• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Group of Automorphisms of Total Orthogonal Graphs of Odd Characteristic

    2019-03-30 08:20:48GENGTianzhen耿天真MAXiaobin馬曉玢
    應(yīng)用數(shù)學(xué) 2019年2期
    關(guān)鍵詞:天真

    GENG Tianzhen(耿天真),MA Xiaobin(馬曉玢)

    (School of Mathematics and Big Data,Anhui University of Science and Technology,Huainan 232000,China)

    Abstract: Let Fnq be the n-dimensional row vector space over a finite field Fq of odd characteristic,and let Sn be a non-singular n×n symmetric matrix over Fq.The total orthogonal graph O(Sn,q) with respect to Sn is defined to be the graph with vertices of all 1-dimensional subspace of Fnq ,two vertices [α] and [β] are adjacent if and only if αSnβT≠ 0.The three types of isotropic orthogonal graphs studied in [3] are induced subgraphs of O(Sn;q) with vertices of all isotropic lines.In this paper,the automorphism group of O(Sn,q) is determined.Not like the case of isotopic orthogonal graph studied in[3] (where the graph is vertex transitive),it turns out that the vertex set of O(Sn,q) has three orbits if n is odd,and it has only two orbits if n is even.

    Key words: Orthogonal graph;Graph automorphism;Transitivity

    1.Introduction

    Recently,some graphs based on geometry of classical groups have attracted more attention.We now list some papers concerning with such graphs.TANG and WAN[9]studied the symplectic graph over an arbitrary finite field and determined the full automorphism group.LI and WANG[6]further showed that the subconstituents of the symplectic graph are strictly Deza graphs except the trivial case whenυ= 2.Meemark and Prinyasart[8]introduced the symplectic graphSp(2υ,Zpn) and showed that it is strongly regular whenυ= 1 and it is arc transitive whenpis an odd prime.LI et al.[5]continued the research onSp(2υ,Zpn),showing thatSp(2υ,Zpn) is arc transitive for any primep,and it is a strictly Deza graph ifυ ≥2 andn ≥2.GU and WAN[2]studied the subconstituents of the symplectic graphs modulopn.WAN and ZHOU[11?12]studied the(isotropic)unitary graphs and the(isotropic)orthogonal graphs of Characteristic 2.We here particularly mention [3] due to GU,which seems much related to our topic.Forn=2υor 2υ+1 or 2υ+2,GU[3]defined the(isotropic)orthogonal graphO(n,q) with respect to a symmetric matrixoverFq,where ?=?or ?=1 or ?=diag{1,?z},in such a way: the vertex set of the graph is all isotropic lines ofFnq,two isotropic lines[α]and[β]are adjacent if and only ifαHβT≠0.GU[3]showed thatO(n,q) is strongly regular forυ ≥2,and determined the group of automorphisms ofO(n,q).By the automorphism group of the graph it is easy to see thatO(n,q) is vertex transitive and edge transitive.For more results about the graphs based on geometry of classical groups the reader may refer to [4,7,13].

    One might find that the vertex set of the graphs introduced in [2-9,11-13] are taken to be isotropic lines,or sometimes totally isotropic subspaces of the space in question.In this paper,we shall use all 1-dimensional subspace (isotropic or not) of a orthogonal space to define a new graph,which includes the isotropic orthogonal graph as an induced subgraph.The vertex set of the graph chosen in such a way seems much natural.Indeed,the vertex set of the earliest graph studied by TANG and WAN,i.e.,the symplectic graph,is taken to be all 1-dimensional subspace (although,it can be also viewed consisting of all isotropic lines).

    LetFqbe a finite field withqelements,whereqis a power of an odd primepandn ≥2 be an integer.LetFnq={(a1,a2,...,an) :ai ∈Fq}be then-dimensional row vector space overFq.Denote byei(1≤i ≤n)the row vector inFnqwhoseith coordinate is 1 and all others are 0.For a nonzero vectorα=(a1,...,an)∈Fnq,let [α] denote the 1-dimensional subspace ofFnqspanned byα.Sometimes,[α] = [(a1,...,an)] is directly written as [a1,...,an] for simplicity.Since,[α] = [kα] for anyk ∈F?q=Fq {0},the representation of a vertex in the form [α] is not unique.However if we write the vertex in the form [a1,a2,...,an] such that the first (from left) nonzero coordinate is 1,then the representation is unique.A vertex[a1,a2,...,an] written in such way is said with standard form.

    For ann×nmatrixM,we denote byMTand|M|the transpose and the determinant ofM,respectively.LetGbe the subgroup ofF?qof all square elements.The index ofGinF?qis 2.ThusF?qis exactly a disjoint union ofGandzG,wherezis an arbitrarily given non-square element inFq.Let (α,β)=αSnβTbe a non-degenerate symmetric bilinear form defined onFnqwith respect to a non-singularn×nsymmetric matrixSnoverFq.A vectorαis called isotropic if (α,α) = 0,otherwise,it is called non-isotropic.If a subspace ofFnqconsists of isotopic vectors,it is said to be total isotropic.

    We now define the so-called total orthogonal graphO(Sn,q),with respect to a nonsingularn×nsymmetric matrixSnoverFqin such a way: the vertex set is taken to be all 1-dimensional subspaces (or lines) ofFnq,two lines [α] and [β] are adjacent if and only if (α,β)≠0.Obviously,O(Sn,q) is not a simple graph since for a non-isotropic line [α],[α]~[α].By Theorem 1.23 in[10]we know that ann×nnonsingular symmetric matrix overFqis congruent to diag(In?1,θ),whereIn?1refers to the identity matrix of ordern ?1,andθ= 1 orθ=z.If two non-singular symmetric matricesSnandHnare congruent,that is,Sn=PHnPTfor an invertible matrixP,thenO(Sn,q) is isomorphic toO(Hn,q) under the mapping [α][αP],?[α]∈V(O(Sn,q)).In view of this point,we will directly assume thatSn=InorSn=diag(In?1,z),withza fixed non-square element ofFq.

    A similar discussion as Theorem 2.1 in [9] shows thatO(Sn,q) is also a strongly regular graph with parameters

    In this paper,the automorphism group ofO(Sn,q) is determined,and the partition ofV(O(Sn,q)) as the union of different orbits is done.

    Remark 1.1(i)The three types of isotropic orthogonal graphs studied in[3]are induced subgraphs ofO(Sn,q) with vertices of all isotropic lines.

    (ii) For certain unknown reasons,the case when ?is a non-square element ofFqis left by [3] without consideration.However,the orthogonal graphs studied in this paper cover all cases,especially the case whenSnis congruent towhich is left without consideration in [3].

    2.Automorphisms of O(Sn,q)

    In this section,we determine the automorphism group,denoted by Aut(O(Sn,q)),ofO(Sn,q).Some standard automorphisms are constructed firstly.Based on them every automorphism ofO(Sn,q) is described explicitly.Alln×ninvertible matrices overFqforms a group with respect to matrix multiplication,which is called the general linear group of degreenoverFqand is denoted by GLn(Fq).

    LetP ∈GLn(Fq).We defineσP:V(O(Sn,q))→V(O(Sn,q)) by [α][αP].Then using a similar proof as that of Proposition 3.1 in [3] we obtain:

    Lemma 2.11) LetP ∈GLn(Fq).ThenσPis an automorphism ofO(Sn,q) if and only if PSPT=kSfor somek ∈F?q.

    2) ForP1,P2∈GLn(Fq),σP1=σP2if and only ifP1=kP2for somek ∈F?q.

    IfP ∈GLn(Fq) satisfiesPSnPT=kSnfor somek ∈F?qwe callPa generalized orthogonal matrix.All generalized orthogonal matrices of ordernwith respect toSnforms a subgroup of GLn(Fq),called the generalized orthogonal group of degreenoverFqand denoted by GOn(Fq).The center of GOn(Fq) consists of allkEnwithk ∈F?q.The factor group of GOn(Fq) with respect to its center is called the projective generalized orthogonal group of degreenoverFqand is denoted by PGOn(Fq).According to Lemma 2.1,PGOn(Fq) can be viewed as a subgroup of Aut(O(Sn,q)).

    Letn= 2,and supposeπis a bijective mapping onFqsatisfyingπ(?x?1θ?1) =?θ?1π(x)?1for anyx ∈F?qandπ(0) = 0.DefineσπfromV(O(S2,q)) to itself by sending each vertex [a1,a2],with the standard form,to [a1,π(a2)].

    Lemma 2.2σπis an automorphism ofO(S2,q).

    ProofEach vertex [α] is written in the standard form.Obviously,σπis a bijective mapping onV(O(S2,q)).Suppose that [α] = [a1,a2][b1,b2] = [β].Equivalently,a1b1+θa2b2= 0.Ifa1= 0,thena2=b1= 1 andb2= 0.Clearly,σπ([α])σπ([β]).Ifb1= 0,the result is similar.Now suppose that botha1andb1are 1.Thusb2=?θ?1a?12.By the hypothesis forπ,we haveπ(b2) =π(?θ?1a?12) =?θ?1π(a2)?1,which follows that 1+π(a2)π(b2)θ= 0,showing thatσπ([α])σπ([β]).Consequently,[α][β]?σπ([α])σπ([β]).It follows thatd(σπ([α]))≤d([α])for any vertex[α],whered([α])denotes the degree of [α].By

    we haved(σπ([α]))=d([α]) for any vertex [α].Then we conclude that [α]~[β]?σπ([α])~σπ([β]).Thus,σπis an automorphism.

    Remark 2.1The bijective mappingπonFq,for whichπ(?x?1θ?1)=?θ?1π(x)?1andπ(0)=0,needs not to be an automorphism ofFq.For example,letFqbe the field Z/3Z,and letθ=.Defineπon Z/3Z by fixing,permutingand.Thenπ(?x?1) =?π(x)?1forx=1 and 2.But clearly,πis not an automorphism of Z/3Z.

    Forn ≥3,letπbe an automorphism of the fieldFqand letSn= diag(In?1,θ) withθ= 1 orz.Ifθ=z,thenπ(z)/∈F2qandz?1π(z)∈F2q.Supposer ∈F?qsuch thatπ(z) =zr2.Lety=rifθ=z,and lety= 1 ifθ= 1.Then,π(θ) =θy2.Defineσπ,y:V(O(Sn,q))→V(O(Sn,q)) by

    where [a1,a2,...,an] is written in the standard form.

    Lemma 2.3σπ,yis an automorphism ofO(Sn,q).

    ProofObviously,σπ,yis a bijective mapping onV(O(Sn,q)).The following derivation shows thatσπ,ypreserves adjacency relation of vertices in both directions.

    Hence,σπ,yis an automorphism ofO(Sn,q).

    Letω= (w1,w2,...,wn)∈ Fnq,wherew2i= 1 for eachiandw1= 1.We defineσωfromV(O(Sn,q)) to itself by sending any [a1,a2,...,an],with standard form,to[w1a1,w2a2,...,wnan].

    Lemma 2.4σωis an automorphism ofO(Sn,q).

    ProofObviously,σωis a bijective mapping onV(O(Sn,q)).The procedure

    shows thatσωpreserves adjacency relation of vertices in both directions.Thus the result follows.

    With the known automorphisms in hands,we now describe every automorphism ofO(Sn,q).Letn ≥3 and let a ={α1,α2,...,αn}be a non-isotropic orthogonal basis ofFnq,and suppose that (αi,αi) =a≠ 0 fori= 1,2,...,n ?1 and (αn,αn) =b≠ 0.Letσbe an automorphism ofO(Sn,q).Assumeσ([αi]) = [βi],and assume (βi,βi) =ci.Thenci≠0 fori= 1,2,...,nand (βi,βj) = 0 fori≠j.Namely,{β1,β2,...,βn}also forms a non-isotropic orthogonal basis ofFnq.For a nonzero vectorsuppose thatIt is easy to see thatbi≠0 if and only ifai≠0.Indeed,ifai≠0,then [α]~[αi].Applyingσ,we havewhich leads tobici≠0.Thusbi≠0.Similarly,bi≠0 impliesai≠0.Sinceσis a bijection fromV(O(Sn,q)) to itself,we define permutationsπi,i=2,3,...,nonFqsuch that

    It seems more accurate if one likes to use the symbolπi,σ,ainstead ofπi,as the definition ofπidepends onσand a.

    Next,we useπito characterizeσand give some properties forπiandci.

    Lemma 2.5(i){β1,β2,...,βn}forms a non-isotropic orthogonal basis ofFnq;

    Proof(i) was proved just before this lemma.Assume thatσ([α1+n i=2aiαi]) =Denotebyα,andTo complete the proof of (ii) we need to show thatbi=πi(ai) for eachi ≥2.The case whenai= 0 is trivial.Assume thatai≠0.For the case when 2≤i ≤n ?1,bywe havewhich follows thatThus

    On the other hand,by applyingσtowe havewhich leads to

    Comparing (2.1) and (2.2),we havebi=πi(ai).Next,we consider the case wheni=n.Applyingσto [α][α1?ab?1a?1n αn],we obtain [β][β1+πn(?ab?1a?1n)βn],which follows thatc1+bnπn(?ab?1a?1n)cn=0.Thus

    On the other hand,by applyingσto[α1+anαn][α1?ab?1a?1n αn]we have[β1+πn(an)βn][β1+πn(?ab?1a?1n)βn],which follows that

    Comparing (2.3) and (2.4),we also havebn=πn(an).The discussions above say that for anya2,a3,...,an ∈Fq,

    This completes the proof of (ii).

    Let 2≤i ≤n ?1 and denoteαi+ai+1αi+1+...+anαnalso byα.Assume that

    To complete the proof of (iii) we need to show thatb′j=c?11ciπi(1)πj(aj) fori+1≤j ≤n.Denoteβi+b′i+1βi+1+...+b′nβnalso byβ.For the case wheni+1≤j ≤n ?1,applyingσto [α][α1+αi ?a?1j αj] we have

    which leads to

    Following from (2.2) and (2.6),we obtainb′j=c?11ciπi(1)πj(aj).For the case whenj=n,applyingσto [α][α1+αi ?ab?1a?1n αj] we have

    which leads to

    From (2.4) and (2.7) we obtainb′n=c?11ciπi(1)πn(an).Thus,

    withqi=c?11ciπi(1),which completes the proof of (iii).

    Now we are in a position to complete the proof of (iv).Considering the action ofσon[α2+αn][α2?ab?1αn],we have

    which follows that

    Applyingσto [α1+α2+αn][α2?ab?1αn] we have

    leading to

    Comparing (2.9) and (2.10),we have that

    Applyingσto [α1+α2][α1?α2] we have

    which implies that

    From (2.11) and (2.12) we have

    Ifn=3,then the proof of(iv)is completed.Ifn ≥4,applyingσto[α1?α2+αj][α2+αj]for 3≤j ≤n ?1,we have

    which shows that

    Recalling thatπ2(?1)=?π2(1),we obtain

    On the other hand,the action ofσon [α1+α2+αj][α2?αj] leads to

    showing that

    (2.15) and (2.16) imply that

    The first assertion of (iv) is confirmed by (2.13) together with (2.17),and the second one is confirmed by (2.11) together with (2.15).

    For the proof of (v),considering the action ofσon [α1?α2+αn][α2+ab?1αn],we have

    which implies that

    Comparing (2.10) with (2.19),we have

    The proof of (v) is completed.

    Lemma 2.6Letσ,a,b,πibe defined as in Lemma 2.3.Ifσ([αi])=[αi] for all values ofi,then the following assertions hold.

    ProofBy (iv) of Lemma 2.3,assertion (i) of this lemma is obvious.

    Forx ∈Fqand 2≤j ≤n ?1,applyingσto [α1+xα2+xαj][α2?αj],we have[α1+π2(x)α2+πj(x)αj][α2+π2(1)πj(?1)αj],which leads toπ2(x) =π2(1)πj(1)πj(x).Sinceπj(1)2=1,we have

    For the case whenj=n,applyingσto [α1+xα2+xαn][α2?ab?1αn],we have [α1+π2(x)α2+πn(x)αn][α2+π2(1)πn(?ab?1)αn],which leads to

    By takingx=1,(2.22) becomes

    Substituting this equation into (2.22),we have that

    (2.21) and (2.24) together confirm (ii).

    Now we prove (iii).Ifxy=0,the result is obvious.Suppose thatxy≠0.By [α1+α2+ab?1xαn][α2?x?1αn] we have [α1+π2(1)α2+πn(ab?1x)αn][α2+π2(1)πn(?x?1)αn],which follows that

    Applyingσto [α1+xyα2+yαn][α2?ab?1xαn] we have that

    which implies that

    Substituting (2.25) into (2.26),we obtain

    Multiplying two sides of (2.27) byπ2(1) and using the result of (ii),we have

    Replacingywithxy,andxwithx?1,then we have

    Multiplying two sides of (2.29) byπj(1)2and using the result of (ii),we have

    By (2.30),we easily obtain

    The proof of (iii) is completed.

    For the proof of (iv),the case wheny=0 is trivial.Suppose thaty≠0.Applyingσto[α1?(x+y)α2+xαn][α1+y?1α2+ab?1y?1αn] we have

    which leads toa ?π2(x+y)π2(y?1)a+πn(x)πn(ab?1y?1)b=0.Or equivalently,

    Multiplying two sides of (2.32) byπn(1),we have

    By(iii)of this lemma and(v)of Lemma 2.5,πn(y)πn(ab?1y?1)a?1b=πn(ab?1)πn(1)a?1b=1.Thus (2.33) becomes

    By multiplying two sides of (2.34) byπ2(1),it follows that

    Finally,multiplying two sides of (2.35) byπj(1),we have

    The proof of (iv) is completed.

    It follows from (v) of Lemma 2.5 thatab?1=πn(1)πn(ab?1).(iii) of this lemma shows thatπn(ab?1)=πn(a?1b)?1πn(1)2.Consequently,πn(a?1b)=a?1b·πn(1)3.

    Now,we are in position to announce the main result of this paper.

    Theorem 2.1(i) Ifn= 2,thenσis an automorphism ofO(S2,q) if and only if there exists someK ∈GOn(Fq) and a bijective mappingπonFq,fixing 0 and satisfyingπ(?x?1θ?1)=?θ?1π(x)?1,such thatσ=σK ·σπ.

    (ii) Ifn ≥3,thenσis an automorphism ofO(Sn,q) if and only ifσ=σK ·σω ·σπ,y,whereπis an automorphism of the fieldFqsuch thatπ(θ)=y2θ,ω=(w1,w2,...,wn)∈Fnqwithw2i=1,K ∈GOn(Fq).

    ProofLetn= 2.Lemma 2.1 and 2.2 together confirm the sufficiency of (i).For necessity,letσbe an automorphism ofO(S2,q),and assumeσ([ei])=[fi] fori=1,2.Let

    ThenKS2KT= diag(c1,c2),whereci= (fi,fi) =fiS2fTi.Ifθ=z,we havez|K|2=c1c2.Thus only one ofciis a square element,sayc1.By replacingfiwith suitable multiple we may assume thatc1=1 andc2=z.Thus,KS2KT=S2,showing thatK,K?1∈GOn(Fq).ThusσKandσK?1are automorphisms ofO(S2,q).FromKK?1=I2,it follows thatfiK?1=ei.Thus,(σK?1·σ)([ei]) =σK?1([fi]) = [fiK?1] = [ei] fori= 1,2.Ifc2is a square element,similarly,by replacingfiwith suitable multiple we may assume thatc1=zandc2=z2.ByKS2KT=zS2,we also haveK,K?1∈GO2(Fq).Similarly,we know thatσK?1·σfixes [e1]and [e2].Ifθ= 1,by similar discussions as above,we can choose someK ∈GOn(Fq) such that (σK?1·σ)([ei])=[ei] fori=1,2.The procedure is omitted.

    Now,letσ1=σK?1·σ.For [α] = [1,x]∈V(O(S2,q)),the first coordinate ofσ1([α])cannot be zero sinceσ1fixes[e1].Thus,we can define a mappingπonFqsuch thatσ1([1,x])=[1,π(x)].Obviously,πis bijective andπ(0) = 0.Forx≠ 0,by applyingσ1to [1,x][1,?x?1θ?1],we have [1,π(x)][1,π(?x?1θ?1)],which leads to 1+θπ(x)π(?x?1θ?1) = 0,showing thatπ(?x?1θ?1) =?θ?1π(x)?1.Thusπcan be used to define the automorphismσπofO(S2,q).Clearly,σ1([α])=σπ([α]) for each [α]∈V(O(S2,q)),with the standard form.Finally,we haveσ1=σπandσ=σK ·σπ.

    For the proof of (ii),sufficiency is obvious.Now we consider necessity.Letσbe an automorphism ofO(Sn,q).Obviously,(ei,ei) =eiSeTi= 1 fori= 1,2,...,n ?1,(en,en) =enSeTn=θand (ei,ej) = 0 fori≠j.Thus,a ={e1,e2,...,en}forms a non-isotropic orthogonal basis ofFnq.Assume thatσ([ei])=[fi] and (fi,fi)=ci.Let

    ThenKSKT= diag(c1,c2,...,cn).As what we did just before Lemma 2.3,we define the permutationsπi(i=2,3,...,n),with respect toσand a,onFqsuch that

    By Lemma 2.3,we havecj=c1πj(1)?2forj=2,3,...,n ?1,andcn=c1πn(1)?1πn(θ?1)?1.

    Setπ1(1)=1 andπ1(0)=0.Letfi′=πi(1)fifori=1,2,...,n,and let

    Then we also haveσ([ei])=[f′i],however

    For simplity,f′iis also written asfiandK1is also written asK.

    Now we consider the case whenθ= 1.ThenS=InandKKT=c1In.ThusK,K?1∈GOn(Fq),andσK,σK?1∈Aut(O(Sn,q)).It follows fromKK?1=InthatfiK?1=eifori=1,2,...,n.Thus,(σK?1·σ)([ei])=σK?1([fi])=[fiK?1]=[ei]for eachi.DenoteσK?1·σbyσ1.Thenσ1fixes each [ei].Define permutationsπi,with respect toσ1and a,onFqsuch that

    Let 0≠α ∈Fnq.We write [α] in the standard form [α]=[a1,a2,...,an].Then by using (ii)and (iii) of Lemma 2.3 and recalling thatπi(1)2=1 for 1≤i ≤n,we have

    DefineπonFqbyπ(x) =π2(1)?1π2(x) forx ∈Fq.Sinceπi(1)?1πi(x) =π2(1)?1π2(x) fori= 3,4,...,n,we knowπ=πi(1)?1πifor eachi(≥2).By (iii) and (iv) of Lemma 2.6,it is easy to see thatπ(xy)=π(x)π(y) andπ(x+y)=π(x)+π(y) for allx,y ∈Fq,showing thatπis an automorphism ofFq.Now,(2.37) becomes

    Letω=(π1(1),π2(1),...,πn(1)).Sinceπi(1)2=1 for eachi(thanks to(iv)and(v)of Lemma 2.3),we can useωto define the automorphismσωofO(Sn,q).Now,

    This equation shows thatσω·σ1=σπ,1.Finally,we haveσ=σK ·σω·σπ,1.

    For the left caseθ=z(a fixed non-square element inFq),KSKT=diag(c1,c1,...,c1θ1)withθ1=πn(1)πn(z?1)?1.We claim thatθ1cannot be a square element.Otherwise,sayθ1=r2.By replacingfnwithr?1fn,we haveKSKT=diag(c1,c1,...,c1).Thus(fi,fi)=c1for alli.Sinceσ?1([fi])=[ei] for eachi,applying (v) of Lemma 2.3 toσ?1(viewingfiasαiand viewingeiasβi),we have that 1=(e1,e1)=(en,en)πn(1)2=zπn(1)2,absurd.So we may assume thatθ1=zs2.Replacingfnbys?1fn,we have thatKSKT=diag(c1,c1,...,c1z)=c1S.ThusK?1is a generalized orthogonal matrix.UsingK?1we define the automorphismσK?1onO(Sn,q) and denoteσK?1· σbyσ1.Similar as the case whenθ= 1,we haveσ1([ei])=σK?1([fi])=[fiK?1]=[ei] for eachi.

    Define permutationsπi,with respect toσ1and a,onFqsuch that

    Then by (ii) and (iii) of Lemma 2.3,

    for [α]∈V(O(Sn,q)) with standard form,whereπ1fixes 1 and 0.DefineπonFqbyπ(x)=π2(1)?1π2(x)forx ∈Fq.Also,πis an automorphism ofFq,andπ=πi(1)?1πifor eachi(≥2).Now,(2.39) becomes

    Letω=(π1(1),π2(1),...,πn?1(1),1).By(i)of Lemma 2.4,πi(1)2=1 for each 1≤i ≤n?1.So we can useωto construct the automorphismσωofO(Sn,q).Then

    Lety=πn(1).(v) of Lemma 2.4 shows thatπ(z) =πn(1)?1πn(z) =y2z.Thus we can useπandyto define the automorphismσπ,yofO(Sn,q).It is easy to see thatσω ·σ1=σπ,y.Finally,σ=σK ·σω·σπ,y,as desired.

    3.Orbits Partition of V(O(Sn,q)) Under the Automorphisms

    The study of orbits partition ofV(O(Sn,q)) needs an elementary lemma on GOn(Fq).

    Lemma 3.1LetSn= diag(In?1,θ) withθ= 1 orz.Ifnis odd,then for eachK ∈GOn(Fq) withKSnKT=kSn,kmust be a square element.Ifnis even,then there existsK ∈GOn(Fq) such thatKSnKT=zSn.

    ProofLetnbe odd,and supposeK ∈GOn(Fq) such thatKSnKT=kSn.Thenθ|K|2=knθ,showing thatkn=|K|2,andkis a square element.Now,assume thatnis even.A well known result about finite fields is that the equationX2+Y2=zhas solutions inFq.Suppose thata,b ∈Fqsuch thata2+b2=z.Ifθ=1,for 1≤2k+1<2k+2≤n,set

    Ifθ=z,we set

    for 1≤2k+1<2k+2≤n ?2,and setfn?1=en,fn=zen?1.Let

    Then,we haveQSnQT=zSn.LetV0be the subset ofV(O(Sn,q)) of all isotropic lines and let

    where (F?q)2refers the set of all non-zero square element ofFq.

    Theorem 3.1Ifnis odd,thenV(O(Sn,q)) has three orbits,they areV0,V1andV2.Ifnis even,thenV(O(Sn,q)) has only two orbits,they areV0andV1∪V2.

    ProofFor [α],[β]∈V(O(Sn,q)),if they belong to the sameVi,then by replacingαwith its suitable multiple we may assume that (α,α) = (β,β).Using Lemma 6.8 in [10],we can find an orthogonal matrixQsuch thatαQ=β.ThusσQ([α]) = [β],showing that all elements lying in the sameVibelong to one orbit.If [α]∈V0,clearly,σ([α])∈V0for allσ ∈Aut(O(Sn,q)).It implies thatV0forms an orbit.

    Ifnis odd,we want to prove thatV2is stable under the action of Aut(O(Sn,q)).Let[α]=[a1,a2,...,an]∈V2(with the standard form),and letσbe an automorphism ofO(Sn,q).We consider the action ofσon[α].By Theorem 2.1,σcan be decomposed asσ=σK·σω·σπ,y,whereK ∈GOn(Fq) withKSnKT=kSn,ω= (w1,w2,...,wn)∈Fnqwithw1= 1 andw2i= 1,andπis an automorphism ofFqsatisfyingπ(θ) =θy2fory ∈Fq.Assume thatσ([α])=[β].Then,

    and

    Since (α,α)∈(F?q)2,it follows thatπ(α,α)∈(F?q)2.By Lemma 3.1,k ∈(F?q)2,thusσ([α])=[β]∈V2.It implies thatV2forms an orbit,which immediately follows thatV1forms an orbit.

    Ifnis even,by Lemma 3.1,we can chooseQ ∈GOn(Fq) such thatQSnQT=zSn.Then for [α]∈V2,we have [αQ]∈V1sinceαQSnQTαT=z(α,α)∈z(F?q)2.Consequently,σQ([α])=[αQ]∈V1.It follows thatV1∪V2forms an orbit.

    猜你喜歡
    天真
    彩墨渾成,天真自然
    天真真好
    天真組詩
    滇池(2022年5期)2022-04-30 21:44:36
    天真熱
    天真童年
    小讀者(2020年4期)2020-06-16 03:34:10
    雪天真快樂
    天真給你最美的夢
    雪天真快樂
    古淡天真之美——倪瓚《淡室詩》
    丹青少年(2017年1期)2018-01-31 02:28:21
    年啊年
    亚洲伊人色综图| 午夜精品久久久久久毛片777| 精品国产一区二区久久| 一级片'在线观看视频| 99精品在免费线老司机午夜| 日韩一区二区三区影片| 人妻 亚洲 视频| 亚洲第一青青草原| 国产男女超爽视频在线观看| cao死你这个sao货| 亚洲熟女精品中文字幕| 久久久久久久久免费视频了| 久久久久久免费高清国产稀缺| 久久亚洲精品不卡| av超薄肉色丝袜交足视频| 首页视频小说图片口味搜索| 色婷婷久久久亚洲欧美| 午夜福利乱码中文字幕| 国产福利在线免费观看视频| 亚洲avbb在线观看| 欧美日韩精品网址| 国产主播在线观看一区二区| 亚洲七黄色美女视频| 亚洲免费av在线视频| 色综合婷婷激情| 婷婷成人精品国产| 老汉色av国产亚洲站长工具| 最黄视频免费看| 精品少妇久久久久久888优播| 建设人人有责人人尽责人人享有的| 亚洲国产看品久久| 久久久久久久精品吃奶| 久久久久精品国产欧美久久久| 曰老女人黄片| 国产精品影院久久| 肉色欧美久久久久久久蜜桃| 成人三级做爰电影| 757午夜福利合集在线观看| 国产在线观看jvid| 老鸭窝网址在线观看| 欧美一级毛片孕妇| av免费在线观看网站| 日本欧美视频一区| 欧美在线一区亚洲| 欧美国产精品一级二级三级| 又紧又爽又黄一区二区| a级片在线免费高清观看视频| 日韩人妻精品一区2区三区| 国产精品免费大片| 黄网站色视频无遮挡免费观看| 日韩成人在线观看一区二区三区| 一夜夜www| 在线av久久热| 国产精品98久久久久久宅男小说| 欧美老熟妇乱子伦牲交| 亚洲五月婷婷丁香| 国精品久久久久久国模美| 老熟妇仑乱视频hdxx| 久久久水蜜桃国产精品网| 国产黄色免费在线视频| 国产高清videossex| 欧美国产精品va在线观看不卡| 天天影视国产精品| 久久免费观看电影| 色视频在线一区二区三区| 亚洲精品在线美女| 欧美日本中文国产一区发布| 三级毛片av免费| 日日爽夜夜爽网站| 精品人妻1区二区| 黑丝袜美女国产一区| 亚洲色图 男人天堂 中文字幕| 国产精品一区二区在线不卡| 超碰97精品在线观看| 美女高潮喷水抽搐中文字幕| 女警被强在线播放| www日本在线高清视频| 日韩 欧美 亚洲 中文字幕| 大型av网站在线播放| 亚洲国产中文字幕在线视频| 久久久精品区二区三区| 亚洲欧美色中文字幕在线| 国产又色又爽无遮挡免费看| 国产成人av激情在线播放| 亚洲综合色网址| 成人18禁高潮啪啪吃奶动态图| 中文字幕色久视频| 久久热在线av| 久久热在线av| 99精品在免费线老司机午夜| 亚洲精品一卡2卡三卡4卡5卡| 免费在线观看影片大全网站| 中文字幕制服av| 国产真人三级小视频在线观看| avwww免费| 五月开心婷婷网| 啪啪无遮挡十八禁网站| 久久精品亚洲av国产电影网| 国产欧美日韩综合在线一区二区| 中文字幕av电影在线播放| 丝袜在线中文字幕| 黑丝袜美女国产一区| 日本vs欧美在线观看视频| 亚洲精品av麻豆狂野| 国产一区二区三区视频了| 大香蕉久久网| 亚洲综合色网址| 在线 av 中文字幕| 啦啦啦免费观看视频1| cao死你这个sao货| 啦啦啦中文免费视频观看日本| 在线亚洲精品国产二区图片欧美| 中文字幕人妻丝袜制服| 丰满人妻熟妇乱又伦精品不卡| 精品少妇一区二区三区视频日本电影| 国产伦理片在线播放av一区| 欧美日韩福利视频一区二区| 老熟妇乱子伦视频在线观看| 97人妻天天添夜夜摸| 午夜福利乱码中文字幕| 久9热在线精品视频| 99精品在免费线老司机午夜| 亚洲国产看品久久| 国产色视频综合| 国产精品电影一区二区三区 | 搡老岳熟女国产| 国产成人精品久久二区二区91| 欧美精品av麻豆av| 午夜视频精品福利| 国产欧美日韩精品亚洲av| 99久久国产精品久久久| 欧美精品啪啪一区二区三区| 在线天堂中文资源库| 国产欧美日韩综合在线一区二区| 久久久久网色| 国产一区二区三区综合在线观看| 欧美成人免费av一区二区三区 | 久久久精品区二区三区| 免费观看av网站的网址| 久久久久久久久免费视频了| 色在线成人网| 国产精品成人在线| 国产成+人综合+亚洲专区| av在线播放免费不卡| 麻豆av在线久日| 天堂8中文在线网| 狠狠精品人妻久久久久久综合| 成在线人永久免费视频| 亚洲精品国产色婷婷电影| 999精品在线视频| 亚洲av电影在线进入| 亚洲精品乱久久久久久| 亚洲熟女毛片儿| 日韩三级视频一区二区三区| 国产精品久久电影中文字幕 | 免费看a级黄色片| 满18在线观看网站| 淫妇啪啪啪对白视频| 午夜精品国产一区二区电影| 老鸭窝网址在线观看| 亚洲欧美日韩高清在线视频 | 亚洲国产中文字幕在线视频| 三上悠亚av全集在线观看| 99精国产麻豆久久婷婷| 制服人妻中文乱码| 亚洲少妇的诱惑av| 午夜福利在线观看吧| 怎么达到女性高潮| 成年动漫av网址| 久9热在线精品视频| 夜夜骑夜夜射夜夜干| 考比视频在线观看| 无人区码免费观看不卡 | 国产色视频综合| 久久精品国产综合久久久| 日韩 欧美 亚洲 中文字幕| 香蕉国产在线看| 一本久久精品| 99re6热这里在线精品视频| 菩萨蛮人人尽说江南好唐韦庄| 久久久久网色| 成人亚洲精品一区在线观看| 国产人伦9x9x在线观看| 国产精品麻豆人妻色哟哟久久| 丝袜人妻中文字幕| 咕卡用的链子| 99精品欧美一区二区三区四区| 菩萨蛮人人尽说江南好唐韦庄| 水蜜桃什么品种好| 精品久久久久久久毛片微露脸| 欧美另类亚洲清纯唯美| 国产在线一区二区三区精| 狠狠狠狠99中文字幕| xxxhd国产人妻xxx| 免费少妇av软件| 国产黄频视频在线观看| www日本在线高清视频| 亚洲成av片中文字幕在线观看| 99热网站在线观看| 国产成人欧美| 99国产精品一区二区蜜桃av | 黄色 视频免费看| 露出奶头的视频| 亚洲国产中文字幕在线视频| 亚洲伊人色综图| 电影成人av| 久久青草综合色| 亚洲欧美色中文字幕在线| 欧美乱妇无乱码| 高清欧美精品videossex| 久久中文看片网| bbb黄色大片| 欧美性长视频在线观看| 五月开心婷婷网| 欧美国产精品一级二级三级| 一个人免费看片子| 一区在线观看完整版| 不卡av一区二区三区| 国产又爽黄色视频| 久久久久久久精品吃奶| 如日韩欧美国产精品一区二区三区| 国产亚洲欧美精品永久| 成人精品一区二区免费| 自线自在国产av| 19禁男女啪啪无遮挡网站| 波多野结衣一区麻豆| 十分钟在线观看高清视频www| 一本综合久久免费| 女人高潮潮喷娇喘18禁视频| 亚洲熟妇熟女久久| 91精品三级在线观看| 在线观看免费午夜福利视频| 淫妇啪啪啪对白视频| 超碰97精品在线观看| 高清视频免费观看一区二区| av超薄肉色丝袜交足视频| 精品欧美一区二区三区在线| www.自偷自拍.com| 制服诱惑二区| 97人妻天天添夜夜摸| 国产一区二区三区在线臀色熟女 | 精品午夜福利视频在线观看一区 | 一级片免费观看大全| 中文字幕高清在线视频| 亚洲av美国av| 黑人猛操日本美女一级片| 精品人妻1区二区| 青草久久国产| 曰老女人黄片| 亚洲av电影在线进入| 黑人欧美特级aaaaaa片| av在线播放免费不卡| 久久这里只有精品19| 亚洲欧美精品综合一区二区三区| 国产男女超爽视频在线观看| 黄色毛片三级朝国网站| 美女高潮喷水抽搐中文字幕| 亚洲精品国产色婷婷电影| 波多野结衣av一区二区av| 欧美亚洲 丝袜 人妻 在线| 精品国产国语对白av| 亚洲第一青青草原| 亚洲午夜精品一区,二区,三区| 老汉色av国产亚洲站长工具| 亚洲综合色网址| 纯流量卡能插随身wifi吗| 啪啪无遮挡十八禁网站| 又黄又粗又硬又大视频| 大香蕉久久网| 亚洲欧美日韩高清在线视频 | 丁香六月欧美| 亚洲精品美女久久av网站| 男女高潮啪啪啪动态图| videos熟女内射| 成人黄色视频免费在线看| 午夜激情av网站| 亚洲av电影在线进入| 久久久久久久久免费视频了| 欧美激情 高清一区二区三区| av网站在线播放免费| 18禁观看日本| 男女边摸边吃奶| 青青草视频在线视频观看| 欧美黑人精品巨大| 精品午夜福利视频在线观看一区 | 两性夫妻黄色片| 精品国产国语对白av| 国产av一区二区精品久久| 日韩一卡2卡3卡4卡2021年| 一边摸一边做爽爽视频免费| 久久免费观看电影| 国产老妇伦熟女老妇高清| 欧美激情极品国产一区二区三区| 一级毛片电影观看| avwww免费| 18禁裸乳无遮挡动漫免费视频| 亚洲 国产 在线| 久久精品亚洲av国产电影网| 久久久久网色| 天堂中文最新版在线下载| 免费在线观看日本一区| 在线永久观看黄色视频| www.精华液| 亚洲少妇的诱惑av| 精品国产一区二区久久| 不卡一级毛片| 免费看十八禁软件| 国产精品久久久久久精品电影小说| 亚洲av电影在线进入| 50天的宝宝边吃奶边哭怎么回事| a级片在线免费高清观看视频| 精品午夜福利视频在线观看一区 | 亚洲天堂av无毛| 精品福利观看| cao死你这个sao货| 午夜激情av网站| 男女免费视频国产| 不卡av一区二区三区| 黄色视频,在线免费观看| 亚洲 欧美一区二区三区| av视频免费观看在线观看| 成人国语在线视频| 极品少妇高潮喷水抽搐| 久久久久久亚洲精品国产蜜桃av| 精品人妻1区二区| 99久久国产精品久久久| 亚洲伊人色综图| 国产精品美女特级片免费视频播放器 | 人人妻人人澡人人爽人人夜夜| 啦啦啦中文免费视频观看日本| 午夜福利,免费看| 搡老乐熟女国产| 日韩精品免费视频一区二区三区| 国产亚洲欧美精品永久| 精品国产一区二区三区四区第35| 久久久久视频综合| 波多野结衣av一区二区av| 国产极品粉嫩免费观看在线| 亚洲精品国产区一区二| 国产成人影院久久av| 老司机在亚洲福利影院| 母亲3免费完整高清在线观看| 欧美国产精品va在线观看不卡| 久久久国产精品麻豆| 国产1区2区3区精品| 99精品欧美一区二区三区四区| 最近最新中文字幕大全电影3 | 美女高潮到喷水免费观看| 淫妇啪啪啪对白视频| 人妻一区二区av| 搡老乐熟女国产| 1024香蕉在线观看| 欧美久久黑人一区二区| 天堂动漫精品| 国产1区2区3区精品| 国产精品九九99| 免费在线观看日本一区| 日韩熟女老妇一区二区性免费视频| 一级毛片女人18水好多| 国产三级黄色录像| 成人精品一区二区免费| 国产精品av久久久久免费| 欧美乱码精品一区二区三区| 狠狠婷婷综合久久久久久88av| 精品少妇内射三级| 午夜福利在线免费观看网站| 亚洲成人手机| 91av网站免费观看| 激情在线观看视频在线高清 | 美女扒开内裤让男人捅视频| 少妇被粗大的猛进出69影院| 久久热在线av| 19禁男女啪啪无遮挡网站| 窝窝影院91人妻| 99在线人妻在线中文字幕 | 亚洲专区中文字幕在线| 操美女的视频在线观看| 亚洲精品国产区一区二| 免费观看av网站的网址| 国产精品亚洲av一区麻豆| 热99国产精品久久久久久7| 欧美黑人欧美精品刺激| 久久精品国产99精品国产亚洲性色 | 91大片在线观看| 9热在线视频观看99| 欧美黄色片欧美黄色片| 亚洲人成伊人成综合网2020| 精品卡一卡二卡四卡免费| 久热这里只有精品99| 女性生殖器流出的白浆| 男女高潮啪啪啪动态图| 99久久人妻综合| 桃红色精品国产亚洲av| 精品卡一卡二卡四卡免费| 久久天堂一区二区三区四区| 亚洲欧洲精品一区二区精品久久久| 午夜福利一区二区在线看| 男女高潮啪啪啪动态图| 99精品欧美一区二区三区四区| 精品少妇久久久久久888优播| 国产欧美亚洲国产| 午夜91福利影院| 少妇裸体淫交视频免费看高清 | 高清在线国产一区| 黄片小视频在线播放| 91老司机精品| 国产精品二区激情视频| 亚洲中文日韩欧美视频| 精品免费久久久久久久清纯 | 少妇被粗大的猛进出69影院| 国产成人av激情在线播放| 国产欧美亚洲国产| 香蕉久久夜色| 啪啪无遮挡十八禁网站| 精品国产超薄肉色丝袜足j| 如日韩欧美国产精品一区二区三区| 女人被躁到高潮嗷嗷叫费观| 亚洲国产av影院在线观看| 男女午夜视频在线观看| 老司机福利观看| 国产xxxxx性猛交| 大片电影免费在线观看免费| 国产精品免费一区二区三区在线 | 亚洲国产中文字幕在线视频| 久久精品国产亚洲av香蕉五月 | 国产亚洲av高清不卡| 国产精品偷伦视频观看了| 亚洲精品中文字幕在线视频| 亚洲国产av新网站| 在线观看一区二区三区激情| 黄色丝袜av网址大全| 免费在线观看完整版高清| 我的亚洲天堂| 亚洲性夜色夜夜综合| 一区二区三区乱码不卡18| 日韩欧美免费精品| 欧美精品亚洲一区二区| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美日韩另类电影网站| 亚洲色图 男人天堂 中文字幕| 伊人久久大香线蕉亚洲五| 99久久精品国产亚洲精品| 国产在线观看jvid| 久久午夜综合久久蜜桃| 啦啦啦 在线观看视频| 王馨瑶露胸无遮挡在线观看| 亚洲国产精品一区二区三区在线| 欧美 亚洲 国产 日韩一| 国产福利在线免费观看视频| 9热在线视频观看99| 大香蕉久久成人网| 久久精品国产a三级三级三级| 亚洲成国产人片在线观看| 人妻 亚洲 视频| 人人妻人人添人人爽欧美一区卜| 久久久久久久久久久久大奶| 女同久久另类99精品国产91| 亚洲人成电影免费在线| 丁香欧美五月| 精品第一国产精品| 老司机影院毛片| 免费日韩欧美在线观看| 91国产中文字幕| 久久久久久久国产电影| 久久久久国产一级毛片高清牌| 久久毛片免费看一区二区三区| 黄色怎么调成土黄色| 日韩熟女老妇一区二区性免费视频| 高清欧美精品videossex| 色精品久久人妻99蜜桃| 飞空精品影院首页| 久久久久视频综合| 黄片小视频在线播放| 午夜福利视频精品| 男女免费视频国产| 另类精品久久| 亚洲成a人片在线一区二区| 久久亚洲精品不卡| 窝窝影院91人妻| 久久人妻熟女aⅴ| 一二三四在线观看免费中文在| 两性夫妻黄色片| 女人被躁到高潮嗷嗷叫费观| 成年女人毛片免费观看观看9 | 中文字幕人妻丝袜一区二区| 一区二区三区乱码不卡18| 日韩人妻精品一区2区三区| 黄色 视频免费看| 18禁裸乳无遮挡动漫免费视频| 另类亚洲欧美激情| 99国产精品99久久久久| 夜夜爽天天搞| 999久久久国产精品视频| 中文字幕色久视频| 高清视频免费观看一区二区| 午夜福利影视在线免费观看| 超色免费av| 精品亚洲乱码少妇综合久久| 丰满人妻熟妇乱又伦精品不卡| 欧美激情极品国产一区二区三区| 岛国在线观看网站| 麻豆国产av国片精品| 免费黄频网站在线观看国产| 精品第一国产精品| 久久人妻福利社区极品人妻图片| 亚洲欧美激情在线| 性少妇av在线| 国产91精品成人一区二区三区 | 一级,二级,三级黄色视频| 久久久久久久国产电影| 免费久久久久久久精品成人欧美视频| 黄色视频不卡| 手机成人av网站| 久久久国产成人免费| 免费少妇av软件| 日本av手机在线免费观看| 欧美激情高清一区二区三区| 成人特级黄色片久久久久久久 | 黄色 视频免费看| 可以免费在线观看a视频的电影网站| 久久中文看片网| 欧美乱码精品一区二区三区| 桃红色精品国产亚洲av| 亚洲成人免费av在线播放| 久久久久精品国产欧美久久久| videosex国产| 麻豆成人av在线观看| 精品一区二区三区四区五区乱码| 久久毛片免费看一区二区三区| 亚洲中文日韩欧美视频| 亚洲一区二区三区欧美精品| 国产精品影院久久| 国产高清国产精品国产三级| 免费高清在线观看日韩| 亚洲欧美激情在线| 国产精品亚洲av一区麻豆| 人妻一区二区av| 欧美人与性动交α欧美软件| 男人操女人黄网站| 日韩视频在线欧美| 啦啦啦视频在线资源免费观看| 亚洲一码二码三码区别大吗| 12—13女人毛片做爰片一| 精品久久蜜臀av无| 在线天堂中文资源库| 国产精品久久久久久精品电影小说| 在线观看免费午夜福利视频| 两个人免费观看高清视频| 国产1区2区3区精品| 国产精品 国内视频| 日韩欧美国产一区二区入口| 搡老乐熟女国产| 久久人妻福利社区极品人妻图片| 亚洲精品国产区一区二| 久久久国产一区二区| 美女高潮到喷水免费观看| 亚洲精品一卡2卡三卡4卡5卡| 精品一区二区三区四区五区乱码| 国产91精品成人一区二区三区 | 免费人妻精品一区二区三区视频| 国产日韩欧美亚洲二区| 亚洲欧洲精品一区二区精品久久久| 俄罗斯特黄特色一大片| 国产一区二区三区视频了| av网站在线播放免费| 美女高潮到喷水免费观看| 变态另类成人亚洲欧美熟女 | 日韩欧美三级三区| 国产成+人综合+亚洲专区| 亚洲熟女精品中文字幕| h视频一区二区三区| 午夜福利视频精品| 超色免费av| 亚洲第一av免费看| 国产精品电影一区二区三区 | 老司机午夜十八禁免费视频| 午夜福利视频在线观看免费| av网站在线播放免费| 在线观看免费视频网站a站| 午夜成年电影在线免费观看| 宅男免费午夜| 亚洲欧美日韩高清在线视频 | 精品少妇久久久久久888优播| 国产欧美亚洲国产| 亚洲国产欧美网| 一个人免费在线观看的高清视频| 一本久久精品| 亚洲黑人精品在线| 五月天丁香电影| 啪啪无遮挡十八禁网站| 亚洲成人免费电影在线观看| 午夜福利在线观看吧| 在线观看66精品国产| 夜夜爽天天搞| 亚洲精品在线美女| 99久久国产精品久久久| 午夜福利视频在线观看免费| 美女扒开内裤让男人捅视频| 18禁国产床啪视频网站| 久久青草综合色| 亚洲性夜色夜夜综合| 色老头精品视频在线观看| 在线观看免费日韩欧美大片| 欧美精品高潮呻吟av久久| 美女福利国产在线| 成人手机av| 国产不卡一卡二| 欧美乱码精品一区二区三区| 麻豆国产av国片精品| 日韩欧美一区二区三区在线观看 | 黄色视频在线播放观看不卡| 国产区一区二久久| 岛国毛片在线播放| 天堂俺去俺来也www色官网| 成人三级做爰电影|