]the nonlinear Eq.(5)with:A(x,t,y)=(7/2)y,B(x,t,y)=xy,f(x)=x,x∈[0,1].

    The exact solution of this test problem is y(x,t)=x/(1+t).By this consideration,Eq.(5)can be rewritten as

    By Eqs.(23)and(36)one can set:

    The error vector,V in Eq.(35),for Ex.2 and 3 is

    By the aid of Table 6.the numerical absolute errors for Ex.3 demonstrated and a comparison with the B-Spline method is made.For this example,also,RMS and Neare compared with the ones provided by HRBF[6]in Table 7.

    Table 5 Values of RMS and Nefor Ex.2 in comparison with HRBF and Kansa’s approaches.r=50,?t=0.01.

    Table 6 Numerical absolute errors of the method for Ex.3,in comparison with B-Spline method.[2]n=10,?t=0.001,α=1,β=1.

    Table 7 Values of RMS and Nefor Ex.3 in comparison with HRBF approach.r=50,?t=0.001.

    Fig.5 Plot illustration results of Ex.3,α=1,β=1,r=50.(a)CPU times for solving Eq.(30)for different values of?t and n.(b)Value of error measurements for different values of?t.n=10 is fixed.(c)Plot of absolute error for different values of?t.n=10 is fixed.(d)Value of error measurements for different values of n.?t=0.001 is fixed.

    Fig.6 Plot of absolute error of Ex.3 for 7 collocation points.α=1,β=1,?t=0.001.

    Figure 5 shows the values of RMS,L2and Neerrors for different n and?t.This Figure,illustrates the CPU times for solving the system of Eq.(30)for different n and?t.It shows that when n increases or?t decreases,the time of obtaining solution will increase.The fact is,as?t becomes smaller,RMS,Ne,L2and absolute errors decrease.The plot of absolute error for Ex.3 is also shown in Fig.6.

    Example 4 Consider Refs.[2,6,11]the nonlinear Eq.(5)with:A(x,t,y)=4(y/x)?x/3,B(x,t,y)=y,f(x)=x2,x∈[0,1].

    The exact solution of this test problem is y(x,t)=x2et.This nonlinear FPEs can be restated as

    It must be noted that:the way this relation is factorized is playing a central role in the exactness of solution.By Eqs.(23)and(37):

    For Ex.4,the error vector specified in Eq.(35)is

    for k=1,...,n?1 and v0=0,vn=0.

    In Table 8,the numerical absolute errors for Ex.4 demonstrated and a comparison with the B-Spline method is given.The error measurements RMS and Neare calculated by the presented method and HRBF[6]method and the results depicted in Table 9.Figure 7 illustrates the values of RMS,L2and Neerrors for different n and?t.This Figure,also,illustrates the CPU times for solving the system of Eq.(30)for different n and?t.It implies that when n increases or?t decreases,the time of obtaining solution increases.In fact,when?t becomes smaller,RMS,Ne,L2and absolute errors will decrease.The plot of absolute error for Ex.4 is also shown in Fig.8.

    Fig.7 Plot illustration results of Ex.4,α=1,β=1,r=50.(a)CPU times for solving Eq.(30)for different values of?t and n.(b)Value of error measurements for different values of?t.n=7 is fixed.(c)Plot of absolute error for different values of?t.n=7 is fixed.(d)Value of error measurements for different values of n.?t=0.001 is fixed.

    Table 8 Numerical absolute errors of the method for Ex.4,in comparison with B-Spline method.[2]n=7,?t=0.001,α=1,β=1.

    Table 9 Values of RMS and Nefor Ex.4 in comparison with HRBF approach.r=50,?t=0.001.

    Fig.8 Plot of absolute error of Ex.4,α=1,β=1,?t=0.001,n=7.

    5 Conclusion

    The(linear and nonlinear)FPEs have many applications in science and engineering.So,in this work,a numerical method based on GLJGL collocation method is discussed and developed to investigate FPEs.Firstly,we introduced GL functions with the Kronecker property.The advantages of using GL functions can be:

    (i)These functions are the generalization of the classical Lagrange polynomials and corresponding differentiation matrices of D(1)and D(2),as shown,can be reached by specific formulas;this helps create and introduce a derivative-free method.

    (ii)With different consideration of u(x),different basis of GL functions are provided;therefore,different problems defined on various intervals can be solved.

    (iii) The accuracy of the presented method by GL function has exponential convergence rate.

    Moreover,the time derivative of the FPEs is discretized using Crank-Nicolson method.The main reason for using Crank-Nicolson method is its unconditional stability.[3,45]

    By the aid of Crank-Nicolson technique,we solved the linear and nonlinear types of FPEs with GLJGL collocation method.We apply the pseudospectral method in a matrix based manner where the matrix based structure of the present method makes it easy to implement.Also,to show the accuracy and ability of the proposed method,several examples are solved.

    Several examples are given and the results obtained using the method introduced in this article show that the new proposed numerical procedure is efficient

    The results showed that the approximate solutions of the GLJGL collocation method can be acceptable and provides very accurate results even with using a small number of collocation points.To illustrate the suitable accuracy of the proposed method,we used three different error criteria,namely,RMS,L2and Ne.Additionally,the obtained results have been compared with B-Spline,HRBF and Kansa methods,showing the accuracy and reliability of the presented method.

    This method can also be used as a powerful tool for investigation of other problems.

    [1]H.Risken,The Fokker-Planck Equation:Method of Solution and Applications,Springer Verlag,Belin,Heidelberg(1989).

    [2]M.Lakestani and M.Dehghan,Numer.Method.Part.D.E 25(2009)418.

    [3]M.Dehghan and V.Mohammadi,Eng.Anal.Bound.Elem.47(2014)38.

    [4]S.Jenks,Introduction to Kramers Equation,Drexel University,Philadelphia(2006).

    [5]A Compte and D Jou,J.Phys.A-Math.Gen.29(1996)4321.

    [6]S.Kazem,J.A.Rad,and K.Parand,Eng.Anal.Bound.Elem.36(2012)181.

    [7]V.Palleschi,F.Sarri,G.Marcozzi,and M.R.Torquati,Phys.Lett.A 146(1990)378.

    [8]V.Palleschi and N.de Rosa,Phys.Lett.A 163(1992)381.

    [9]V.Vanaja,Appl.Numer.Math.9(1992)533.

    [10]M.P.Zorzano,H.Mais,and L.Vazquez,Appl.Math.Comput.98(1999)109.

    [11]M.Dehghan and M.Tatari,Physica Scripta 74(2006)310.

    [12]M.Tatari,M.Dehghan,and M.Razzaghi,Math.Comput.Model.45(2007)639.

    [13]M.F.Wehner and W.G.Wolfer,Phys.Rev.A 35(1987)1795.

    [14]J.J.Brey,J.M.Casado,and M.Morillo,Phys.A 128(1984)497.

    [15]D.S.Zhang,G.W.Wei,D.J.Kouri,and D.K.Ho ff man,Phys.Rev.E 56(1997)1197.

    [16]A.N.Drozdov and M.Morillo,Phys.Rev.E 54(1996)931.

    [17]A.H.Bhrawy,M.A.Abdelkawy,J.T.Machado,and A.Z.M.Amin,Comput.Math.Appl.2016:doi.org/10.1016/j.camwa.2016.04.011.

    [18]A.H.Bhrawy,Numer.Algorithm.73(2016)91.

    [19]K.Parand and M.Delkhosh,J.Comput.Appl.Math.317(2017)624.

    [20]K.Parand and M.Delkhosh,Boletim da Sociedade Paranaense de Matem′atica 36(2018)33.

    [21]A.H.Bhrawy and M.M.Al-Shomrani,Adv.Di ff er.E 2012(2012)8.

    [22]E.H.Doha and A.H.Bhrawy,Appl.Numer.Math.58(2008)1224.

    [23]A.H.Bhrawy and M.M.Alghamdi,Boundary Value Prob.2012(2012)62.

    [24]H.Tal-Ezer,J.Numer.Anal.23(1986)11.

    [25]H.Tal-Ezer,J.Numer.Anal.26(1989)1.

    [26]A.H.Bhrawy and M.M.Al-Shomrani,Abstr.Appl.Anal.(2012).

    [27]A.H.Bhrawy,E.H.Doha,M.A.Abdelkawy,and R.A.Van Gorder,Appl.Math.Model.40(2016)1703.

    [28]K.Parand,M.Delkhosh,and M.Nikarya,Tbilisi Math.J.10(2017)31.

    [29]F.Baharifard,S.Kazem,and K.Parand,Inter.J.Appl.Comput.Math.2(2016)679.

    [30]E.H.Doha,A.H.Bhrawy,D.Baleanu,and S.S.Ezz-Eldien,Adv.Di ff er.E 2014(2014)231.

    [31]J.P.Boyd,Chebyshev and Fourier Spectral Methods,Second Edition,Dover,New York(2000).

    [32]K.Parand and M.Hemami,Int.J.Appl.Comput.Math.3(2016)1053.

    [33]K.Parand and M.Hemami,Iranian J.Sci.Technol.T.A.Science 41(2015)677.

    [34]M.A.Saker,Romanian J.Phys.2017(2017)105.

    [35]A.H.Bhrawy,M.A.Abdelkawy,and F.Mallawi,Boundary Value Prob.2015(2015)103.

    [36]E.H.Doha,A.H.Bhrawy,and M.A.Abdelkawy,J.Comput.Nonlin.Dyn.10(2015)021016.

    [37]K.Parand,S.Lati fi,and M.M.Moayeri,SeMA J.(2017).

    [38]M.Delkhosh and K.Parand,Generalized Pseudospectral Method:Theory and Application,Submitted.

    [39]K.Parand,S.Lati fi,M.Delkhosh,and M.M.Moayeri,Eur.Phys.J.Plus.133(2018)28.

    [40]A.H.Bhrawy and M.Zaky,Math.Method Appl.Sci.39(2015)1765.

    [41]A.H.Bhrawy,J.F.Alzaidy,M.A.Abdelkawy,and A.Biswas,Nonlin.Dyn.84(2016)1553.

    [42]A.H.Bhrawy,E.H.Doha,S.S.Ezz-Eldien,and M.A.Abdelkawy,Comput.Model.Eng.Sci.104(2015)185.

    [43]A.H.Bhrawy,E.H.Doha,D.Baleanu,and R.M.Hafez,Math.Method Appl.Sci.38(2015)3022.

    [44]E.H.Doha,A.H.Bhrawy,and S.S.Ezz-Eldien,Appl.Math.Model.36(2012)4931.

    [45]A.R.Mitchell and D.F.Griffiths,The Finite Di ff erence Methods in Partial differential Equations,John Wiley,Chichester(1980).

    [46]J.Shen,T.Tang,and L.L.Wang,Spectral Methods:Algorithms,Analysis and Applications,Springer Sci.Bus.Media.41(2011).

    国产 精品1| 亚洲伊人久久精品综合| 亚洲欧美日韩东京热| 欧美一级a爱片免费观看看| 国产视频内射| 久久影院123| 亚洲精品乱久久久久久| 日韩大片免费观看网站| 一区二区av电影网| 偷拍熟女少妇极品色| 欧美zozozo另类| 免费电影在线观看免费观看| 国产亚洲5aaaaa淫片| 中文字幕av成人在线电影| 国产精品国产三级专区第一集| 免费播放大片免费观看视频在线观看| 国产国拍精品亚洲av在线观看| 久久人人爽av亚洲精品天堂 | 男女国产视频网站| 国产免费视频播放在线视频| 久久久久久久精品精品| 成年人午夜在线观看视频| 在线免费观看不下载黄p国产| 久久久久久久大尺度免费视频| 久久久久久久久久久丰满| 在线观看一区二区三区激情| 伊人久久精品亚洲午夜| 在线a可以看的网站| 人妻夜夜爽99麻豆av| 久久99蜜桃精品久久| 久久久久精品久久久久真实原创| 国产视频首页在线观看| 欧美成人a在线观看| 好男人在线观看高清免费视频| 国产黄色视频一区二区在线观看| 国产亚洲av片在线观看秒播厂| 免费av观看视频| 亚洲在久久综合| 亚洲在久久综合| 欧美三级亚洲精品| 亚洲自拍偷在线| 日韩大片免费观看网站| 嫩草影院新地址| 2021少妇久久久久久久久久久| 久久人人爽人人片av| 嘟嘟电影网在线观看| 少妇 在线观看| 久久精品久久久久久久性| 久久久a久久爽久久v久久| 成人午夜精彩视频在线观看| 国产毛片a区久久久久| 成人一区二区视频在线观看| 少妇 在线观看| 国产精品久久久久久精品电影小说 | 最近最新中文字幕免费大全7| 91久久精品电影网| 久久99蜜桃精品久久| 亚洲怡红院男人天堂| a级毛片免费高清观看在线播放| 午夜福利网站1000一区二区三区| 人妻夜夜爽99麻豆av| 免费观看a级毛片全部| 男女下面进入的视频免费午夜| 亚洲精品色激情综合| 欧美另类一区| 在线观看免费高清a一片| 日本欧美国产在线视频| 欧美丝袜亚洲另类| 国产 一区 欧美 日韩| 亚洲精品一二三| 看免费成人av毛片| 日本黄大片高清| 亚州av有码| 99九九线精品视频在线观看视频| 王馨瑶露胸无遮挡在线观看| 丝瓜视频免费看黄片| 国产在线男女| 我的老师免费观看完整版| 成人国产av品久久久| 国产成人精品一,二区| 中文资源天堂在线| 九九在线视频观看精品| xxx大片免费视频| 99九九线精品视频在线观看视频| 午夜福利视频精品| 亚洲在线观看片| 国产探花极品一区二区| 成人毛片a级毛片在线播放| av播播在线观看一区| 777米奇影视久久| 天美传媒精品一区二区| 国产成人aa在线观看| 久热这里只有精品99| 一个人看视频在线观看www免费| 国产黄频视频在线观看| 日韩av免费高清视频| 69av精品久久久久久| 国产 精品1| 亚洲天堂国产精品一区在线| 天堂中文最新版在线下载 | 午夜亚洲福利在线播放| 99久久精品国产国产毛片| 国产精品久久久久久久久免| 欧美高清成人免费视频www| 欧美激情久久久久久爽电影| 午夜福利在线观看免费完整高清在| 汤姆久久久久久久影院中文字幕| 国产成人精品婷婷| 亚洲欧美清纯卡通| av黄色大香蕉| 久久久久国产网址| 亚洲欧美日韩无卡精品| 激情 狠狠 欧美| videossex国产| 亚洲图色成人| 亚洲,欧美,日韩| 成人毛片60女人毛片免费| 国产成人91sexporn| 一级毛片电影观看| 51国产日韩欧美| av在线app专区| 亚洲在久久综合| 91午夜精品亚洲一区二区三区| 国产精品一及| 欧美成人一区二区免费高清观看| 免费在线观看成人毛片| 国产在线男女| 日韩人妻高清精品专区| 中国三级夫妇交换| 国产成人免费无遮挡视频| 又爽又黄无遮挡网站| 久热这里只有精品99| 精品国产露脸久久av麻豆| 亚洲精品,欧美精品| 久久久成人免费电影| 亚洲aⅴ乱码一区二区在线播放| 少妇熟女欧美另类| 国产精品人妻久久久久久| 大话2 男鬼变身卡| 在线观看三级黄色| 能在线免费看毛片的网站| 中文字幕免费在线视频6| av在线亚洲专区| 国产女主播在线喷水免费视频网站| 亚洲欧美成人综合另类久久久| 亚洲内射少妇av| 久久久久九九精品影院| 国产爽快片一区二区三区| 美女视频免费永久观看网站| 亚洲人成网站高清观看| 免费看光身美女| 99精国产麻豆久久婷婷| 七月丁香在线播放| 亚洲综合精品二区| 国产免费又黄又爽又色| 国产老妇女一区| 26uuu在线亚洲综合色| 午夜免费鲁丝| 女的被弄到高潮叫床怎么办| 看免费成人av毛片| eeuss影院久久| 在线观看国产h片| 日韩亚洲欧美综合| 国产一区有黄有色的免费视频| 成年版毛片免费区| 草草在线视频免费看| 亚洲av一区综合| 少妇 在线观看| 九九爱精品视频在线观看| av在线亚洲专区| 亚洲精品视频女| 啦啦啦在线观看免费高清www| videossex国产| 国产在线一区二区三区精| 岛国毛片在线播放| 在线观看一区二区三区| 插阴视频在线观看视频| 国产伦精品一区二区三区四那| 亚洲国产高清在线一区二区三| 久久99热这里只有精品18| 亚洲精品国产成人久久av| 亚洲婷婷狠狠爱综合网| 特大巨黑吊av在线直播| 成人高潮视频无遮挡免费网站| 2021天堂中文幕一二区在线观| 在线观看国产h片| 秋霞在线观看毛片| 99久久精品一区二区三区| 天堂中文最新版在线下载 | 亚洲国产欧美人成| 久久国内精品自在自线图片| 91精品国产九色| 免费黄网站久久成人精品| 国产v大片淫在线免费观看| 日韩电影二区| 国产毛片a区久久久久| 国产探花极品一区二区| 欧美潮喷喷水| 男女那种视频在线观看| 插逼视频在线观看| 九九久久精品国产亚洲av麻豆| 久久97久久精品| 嘟嘟电影网在线观看| 不卡视频在线观看欧美| 26uuu在线亚洲综合色| 亚洲欧美日韩卡通动漫| 亚洲av不卡在线观看| 成年版毛片免费区| 黄片wwwwww| 免费观看无遮挡的男女| 久久久a久久爽久久v久久| 亚洲第一区二区三区不卡| 免费av毛片视频| 嫩草影院入口| 久久精品国产鲁丝片午夜精品| .国产精品久久| 成人国产麻豆网| 69av精品久久久久久| 日本三级黄在线观看| 欧美最新免费一区二区三区| 国产精品久久久久久精品电影| 亚洲婷婷狠狠爱综合网| 国产免费又黄又爽又色| 午夜福利高清视频| 夫妻午夜视频| 成年免费大片在线观看| 人妻制服诱惑在线中文字幕| 七月丁香在线播放| 精品一区二区三区视频在线| 91精品一卡2卡3卡4卡| 国产黄频视频在线观看| 深爱激情五月婷婷| 日日啪夜夜爽| 精品国产一区二区三区久久久樱花 | 秋霞伦理黄片| av网站免费在线观看视频| 国产亚洲午夜精品一区二区久久 | 色网站视频免费| 亚洲国产精品专区欧美| 久久午夜福利片| 乱码一卡2卡4卡精品| 美女脱内裤让男人舔精品视频| 久久久久久伊人网av| 美女cb高潮喷水在线观看| 亚洲精品乱码久久久v下载方式| 九九在线视频观看精品| 黄片wwwwww| 国产成人a∨麻豆精品| 伊人久久国产一区二区| 久久热精品热| 久久99热这里只频精品6学生| 国产v大片淫在线免费观看| h日本视频在线播放| 国内揄拍国产精品人妻在线| 2021少妇久久久久久久久久久| 欧美97在线视频| 91久久精品电影网| 激情 狠狠 欧美| 又爽又黄无遮挡网站| 免费大片黄手机在线观看| 26uuu在线亚洲综合色| 午夜老司机福利剧场| 久久精品夜色国产| 国产91av在线免费观看| 国产男女超爽视频在线观看| 男女下面进入的视频免费午夜| 国产视频首页在线观看| 晚上一个人看的免费电影| 白带黄色成豆腐渣| 爱豆传媒免费全集在线观看| 国产淫片久久久久久久久| 国产伦精品一区二区三区四那| av播播在线观看一区| 欧美激情在线99| 别揉我奶头 嗯啊视频| 亚洲av二区三区四区| 美女国产视频在线观看| 在线 av 中文字幕| 18+在线观看网站| 中文欧美无线码| 丝袜美腿在线中文| 大又大粗又爽又黄少妇毛片口| 男的添女的下面高潮视频| 精品一区在线观看国产| 亚洲av不卡在线观看| 99视频精品全部免费 在线| 国产精品人妻久久久影院| 最近2019中文字幕mv第一页| 尾随美女入室| 日韩伦理黄色片| av国产久精品久网站免费入址| 中文字幕人妻熟人妻熟丝袜美| 国产av码专区亚洲av| 亚洲自拍偷在线| 国模一区二区三区四区视频| 国产欧美日韩精品一区二区| 亚洲熟女精品中文字幕| 久久6这里有精品| 婷婷色av中文字幕| 国产免费福利视频在线观看| 观看美女的网站| 在线亚洲精品国产二区图片欧美 | 国产男女超爽视频在线观看| 亚州av有码| 大片电影免费在线观看免费| 国产精品伦人一区二区| 三级国产精品欧美在线观看| 最新中文字幕久久久久| 一区二区三区乱码不卡18| 乱码一卡2卡4卡精品| 成年女人看的毛片在线观看| 精品午夜福利在线看| 人妻少妇偷人精品九色| 一个人看视频在线观看www免费| 免费电影在线观看免费观看| 青春草国产在线视频| 一个人看视频在线观看www免费| 久久久成人免费电影| 国产老妇伦熟女老妇高清| 欧美老熟妇乱子伦牲交| 一区二区av电影网| 国产人妻一区二区三区在| 久久亚洲国产成人精品v| 亚洲欧洲国产日韩| 亚洲国产精品成人久久小说| 中文资源天堂在线| 亚洲伊人久久精品综合| 亚洲精品成人av观看孕妇| 国产毛片a区久久久久| 亚洲自偷自拍三级| 亚洲四区av| 国产淫语在线视频| 麻豆久久精品国产亚洲av| 男女下面进入的视频免费午夜| 亚洲国产欧美在线一区| 国产一区亚洲一区在线观看| 视频中文字幕在线观看| 亚洲精品第二区| 青春草国产在线视频| 国产日韩欧美在线精品| 91狼人影院| 日本免费在线观看一区| 91久久精品国产一区二区三区| 亚洲av不卡在线观看| 亚洲电影在线观看av| 亚洲国产欧美人成| av在线app专区| 亚洲av欧美aⅴ国产| 欧美一区二区亚洲| 久久精品国产亚洲av天美| 国产高潮美女av| 最近中文字幕高清免费大全6| 亚洲av成人精品一区久久| 亚洲精品,欧美精品| 国模一区二区三区四区视频| 日韩成人伦理影院| 各种免费的搞黄视频| 午夜激情福利司机影院| 精品国产一区二区三区久久久樱花 | 亚洲不卡免费看| 你懂的网址亚洲精品在线观看| 亚洲欧洲日产国产| 久久久久九九精品影院| 五月开心婷婷网| 精品午夜福利在线看| 91精品国产九色| 亚洲电影在线观看av| 亚洲精品久久午夜乱码| 久久这里有精品视频免费| 在线观看一区二区三区| 亚洲精品第二区| 欧美区成人在线视频| 偷拍熟女少妇极品色| 国产色爽女视频免费观看| 亚洲精品日韩在线中文字幕| 一级毛片我不卡| 国产午夜精品一二区理论片| 亚洲欧洲国产日韩| 99热6这里只有精品| 色网站视频免费| 超碰av人人做人人爽久久| tube8黄色片| 欧美日韩精品成人综合77777| 国产 精品1| 国产高清不卡午夜福利| av国产精品久久久久影院| 青春草视频在线免费观看| 少妇被粗大猛烈的视频| 女人十人毛片免费观看3o分钟| 国产永久视频网站| 国产男人的电影天堂91| 日本三级黄在线观看| 免费av毛片视频| videos熟女内射| 各种免费的搞黄视频| 成人美女网站在线观看视频| 亚洲av男天堂| 又黄又爽又刺激的免费视频.| 丰满人妻一区二区三区视频av| 在线观看人妻少妇| 亚洲av福利一区| 欧美 日韩 精品 国产| 91久久精品电影网| 性插视频无遮挡在线免费观看| 午夜免费观看性视频| 国产伦精品一区二区三区视频9| 国产精品一区www在线观看| 九草在线视频观看| 国国产精品蜜臀av免费| 国产乱人偷精品视频| 亚洲精品久久久久久婷婷小说| 禁无遮挡网站| av福利片在线观看| 亚洲,一卡二卡三卡| 久久久欧美国产精品| 免费电影在线观看免费观看| 18禁动态无遮挡网站| 国内少妇人妻偷人精品xxx网站| 亚洲色图综合在线观看| 欧美日本视频| 爱豆传媒免费全集在线观看| 晚上一个人看的免费电影| 国内少妇人妻偷人精品xxx网站| 性插视频无遮挡在线免费观看| 91狼人影院| 亚洲av日韩在线播放| 久久久国产一区二区| 亚洲经典国产精华液单| 国产黄色免费在线视频| 九色成人免费人妻av| 热99国产精品久久久久久7| 久久精品综合一区二区三区| av黄色大香蕉| 日韩中字成人| 国产美女午夜福利| 天堂中文最新版在线下载 | 丰满乱子伦码专区| 亚洲av.av天堂| 最近手机中文字幕大全| 久久精品国产亚洲av涩爱| 自拍欧美九色日韩亚洲蝌蚪91 | 男女边摸边吃奶| 亚洲欧美日韩无卡精品| 日日摸夜夜添夜夜爱| 久久精品国产a三级三级三级| 九九久久精品国产亚洲av麻豆| 又爽又黄无遮挡网站| 我的老师免费观看完整版| 精品久久久久久久末码| 91狼人影院| 麻豆国产97在线/欧美| 亚洲天堂国产精品一区在线| 99热国产这里只有精品6| 亚洲人与动物交配视频| 在线天堂最新版资源| 综合色丁香网| 80岁老熟妇乱子伦牲交| 高清日韩中文字幕在线| 在线亚洲精品国产二区图片欧美 | 熟女av电影| 免费电影在线观看免费观看| 亚洲av不卡在线观看| 亚洲成色77777| 亚州av有码| 极品少妇高潮喷水抽搐| 少妇被粗大猛烈的视频| 免费看av在线观看网站| 久久精品人妻少妇| 老司机影院成人| 欧美区成人在线视频| 精品午夜福利在线看| 国产精品久久久久久精品古装| 男的添女的下面高潮视频| 男插女下体视频免费在线播放| 看免费成人av毛片| 日韩大片免费观看网站| 一级av片app| 欧美xxⅹ黑人| 亚洲精品国产av成人精品| 在线播放无遮挡| 免费电影在线观看免费观看| 国产日韩欧美亚洲二区| 99久久精品热视频| 伊人久久国产一区二区| 亚洲国产精品专区欧美| 伊人久久国产一区二区| 亚洲综合色惰| 精品人妻一区二区三区麻豆| 亚洲综合色惰| 尤物成人国产欧美一区二区三区| 精品久久久久久久久亚洲| 狂野欧美白嫩少妇大欣赏| 午夜福利网站1000一区二区三区| 免费观看的影片在线观看| 在线a可以看的网站| 国精品久久久久久国模美| 麻豆成人av视频| 少妇的逼好多水| 最近最新中文字幕大全电影3| 午夜福利在线在线| 久久精品国产亚洲网站| 国内少妇人妻偷人精品xxx网站| 亚洲va在线va天堂va国产| 国产成人精品福利久久| 午夜免费鲁丝| 内射极品少妇av片p| 色视频在线一区二区三区| 欧美激情国产日韩精品一区| 99九九线精品视频在线观看视频| 97超碰精品成人国产| 精品一区二区免费观看| 乱系列少妇在线播放| 91久久精品电影网| 国产人妻一区二区三区在| 久久久久久九九精品二区国产| 久久久色成人| 亚洲av日韩在线播放| 亚洲精品国产av成人精品| 夜夜看夜夜爽夜夜摸| 国语对白做爰xxxⅹ性视频网站| 99视频精品全部免费 在线| 一区二区三区免费毛片| 三级经典国产精品| 毛片一级片免费看久久久久| 国产欧美亚洲国产| 少妇裸体淫交视频免费看高清| 久热这里只有精品99| 男女边吃奶边做爰视频| 国产伦精品一区二区三区四那| 高清av免费在线| 日韩一区二区视频免费看| 国产黄a三级三级三级人| 免费少妇av软件| 国产欧美另类精品又又久久亚洲欧美| 在线观看一区二区三区激情| 亚州av有码| 久久久久久久亚洲中文字幕| 日韩大片免费观看网站| 日本一本二区三区精品| 大片电影免费在线观看免费| 久热久热在线精品观看| av国产免费在线观看| 天堂俺去俺来也www色官网| 久久女婷五月综合色啪小说 | 午夜亚洲福利在线播放| 国产欧美亚洲国产| 天天躁日日操中文字幕| 夫妻性生交免费视频一级片| 男男h啪啪无遮挡| 久久女婷五月综合色啪小说 | 国产精品伦人一区二区| 国产精品无大码| 亚洲国产成人一精品久久久| 国产精品av视频在线免费观看| 精品99又大又爽又粗少妇毛片| 在线观看一区二区三区| 在线免费观看不下载黄p国产| 91午夜精品亚洲一区二区三区| 国产黄色视频一区二区在线观看| 亚洲精品乱码久久久久久按摩| 久久久久国产精品人妻一区二区| 久久久亚洲精品成人影院| 国产人妻一区二区三区在| 国产高潮美女av| 水蜜桃什么品种好| 亚洲欧美精品自产自拍| 一区二区三区四区激情视频| 免费观看av网站的网址| 国产精品久久久久久精品古装| 日韩精品有码人妻一区| 久热久热在线精品观看| 国产精品三级大全| 欧美日韩综合久久久久久| 国产69精品久久久久777片| 大码成人一级视频| 99久久九九国产精品国产免费| 国产精品一区www在线观看| 日韩制服骚丝袜av| 伦精品一区二区三区| 麻豆成人午夜福利视频| 亚洲国产av新网站| 高清视频免费观看一区二区| 国产淫片久久久久久久久| 国产精品秋霞免费鲁丝片| 尾随美女入室| 精品一区二区三区视频在线| 亚洲怡红院男人天堂| 人妻一区二区av| 麻豆成人午夜福利视频| 免费观看a级毛片全部| 久久久精品免费免费高清| 一区二区三区乱码不卡18| 哪个播放器可以免费观看大片| 日韩一区二区视频免费看| 欧美日韩国产mv在线观看视频 | 最近最新中文字幕免费大全7| 国产成人freesex在线| 简卡轻食公司| 亚洲av男天堂| 亚洲欧美日韩东京热| 午夜激情福利司机影院| 亚洲自偷自拍三级| 成人亚洲精品一区在线观看 | 精品久久国产蜜桃| 午夜福利视频1000在线观看| 国产午夜福利久久久久久| 午夜激情福利司机影院| 美女主播在线视频| 精品亚洲乱码少妇综合久久| 一级a做视频免费观看| 久久久久久久久久成人| 性插视频无遮挡在线免费观看| 两个人的视频大全免费| 啦啦啦啦在线视频资源| 99久久精品热视频|