• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CYGNSS海表風場觀測數(shù)據(jù)驗證及其可能的應用

    2018-05-30 12:50:50胡運王曉春王東曉
    南京信息工程大學學報 2018年3期
    關鍵詞:驗證

    胡運 王曉春 王東曉

    摘要海表面風場可以用于獲取許多大氣和海洋現(xiàn)象的信號,高質量、高時空分辨率的海表面風場數(shù)據(jù)產(chǎn)品將有利于海洋-大氣動力過程的研究.本文使用全球熱帶系泊浮標陣列計劃(Global Tropical Moored Array Programs)的錨定浮標風場數(shù)據(jù)和西沙通量塔氣象觀測資料驗證了 Cyclone Global Navigation Satellite System (CYGNSS)的35°N~35°S海面遙感風場觀測數(shù)據(jù).結果表明,CYGNSS海表面風場與實測資料存在著2.17 m/s左右的平均均方根誤差(RMSD),它可能源于觀測數(shù)據(jù)和衛(wèi)星遙感資料的觀測誤差,以及兩者在空間和時間上未嚴格匹配而引起的代表性誤差.另外,CYGNSS海表面風速的時間演變與實測資料非常一致,展現(xiàn)了CYGNSS在研究海洋-大氣能量和動量交換過程方面的潛在應用價值.本文使用Madden-Julian Oscillation (MJO)和赤道東部印度洋上升流事件作為兩個個例,說明了CYGNSS海表面風場資料的潛在應用價值.

    關鍵詞CYGNSS;觀測數(shù)據(jù);驗證;潛在應用;MJO;沿岸上升流

    中圖分類號P414.4

    文獻標志碼A

    0 導讀

    本文原文為英文,希望感興趣的讀者進一步關注原文.

    海表風場是海氣界面主要的動量通量和能量通量的來源.為了正確認識海氣相互作用過程,需要進一步提高海表風場數(shù)據(jù)的質量、時間和空間分辨率,以便模擬和預測海洋和大氣現(xiàn)象的發(fā)生及發(fā)展過程.現(xiàn)有的海表風場數(shù)據(jù)的時間和空間分辨率逐漸提高,但降水對風場數(shù)據(jù)的影響仍然存在.2016年底,美國航空航天局的旋風全球導航衛(wèi)星系統(tǒng)(CYGNSS)飛行任務啟動,它是一個用于提高颶風預報準確性的包含8顆微小衛(wèi)星的星座,可以對熱帶氣旋、臺風以及颶風整個壽命周期中的眼壁內(nèi)和眼壁附近的海洋表面風進行頻繁測量,每秒可得到32個實際風速值.另外,CYGNSS觀測系統(tǒng)可對單一樣本點進行多次觀測,時間間隔為幾分鐘至幾小時.總之,CYGNSS觀測數(shù)據(jù)具有兩個明顯優(yōu)點:1)幾乎不受降水影響;2)時間步長短.

    本文使用較多的單點觀測數(shù)據(jù)來驗證CYGNSS觀測數(shù)據(jù)的可靠性.選取的時間段為2017年8月1日—10月4日,共65 d.首先將CYGNSS風場數(shù)據(jù)與中國南海西沙通量塔風場數(shù)據(jù)進行對比.衛(wèi)星數(shù)據(jù)與站點觀測存在著2.49 m/s的均方根誤差(RMSD).另外,時間上均勻、空間上網(wǎng)格化的CYGNSS風場產(chǎn)品更適用于海洋和大氣的研究.將CYGNSS風場數(shù)據(jù)與全球熱帶系泊浮標陣列計劃的錨定浮標風場數(shù)據(jù)進行對比,結果顯示,相對于錨定浮標數(shù)據(jù),CYGNSS風場產(chǎn)品存在著2.17 m/s的平均RMSD.該數(shù)值符合CYGNSS任務數(shù)據(jù)產(chǎn)品的要求,即低于20 m/s風速時,其反演不確定性為2.0 m/s.這些誤差可能源于觀測數(shù)據(jù)和衛(wèi)星資料的觀測誤差,以及兩者在空間和時間上未嚴格匹配而引起的代表性誤差.CYGNSS海表面風速的時間演變與實測資料非常一致,展現(xiàn)了CYGNSS在研究海洋-大氣能量和動量交換過程方面的潛在應用價值.

    為了展現(xiàn)CYGNSS數(shù)據(jù)產(chǎn)品的潛在應用價值,本文使用Madden-Julian Oscillation(MJO)和赤道東部印度洋上升流事件作為兩個個例,驗證CYGNSS風場在獲取兩者信號時的表現(xiàn).結果表明,CYGNSS海表風場較好地展現(xiàn)了MJO東傳的速度和位相,這與850 hPa風場表現(xiàn)一致;同時,CYGNSS海表風場可通過算法來指示赤道印度洋東部上升流的強度,該強度與海表溫度異常值變化一致.

    Abstract Many phenomena in the atmosphere and the ocean can be detected by sea surface winds.High quality and high temporal and spatial resolution sea surface wind data product is needed to study these phenomena.In this paper,sea surface winds from Cyclone Global Navigation Satellite System (CYGNSS) mission over 35°N-35°S are validated against in situ observations in order to evaluate the performance of CYGNSS.The in situ wind observations include measurements from the Xisha flux tower in South China Sea (SCS),and moored buoy data from the Global Tropical Moored Buoy Array (GTMBA).The result indicates a mean root-mean-square-difference (RMSD) of 2.17 m/s of CYGNSS winds with respect to in situ observations.Part of this discrepancy may come from instrument error,and part of it may come from representative error because of not-exact match of in situ and satellite measurements.The time evolution of CYGNSS winds,however,is consistent with that of in-situ winds,suggesting its potential application in understanding the complex mass and energy interchange processes of atmosphere and ocean.Examples using surface wind to analyze the MJO and the equatorial eastern Indian Ocean upwelling events are also discussed,which indicates potential applications of CYGNSS observation.

    Key words CYGNSS;observations;validation;potential application;Madden-Julian oscillation;coastal upwelling

    1 Introduction

    Sea surface wind is the typical movement of near-surface air and the largest source of momentum for the upper ocean.It can drive ocean currents,develop convection via surface wind convergence and divergence[1],and transfer heat flux,moisture,gases and particulates into and out of the ocean[2].Accurate measurements of sea surface wind will provide researchers with more detailed information about these dynamic processes of the atmosphere and the ocean.Throughout history,the poor spatial and temporal coverage of ship-and buoy-based observations set limits to describe meteorological conditions over the open ocean[3].Of late,as technology developed,many satellite-based monitoring methods have measured higher-quality wind datasets over tropical and global oceans[4].For instance,Quick Scatterometer provides global winds from 1999 to 2009[5],and the National Centers for Environmental Prediction is involved to present two global reanalysis projects,including Reanalysis-1 and Reanalysis-2[6-7].The Cross-Calibrated Multi-Platform (CCMP) gridded surface vector winds are also widely used[8].Many efforts have been made to evaluate or compare the existing wind data products.The resolution of measurements is improved due to the development of technology,while the rainfall effects on the quality of wind data is still a key limitation[9-10].

    At the end of 2016,the orbital injection of a single launch vehicle carrying a constellation of eight small satellites marks the beginning of the Cyclone Global Navigation Satellite System (CYGNSS) mission.One of the primary CYGNSS objectives is to leverage Global Positioning System (GPS) reflectometry to measure wind speeds in tropical cyclones (TCS) inner core with sufficient frequency to resolve genesis and rapid intensification phases of the TC life cycle[11].And another objective is to measure sea wind speeds under rainy conditions,especially those in the eye of the storm.Rather than previous satellite scatterometers,CYGNSS provides more samples of the study area.For instance,if compared with two current scatterometers combined,the percentage of 3-hour intervals that TC inner core regions can be sampled by satellite sensors is improved from 25% to nearly 35%.

    Ground tracks for 6 hours in a particular day are shown in Figure 1.Eight low earth orbit satellites with an inclination of 35 degrees to the equator are each capable of measuring 4 simultaneous reflections,resulting in 32 wind measurements per second across the globe[12].Besides,the satellite revisit time for the same geographical point during the science mission is reduced to a shorter time,few minutes to few hours.The median value of revisit times is 2.8 hours and the mean revisit time is 7.2 hours.Thus,these satellites provide space-based measurements with the following temporal and spatial sampling:(a) temporal sampling better than 12-hour mean revisit time and (b) spatial sampling 70% of all storm tracks between 35°N and 35°S latitude to be sampled within 24 hours.The number of satellites,their orbit altitudes and inclinations,and the alignment of the antennas are all optimized to provide unprecedented high temporal-resolution wind field imagery of TC genesis,intensification and decay.

    Despite the focus on tropical cyclones,the ability of CYGNSS to provide rapid updates of winds,unbiased by the presence of rainfall,shows many other potential applications related to general tropical convection.A reliable application of near-surface wind conditions,observed at a given time at sea,is necessary for practically every kind of human activity both at open sea and in the coastal zone.The Madden-Julian oscillation (MJO) is a large-scale air-sea coupled process that propagates eastward at about 5 m/s with a period of 30-60 day,and the primary mode of intraseasonal variability in the tropical atmosphere[13].Strong MJO activity has significant features with deep clouds,heavier rainfall and westerly wind anomalies.More information about MJO structure and the skill of MJO forecast require detailed knowledge of sea surface winds,which is limited by existing measurement systems and heavy rainfall due to the MJO[12].In addition,much of the signals of enhanced deep convective system comes from the result of empirical orthogonal functions of meteorological measurements,including outgoing long-wave radiation,850 hPa and 250 hPa wind fields,or their combinations[14].Since the low-level zonal wind anomalies are out of phase with those at upper levels due to the MJO[15],sea surface winds may be an alternative indicator for detecting the MJO signal.However,the greatest mean and diurnal maximum of rainfall rate over ocean exist in the MJO envelope.And in theory,little to no rainfall effect on CYGNSS measurements enables researchers to better understand the mechanisms of tropical deep convective system.

    Besides the above,a more robust wind product is also needed by the research of ocean process.In the equatorial eastern Indian Ocean,surface water is driven by the strong,local southeast monsoon winds from June to October.Surface Ekman transport replaces the offshore moving water by upwelled water,leading to lower sea-level altitudes and cold sea surface temperature (SST) anomalies[16].However,long-time series of ocean surface currents are not available,and directly quantifying upwelling is also extremely difficult[17].The idea behind the offshore component of surface Ekman transport driven by geostrophic wind stress is good to describe the intensity of coastal upwelling.Reasonable estimates of surface transport and coastal upwelling may be made using planetary boundary layer theory and the geostrophic wind approximation.Many publications refer to the Bakun (1973) technical memorandum that initially described the upwelling indices.In this method,Ekman mass transport is defined as the wind stress divided by the Coriolis parameter[18].Therefore,the increasing of high temporal and temporal resolution in wind product will be fed back into the improved understanding on quantitative intensity of coastal upwelling in the equatorial eastern Indian Ocean.

    The rest of the paper is organized as follows.Section 2 describes in situ wind data and verifies the performance of CYGNSS observations.Section 3 describes the potential applications of this satellite measurement,including the MJO and the equatorial eastern Indian Ocean events.Section 4 provides a summary and discussion.Results from this study will advance our understanding of the quality and potential application of CYGNSS observations.

    2 Validation of CYGNSS observations

    In general,the results of recent verification studies of satellite winds come from the comparison between model simulations and satellite observations,or on the inter-comparison with in situ buoys[19-20].In this study,the performance of CYGNSS winds is compared with respect to in situ data,including observations from the Xisha Station and the Global Tropical Moored Buoy Array (GTMBA).Within this section,sea surface winds are examined over a 65-day period,from August 1 to October 4,2017.This type of exercise gives a better understanding on the quality of CYGNSS wind in terms of these independent in situ observations.Part of this section describes the winds from Xisha flux tower and moored buoy winds in Indian,Pacific and Atlantic Ocean.

    The Xisha flux tower is located in the South China Sea (SCS),which belongs to a mesoscale hydrological and marine meteorological observation network established by the SCS Institute of Oceanology.This flux tower is off the coast of Yongxing Island (16°49′N,112°20′E;see red point in Fig.2 for its location),and categorized as both a coastal and a deep-sea station due to the deep water (more than 1 000 meters) basin of the northern-central SCS[21-22].This measurement provides meteorological parameters hourly,such as latent and sensible heat flux,carbon dioxide flux,and winds at a height of 5 m,10 m,and 15m above the mean sea-level.Many efforts have also been made to verify the performance of observations from Xisha Station,such as the passages of tropical cyclones[23],the response of heat flux to monsoon[24],as well as the validation of satellite SST[25].

    In this study,moored buoy winds are also compared against CYGNSS observations.They are available from GTMBA through Pacific Marine Environmental Laboratory (www.pmel.noaa.gov).This moored buoy observing system is based on international cooperation and designed to provide real-time measurements for researching and forecasting tropical climate variations.It consists of three major components:the Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) in the Indian Ocean,the Tropical Atmosphere Ocean/Triangle Trans-Ocean Buoy Network (TAO/TRITON) in the Pacific and the Prediction and Research Moored Array in the Atlantic (PIRATA)[26].High quality time series data of these moored arrays have been advancing the research on air-sea interaction in time and space since their implementations.

    Note that only 7 buoys in RAMA,47 buoys in TAO/TRITON and 7 buoys in PIRATA are considered in this study due to the time matching between in situ and satellite winds.Moored buoys are described in Table 1 and shown in Figure 3 (red points).Since satellite winds over the sea surface are provided at the 10 meters neutral stability height,all moored buoy winds are adjusted from 3.1-4.0 meters to a height of 10 meters assuming neutral stability and using a logarithmic profile method[25].This method requires only the wind speed at the reference height.

    Before deriving overall verification statistics,satellite winds are collocated with in situ winds only if they are spatially within a box of 0.2°×0.2° and temporally within 15 minutes.Each buoy wind is used only one time for collocation with the above mentioned resolutions.To make sure that the correct satellite wind is selected,the collocated pair is retained only if none of them conclude the missing data.Since science measurement requirements of CYGNSS mission is to provide wind speed over a dynamic range of 3-70 m/s as determined by a spatially averaged wind field with a resolution of 5.0×5.0 km,in situ winds below 3.0 m/s are not considered for collocation[12].

    Time series comparison of CYGNSS observations and in situ winds from Xisha flux tower is shown in Figure 4.The number of collocations of CYGNSS Level 2 version (L2) and Level 3 version (L3) data against in situ winds is 116 and 100.The L3 gridded wind product is surface wind speed,averaged in space and time (0.2° latitude and longitude,1 hour).As shown in Figure 4a,CYGNSS L2 version data shows positive bias with respect to in situ wind from Xisha flux tower,while its time evolution is consistent with that of in situ winds.Figure 4b is similar to Figure 4a,but for L3 version.Reduced RMSD value (from 2.49 to 2.11) is obtained from the updated version of CYGNSS winds,suggesting a better performance of L3 version due to the gridding of irregular data.

    The CYGNSS winds are also compared against buoy winds from RAMA,TAO/TRITON and PIRATA net works.Here,CYGNSS L3 data are used.A summary of comparison between CYGNSS and in situ observations is listed in Table 1.This table describes the mean buoy wind speed,the mean CYGNSS wind speed,their root-mean-square-difference (RMSD) and the number of collocations.Most of the CYGNSS wind speed values are lower than the buoy measured mean wind speeds.The quick revisit time of CYGNSS satellite on the same geographic points leads to larger number of collocations.The 65-day period is enough for the validation of CYGNSS observations.In addition,the mean RMSD is 2.17 m/s,which meets 2.0 m/s retrieval uncertainty for winds less than 20.0 m/s in terms of CYGNSS mission scientific data product baseline requirements.Part of this discrepancy may come from instrument error,and part of it may come from representative error because of not-exact match of in situ and satellite measurements.Although CYGNSS observations do well on the comparison against in situ winds,much work is needed to be done to increase the satellite data accuracy.

    3 Applications

    High-resolution,time-resolved sea surface wind datasets are needed to better understand,assess,and predict the complex mass and energy interchange processes of atmosphere and ocean,as well as to document any changes that occur because of long-term fluc

    tuations,such as Madden-Julian oscillation (MJO) and coastal upwelling events.Global or tropical sampling for near-surface measurements is necessary to create the required datasets for these phenomena.Analyzing CYGNSS data from the perspective of eight tracks of specular points may enhance the accuracy and the spatio-temporal sampling of retrieved winds.In this section,we apply the results about the MJO and equatorial eastern Indian Ocean coastal upwelling events to discuss the potential applications of CYGNSS observations.

    One of the most distinctive signals of the Madden-Julian oscillation (MJO) is the upscale development and organization of convection in the Indian Ocean.To estimate the fidelity with respect to eastward propagation of MJO,30-60 day filtered 850 hPa and 10 m zonal wind anomalies are regressed against the filtered wind anomalies averaged over an equatorial Indian Ocean box (60-90°E,5°S-5°N),respectively,for time lags from day -20 to day +20.The lag-longitude sections of the regression coefficients are computed over longitudes 30°E-150°W by averaging the coefficients in the 10°S-10°N latitudinal band.The regression coefficient plots with respect to the reference box are shown in Figure 5.The maximum positive regression coefficients are located in the 60-90°E longitudinal band on day -5 to day+5.The eastward propagation phase speed of 5 m/s observed in wind fields is overlaid as a dashed line on all plots for comparison.The observed eastward propagating wind signals are reasonably detected by both 850 hPa and 10 m winds.Thus,10 m wind can be used to detect the MJO signals,suggesting a potential application of CYGNSS observations.

    To further show the potential applications of satellite winds in the eastern equatorial Indian Ocean,we compare the coastal upwelling indices against SST anomalies near the Java Island.The coastal upwelling indices are estimated from CCMP 10 m winds,and SST is available from Remote Sensing Systems Optimally Interpolated SST daily products at 25 km resolution.The time evolution of coastal upwelling indices shows remarkable agreement with that of SST anomalies from 2000 to 2011 (Fig.6).When these indices decrease in the second half of the year,the SST anomalies also decrease.The standard deviations of upwelling indices and SST anomalies are 16.35 and 1.32.Such tight relationship between upwelling indices and SST variations suggests that the dynamical responses of SST in eastern equatorial Indian Ocean to atmospheric forcing exhibits a striking feature,with upwelling being associated with an enhanced offshore Ekman transport and wind speed.Sea surface wind is a good indicator to detect the intensity of coastal upwelling.

    4 Conclusion

    Near-surface winds over the ocean are major contributors to the momentum and energy fluxes at the air-sea interface.To understand the complex mass and energy interchange processes of atmosphere and ocean,high quality of sea surface wind product is key to properly modeling and forecasting the genesis and intensification of phenomena in the atmosphere and the ocean.The limitations of existing satellite measurements of sea surface winds under rainfall conditions become even more severe.By combining the all-weather performance of GPS-based bistatic scatterometry with the sampling properties of a dense satellite constellation,CYGNSS mission measures the ocean surface wind field with unprecedented temporal resolution and spatial coverage,under all precipitating conditions,and over the full dynamic range of wind speeds experienced in tropical cyclones.In short,the CYNSS observation has the advantages as follows:1.Little to no rainfall effect;2.Quick revisit time.

    To verify the performance of satellite measurements,CYGNSS observations over the tropical areas between 35°N and 35°S are evaluated against in situ winds from Xisha flux tower in SCS and moored buoy winds from RAMA buoy network over the Indian Ocean,TAO/TRITON over the Pacific and PIRATA over the Atlantic during August-October 2017.Validation of CYGNSS winds shows maximum collocations in the Pacific Ocean due to the larger group of moored buoys in this area.The comparison of satellite and in situ winds are temporally and spatially separated within 15 minutes and 0.2°.CYGNSS winds show a mean RMSD of 2.17 m/s with respect to in situ winds,suggesting that wind speeds observed by CYGNSS agree with in situ winds.

    CYNSS observations have many potential applications,such as the detection of MJO and coastal upwelling signals.The version of CYGNSS winds updated with space-time homogeneity is better for studying the Indian Ocean and Western-Pacific Warm Pool.High quality and high temporal and spatial resolution sea surface wind data product from CYNSS will advance the study of earth sciences.

    References

    [1] Graham N E,Barnett T P.Sea surface temperature,surface wind divergence,and convection over tropical oceans[J].Science,1987,238(4827):657-659

    [2] Smith S D.Coefficients for sea surface wind stress,heat flux,and wind profiles as a function of wind speed and temperature[J].J Geophys Res,1988,93(C12):15467-15472

    [3] Risien C M,Chelton D B.A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data[J].Journal of Physical Oceanography,2008,38(11):2379-2413

    [4] Kumar B P,Vialard J,Lengaigne M,et al.TropFlux wind stresses over the tropical oceans:evaluation and comparison with other products[J].Climate Dynamics,2013,40(7/8):2049-2071

    [5] Schlax M G,Chelton D B,F(xiàn)reilich M H.Sampling errors in wind fields constructed from single and tandem scatterometer datasets[J].Journal of Atmospheric and Oceanic Technology,2001,18(6):1014-1036

    [6] Kalnay E,Kanamitsu M,Kistler R.The NCEP/NCAR 40-year reanalysis project[J].Bulletin of the American Meteorological Society,1996,77(3):437-470

    [7] Kanamitsu M,Ebisuzaki W,Woolen J,et al.NCEP/DOE AMIP-II reanalysis (R-2)[J].Bulletin of the American Meteorological Society,2002,83(11):1631-1643

    [8] Atlas R,Hoffman R N,Ardizzone J,et al.A cross-calibrated,multiplatform ocean surface wind velocity product for meteorological and oceanographic applications[J].Bulletin of the American Meteorological Society,2011,92(2):157-174

    [9] Jones W L,Zec J.Evaluation of rain effects on NSCAT wind retrievals[C]∥Oceans 96 MTS/IEEE,Prospects for the 21st Century,1996:1171-1176

    [10] Nie C,Long D G.The effect of rain on ERS scatterometer measurements[C]∥IEEE International Conference on Geoscience and Remote Sensing Symposium,2013:4119-4121

    [11] Ruf C,Gleason S,Jelenak z,et al.The NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) mission[C]∥IEEE Aerospace Conference,2013:1-7

    [12] Ruf C S,Atlas R,Chang P S,et al.New ocean winds satellite mission to probe hurricanes and tropical convection[J].Bulletin of the American Meteorological Society,2012,97(3):150626133330005

    [13] Madden R A,Julian P R.Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific[J].Journal of the Atmospheric Sciences,1971,28(5):702-708

    [14] Wheeler M C,Hendon H H.An all-season real-time multivariate MJO index:development of an index for monitoring and prediction[J].Monthly Weather Review,2004,132(8):1917-1932

    [15] Demott C A,Klingaman N P,Woolnough S J.Atmosphere-ocean coupled processes in the Madden-Julian oscillation[J].Reviews of Geophysics,2015,53(4):1099-1154

    [16] Chen G X,Han W Q,Li Y L,et al.Intraseasonal variability of upwelling in the equatorial eastern Indian Ocean[J].J Geophys Res,2016,120(11):7598-7615

    [17] Schwing F B,OFarrell M,Steger J M,et al.Coastal upwelling indices west coast of North America 1946-1995[J].Cambridge Studies in Applied Econometric,1996,47(1):313

    [18] Bakun A.Coastal upwelling indices,west coast of North America,1946-71[R].NOAA Technical Report NMFS SSRF-671,1973:103

    [19] Schulz E W,Kepert J D,Greenslade D J M.An assessment of marine surface winds from the Australian Bureau of Meteorology numerical weather prediction systems[J].Weather & Forecasting,2010,22(3):226-227

    [20] Rani S I,Gupta M D.Oceansat-2 and RAMA buoy winds:a comparison[J].Journal of Earth System Science,2013,122(6):1571-1582

    [21] Yang L,Wang D,Huang J,et al.Toward a mesoscale hydrological and marine meteorological observation network in the South China Sea[J].Bulletin of the American Meteorological Society,2015,96(7):150204133247008

    [22] Zeng L L,Wang Q,Xie Q,et al.Hydrographic field investigations in the northern South China Sea by open cruises during 2004-2013[J].Science Bulletin,2015,60(6):607-615

    [23] Wang D X,Li J,Yang L,et al.The variations of atmospheric variables recorded at Xisha station in the South China Sea during tropical cyclone passages[M]∥Hickey K.Advances in hurricane research-modelling,meteorology,preparedness and impacts.Rijeka,Croatia:InTech,2012

    [24] Shi R,Guo X Y,Wang D X,et al.Seasonal variability in coastal fronts and its influence on sea surface wind in the northern South China Sea[J].Deep-Sea Research Part II:Topical Studies in Oceanography,2015,119:30-39

    [25] Qin H L,Chen G X,Wang W Q,et al.Validation and application of MODIS-derived SST in the South China Sea[J].International Journal of Remote Sensing,2014,35 (11/12):4315-4328

    [26] McPhaden M J.The global tropical moored buoy array[C]∥Proceedings of Oceanobs09 Sustained Ocean Observations & Information for Society,2010,DOI:10.5270/OceanObs09.cwp.61

    猜你喜歡
    驗證
    歷史不可驗證說的語義結構與內(nèi)在邏輯
    讓冷峻與溫情并存
    校核、驗證與確認在紅外輻射特性測量中的應用
    剖析智能化斷路器機械特性在線監(jiān)測關鍵技術設計及驗證
    科技資訊(2016年25期)2016-12-27 18:48:31
    合理猜想,有效驗證
    晶閘管關斷特性的驗證解析
    小題也可大做
    彈藥保障需求分析實驗模型輸出數(shù)據(jù)的驗證研究
    價值工程(2016年30期)2016-11-24 14:19:29
    汽車外后視鏡抖動問題模型的試驗驗證
    汽車科技(2016年5期)2016-11-14 08:08:15
    核電項目A1號機組L521電氣貫穿件H通道問題處理
    科技視界(2016年23期)2016-11-04 15:08:42
    婷婷亚洲欧美| 青草久久国产| 亚洲av电影不卡..在线观看| 亚洲,欧美,日韩| 国产一区二区三区视频了| 一区福利在线观看| 男女视频在线观看网站免费| 桃红色精品国产亚洲av| 最近视频中文字幕2019在线8| 婷婷精品国产亚洲av在线| 久久久久亚洲av毛片大全| 免费高清视频大片| 亚洲人成电影免费在线| 午夜免费男女啪啪视频观看 | 少妇的逼水好多| 欧美区成人在线视频| 一进一出抽搐gif免费好疼| 一区二区三区激情视频| 日韩中文字幕欧美一区二区| 女同久久另类99精品国产91| 动漫黄色视频在线观看| 国产三级中文精品| 五月伊人婷婷丁香| 亚州av有码| or卡值多少钱| 性色av乱码一区二区三区2| 中亚洲国语对白在线视频| 精品熟女少妇八av免费久了| 97超级碰碰碰精品色视频在线观看| 欧美极品一区二区三区四区| 午夜日韩欧美国产| 欧美日本亚洲视频在线播放| or卡值多少钱| 婷婷丁香在线五月| 亚洲av二区三区四区| eeuss影院久久| 精品免费久久久久久久清纯| 亚洲不卡免费看| 欧美精品啪啪一区二区三区| 久久精品久久久久久噜噜老黄 | 男人狂女人下面高潮的视频| 欧美不卡视频在线免费观看| 香蕉av资源在线| 中亚洲国语对白在线视频| 欧美高清性xxxxhd video| 亚洲最大成人中文| 久久久成人免费电影| 男女视频在线观看网站免费| 国产在线精品亚洲第一网站| 在线观看av片永久免费下载| 国产精品精品国产色婷婷| 亚洲欧美激情综合另类| 日韩国内少妇激情av| 97人妻精品一区二区三区麻豆| 欧美一区二区亚洲| 校园春色视频在线观看| 国产老妇女一区| 免费av毛片视频| 一区二区三区免费毛片| 99热这里只有是精品50| 麻豆久久精品国产亚洲av| 男女床上黄色一级片免费看| 熟女人妻精品中文字幕| 亚洲av中文字字幕乱码综合| 村上凉子中文字幕在线| 亚洲国产精品成人综合色| 人妻久久中文字幕网| 亚洲国产精品合色在线| 久久久久久久久久黄片| 18禁黄网站禁片午夜丰满| a级一级毛片免费在线观看| 国产精品综合久久久久久久免费| 国产精品自产拍在线观看55亚洲| 精品日产1卡2卡| 久久精品国产亚洲av涩爱 | 真实男女啪啪啪动态图| 日韩人妻高清精品专区| 免费观看人在逋| 国产精品伦人一区二区| 在线观看66精品国产| 九九久久精品国产亚洲av麻豆| 久久亚洲真实| 99精品在免费线老司机午夜| 久久精品人妻少妇| 69人妻影院| 一卡2卡三卡四卡精品乱码亚洲| 日韩精品中文字幕看吧| 美女高潮喷水抽搐中文字幕| 18禁黄网站禁片午夜丰满| 在线国产一区二区在线| 免费看a级黄色片| 精品午夜福利在线看| 精品乱码久久久久久99久播| 91午夜精品亚洲一区二区三区 | 在线播放无遮挡| 色尼玛亚洲综合影院| 国产亚洲精品综合一区在线观看| 久久精品国产亚洲av涩爱 | 高清日韩中文字幕在线| 超碰av人人做人人爽久久| 久久久色成人| 亚洲男人的天堂狠狠| 亚洲国产日韩欧美精品在线观看| 亚洲电影在线观看av| 搡老岳熟女国产| 色哟哟·www| 亚洲精品久久国产高清桃花| 国产单亲对白刺激| 中文字幕高清在线视频| 亚洲成人免费电影在线观看| 91av网一区二区| 亚洲av电影在线进入| 亚洲aⅴ乱码一区二区在线播放| 热99re8久久精品国产| 精品久久久久久久久久久久久| 午夜亚洲福利在线播放| 乱人视频在线观看| 日本 欧美在线| 一级黄片播放器| 欧美一级a爱片免费观看看| 少妇高潮的动态图| 国产精品影院久久| 亚洲av成人av| 岛国在线免费视频观看| 亚洲人与动物交配视频| 天堂影院成人在线观看| 一个人看视频在线观看www免费| 日韩欧美 国产精品| 精品乱码久久久久久99久播| 女人十人毛片免费观看3o分钟| 99在线视频只有这里精品首页| 18+在线观看网站| 五月伊人婷婷丁香| 麻豆成人午夜福利视频| 欧美不卡视频在线免费观看| 亚洲av成人av| 热99re8久久精品国产| 亚洲,欧美,日韩| 婷婷六月久久综合丁香| 国产麻豆成人av免费视频| 老司机深夜福利视频在线观看| 黄色女人牲交| 国产中年淑女户外野战色| 熟妇人妻久久中文字幕3abv| 欧美精品国产亚洲| 国产单亲对白刺激| 每晚都被弄得嗷嗷叫到高潮| 俄罗斯特黄特色一大片| 中文在线观看免费www的网站| 精品一区二区三区人妻视频| 听说在线观看完整版免费高清| 特大巨黑吊av在线直播| 亚洲专区中文字幕在线| 最近最新免费中文字幕在线| 可以在线观看毛片的网站| 久久欧美精品欧美久久欧美| 久久天躁狠狠躁夜夜2o2o| 欧美一级a爱片免费观看看| 午夜免费成人在线视频| 一本久久中文字幕| 日日摸夜夜添夜夜添av毛片 | 搡老妇女老女人老熟妇| 99久久成人亚洲精品观看| 身体一侧抽搐| 欧美zozozo另类| 色精品久久人妻99蜜桃| 9191精品国产免费久久| 国产精品一及| 中出人妻视频一区二区| 一区二区三区高清视频在线| 少妇的逼好多水| a在线观看视频网站| 成人无遮挡网站| 精品欧美国产一区二区三| 国产 一区 欧美 日韩| 国产精品乱码一区二三区的特点| 久久久久久九九精品二区国产| 男人舔女人下体高潮全视频| 最近视频中文字幕2019在线8| 久9热在线精品视频| 国产大屁股一区二区在线视频| 黄色配什么色好看| 91av网一区二区| 制服丝袜大香蕉在线| 成人鲁丝片一二三区免费| 中文字幕av在线有码专区| 大型黄色视频在线免费观看| 国产国拍精品亚洲av在线观看| 男人的好看免费观看在线视频| 国产精品永久免费网站| 国产精品98久久久久久宅男小说| 18禁黄网站禁片免费观看直播| 狠狠狠狠99中文字幕| 国产又黄又爽又无遮挡在线| 一级a爱片免费观看的视频| www.www免费av| 色综合婷婷激情| 久久这里只有精品中国| x7x7x7水蜜桃| 精品一区二区三区视频在线观看免费| 一区二区三区四区激情视频 | 国产一区二区在线av高清观看| 免费看日本二区| 在线天堂最新版资源| 舔av片在线| 久久精品国产亚洲av天美| 在线观看av片永久免费下载| 男插女下体视频免费在线播放| 91狼人影院| 亚洲av美国av| 亚洲第一欧美日韩一区二区三区| 男人舔奶头视频| 嫩草影院入口| 日本熟妇午夜| 久久久久久国产a免费观看| 蜜桃久久精品国产亚洲av| 在线观看av片永久免费下载| 日韩高清综合在线| 黄色一级大片看看| 一级毛片久久久久久久久女| 午夜视频国产福利| www日本黄色视频网| 精品一区二区三区视频在线| 九九在线视频观看精品| 69人妻影院| 看免费av毛片| 国产91精品成人一区二区三区| xxxwww97欧美| 亚洲精品在线美女| 性插视频无遮挡在线免费观看| a级一级毛片免费在线观看| 草草在线视频免费看| 一级黄片播放器| 夜夜看夜夜爽夜夜摸| 亚洲性夜色夜夜综合| 久久久久精品国产欧美久久久| 国产爱豆传媒在线观看| 久久午夜亚洲精品久久| 国产精品1区2区在线观看.| 欧美一区二区国产精品久久精品| 欧美国产日韩亚洲一区| 亚洲精品成人久久久久久| 国产人妻一区二区三区在| 国产精品国产高清国产av| 国产黄a三级三级三级人| 亚洲美女搞黄在线观看 | 中文亚洲av片在线观看爽| www.999成人在线观看| 国产成人av教育| 午夜视频国产福利| 亚洲一区二区三区色噜噜| 国产精品一区二区三区四区久久| 最后的刺客免费高清国语| 精品人妻一区二区三区麻豆 | 亚洲欧美精品综合久久99| 嫩草影院入口| 无人区码免费观看不卡| 窝窝影院91人妻| 国产男靠女视频免费网站| 欧美性猛交╳xxx乱大交人| 精品午夜福利视频在线观看一区| 波野结衣二区三区在线| 精品久久久久久久久亚洲 | 亚洲精华国产精华精| 啦啦啦韩国在线观看视频| 免费在线观看影片大全网站| 最好的美女福利视频网| 亚洲内射少妇av| 在现免费观看毛片| 啦啦啦韩国在线观看视频| 久久欧美精品欧美久久欧美| 国产黄色小视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产精品98久久久久久宅男小说| 国产精品免费一区二区三区在线| 亚洲成av人片免费观看| 欧美最黄视频在线播放免费| 99国产极品粉嫩在线观看| 日日干狠狠操夜夜爽| 一本精品99久久精品77| 成年女人看的毛片在线观看| 色综合站精品国产| 成人av在线播放网站| 国产成+人综合+亚洲专区| 少妇被粗大猛烈的视频| 啪啪无遮挡十八禁网站| 成人高潮视频无遮挡免费网站| 久久精品综合一区二区三区| 成人一区二区视频在线观看| 欧美黄色片欧美黄色片| 国产大屁股一区二区在线视频| 国产不卡一卡二| 97超级碰碰碰精品色视频在线观看| 成人av一区二区三区在线看| 午夜老司机福利剧场| 欧美激情国产日韩精品一区| 最新中文字幕久久久久| 成人特级av手机在线观看| 91午夜精品亚洲一区二区三区 | av天堂中文字幕网| 免费电影在线观看免费观看| 久久久久久大精品| 国产淫片久久久久久久久 | 波多野结衣巨乳人妻| 又粗又爽又猛毛片免费看| 九色成人免费人妻av| 精品人妻熟女av久视频| 国产熟女xx| 国产伦精品一区二区三区视频9| 日本一二三区视频观看| 国产av麻豆久久久久久久| 亚洲成人中文字幕在线播放| 欧美成狂野欧美在线观看| 18+在线观看网站| 久久这里只有精品中国| 99热这里只有是精品在线观看 | 亚洲精品456在线播放app | 一个人免费在线观看电影| 国产精品人妻久久久久久| 国产国拍精品亚洲av在线观看| 最近最新中文字幕大全电影3| 中文字幕人成人乱码亚洲影| 精品日产1卡2卡| 日韩成人在线观看一区二区三区| 女人被狂操c到高潮| 久久欧美精品欧美久久欧美| 免费在线观看亚洲国产| 国产av在哪里看| 能在线免费观看的黄片| 日本免费一区二区三区高清不卡| 午夜福利视频1000在线观看| 小说图片视频综合网站| 毛片一级片免费看久久久久 | 永久网站在线| 欧美色视频一区免费| 成年女人看的毛片在线观看| 久久久色成人| 成人毛片a级毛片在线播放| 亚洲欧美清纯卡通| 国产精品亚洲一级av第二区| 欧美成人一区二区免费高清观看| 麻豆成人av在线观看| 性插视频无遮挡在线免费观看| 国产毛片a区久久久久| 91在线精品国自产拍蜜月| 一本综合久久免费| 最近中文字幕高清免费大全6 | 精品不卡国产一区二区三区| 一本久久中文字幕| 欧美日韩黄片免| 亚洲五月婷婷丁香| 亚洲国产高清在线一区二区三| 97热精品久久久久久| 婷婷精品国产亚洲av| а√天堂www在线а√下载| 亚洲,欧美,日韩| 国内毛片毛片毛片毛片毛片| 两性午夜刺激爽爽歪歪视频在线观看| 成人午夜高清在线视频| 亚洲精品一卡2卡三卡4卡5卡| 99国产精品一区二区蜜桃av| 99久久九九国产精品国产免费| 51午夜福利影视在线观看| 日韩国内少妇激情av| 51午夜福利影视在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 欧美激情在线99| 婷婷亚洲欧美| 在线观看午夜福利视频| 国产一级毛片七仙女欲春2| 久久性视频一级片| 不卡一级毛片| 能在线免费观看的黄片| 婷婷精品国产亚洲av在线| aaaaa片日本免费| 精品人妻1区二区| 午夜激情福利司机影院| 欧美三级亚洲精品| 91在线精品国自产拍蜜月| 两个人视频免费观看高清| 国产视频内射| 亚洲,欧美,日韩| 亚洲av美国av| 久久久久性生活片| 亚洲精品一卡2卡三卡4卡5卡| 久久精品影院6| 精品午夜福利视频在线观看一区| 国产高清视频在线播放一区| av视频在线观看入口| 美女被艹到高潮喷水动态| 色噜噜av男人的天堂激情| 亚洲人与动物交配视频| av福利片在线观看| 免费看美女性在线毛片视频| 日本一本二区三区精品| 五月伊人婷婷丁香| 99热6这里只有精品| 永久网站在线| 国产精品女同一区二区软件 | 亚洲男人的天堂狠狠| 国产乱人视频| 国产探花极品一区二区| 成人三级黄色视频| 欧美成狂野欧美在线观看| 欧美绝顶高潮抽搐喷水| 长腿黑丝高跟| 亚洲久久久久久中文字幕| 中文字幕av成人在线电影| 18美女黄网站色大片免费观看| 国产精品不卡视频一区二区 | 九色国产91popny在线| 国产男靠女视频免费网站| 美女cb高潮喷水在线观看| 成年版毛片免费区| 九九热线精品视视频播放| 亚洲精品456在线播放app | 男女床上黄色一级片免费看| 欧美最黄视频在线播放免费| 成人特级av手机在线观看| 日日摸夜夜添夜夜添av毛片 | 亚洲中文字幕日韩| 久久这里只有精品中国| 精品无人区乱码1区二区| 国产乱人伦免费视频| 亚洲av电影在线进入| 中文在线观看免费www的网站| 国产午夜精品久久久久久一区二区三区 | 嫁个100分男人电影在线观看| 亚洲一区二区三区不卡视频| 美女高潮喷水抽搐中文字幕| 内地一区二区视频在线| av中文乱码字幕在线| 久9热在线精品视频| 成年版毛片免费区| 九九热线精品视视频播放| 99热这里只有是精品50| 亚洲片人在线观看| xxxwww97欧美| 欧美bdsm另类| 国产色爽女视频免费观看| 床上黄色一级片| 国产熟女xx| 欧美zozozo另类| 午夜两性在线视频| 简卡轻食公司| 91av网一区二区| 国产av一区在线观看免费| 国产精品一区二区三区四区久久| 久久久久久久精品吃奶| 在线观看免费视频日本深夜| 精品一区二区三区视频在线| 99国产极品粉嫩在线观看| 欧美成人免费av一区二区三区| 性插视频无遮挡在线免费观看| .国产精品久久| 国产精品嫩草影院av在线观看 | 日本 av在线| 日本在线视频免费播放| 九色成人免费人妻av| 欧美日本视频| 欧美在线一区亚洲| 色哟哟哟哟哟哟| 国产成人av教育| 18禁黄网站禁片免费观看直播| 99久久成人亚洲精品观看| 国产国拍精品亚洲av在线观看| 国产精品不卡视频一区二区 | 人妻夜夜爽99麻豆av| 无人区码免费观看不卡| 一a级毛片在线观看| 老女人水多毛片| 亚洲av日韩精品久久久久久密| 特级一级黄色大片| 十八禁人妻一区二区| 精品人妻偷拍中文字幕| 精品日产1卡2卡| 黄色女人牲交| 又爽又黄a免费视频| 国产伦精品一区二区三区视频9| 一卡2卡三卡四卡精品乱码亚洲| 日本与韩国留学比较| 国产麻豆成人av免费视频| 国产精品综合久久久久久久免费| 1024手机看黄色片| 每晚都被弄得嗷嗷叫到高潮| 一级作爱视频免费观看| 麻豆久久精品国产亚洲av| 给我免费播放毛片高清在线观看| 全区人妻精品视频| 亚洲成av人片免费观看| 我的老师免费观看完整版| 18禁黄网站禁片午夜丰满| 老熟妇仑乱视频hdxx| 精品一区二区三区视频在线| 日韩中文字幕欧美一区二区| 十八禁人妻一区二区| 国产精品98久久久久久宅男小说| 久久6这里有精品| 免费看光身美女| 亚洲av电影在线进入| 波多野结衣巨乳人妻| 国产亚洲欧美在线一区二区| 看免费av毛片| 亚洲av成人av| 看免费av毛片| 长腿黑丝高跟| 成人一区二区视频在线观看| АⅤ资源中文在线天堂| 日本一本二区三区精品| 亚州av有码| 午夜精品一区二区三区免费看| 国产高清视频在线观看网站| 欧美一级a爱片免费观看看| 深夜精品福利| 天堂网av新在线| 亚洲精品粉嫩美女一区| 国产欧美日韩精品一区二区| АⅤ资源中文在线天堂| 看免费av毛片| 免费高清视频大片| 国产大屁股一区二区在线视频| 精品久久国产蜜桃| 精品福利观看| 日韩 亚洲 欧美在线| 一区福利在线观看| 精品久久久久久久人妻蜜臀av| 免费人成视频x8x8入口观看| 一区二区三区高清视频在线| 国产精品伦人一区二区| 亚洲av成人av| 国产伦在线观看视频一区| 亚洲av熟女| 亚洲经典国产精华液单 | 久久久久久久久久成人| 亚洲aⅴ乱码一区二区在线播放| 亚洲中文字幕一区二区三区有码在线看| 成年免费大片在线观看| 美女高潮喷水抽搐中文字幕| 特级一级黄色大片| 好男人在线观看高清免费视频| 91av网一区二区| 日韩大尺度精品在线看网址| 一夜夜www| 国产一区二区三区视频了| 免费看日本二区| 亚洲av成人av| 亚洲av五月六月丁香网| 无人区码免费观看不卡| 国产精品久久久久久精品电影| 成人精品一区二区免费| 性插视频无遮挡在线免费观看| 91午夜精品亚洲一区二区三区 | 亚洲无线观看免费| 美女cb高潮喷水在线观看| 国产真实伦视频高清在线观看 | 日韩欧美 国产精品| 欧美极品一区二区三区四区| 国产国拍精品亚洲av在线观看| 欧美激情久久久久久爽电影| 欧美成狂野欧美在线观看| 91字幕亚洲| 97超级碰碰碰精品色视频在线观看| 深夜a级毛片| 日本三级黄在线观看| 亚洲精品一区av在线观看| 久久性视频一级片| 不卡一级毛片| 国产精品美女特级片免费视频播放器| av天堂在线播放| 极品教师在线视频| 色综合亚洲欧美另类图片| 国产成人a区在线观看| 成人特级av手机在线观看| 国内精品一区二区在线观看| 亚洲精品久久国产高清桃花| 两个人的视频大全免费| 校园春色视频在线观看| 一个人免费在线观看的高清视频| 全区人妻精品视频| 亚洲欧美精品综合久久99| 国产在线精品亚洲第一网站| 最近中文字幕高清免费大全6 | 亚洲精品成人久久久久久| av专区在线播放| 成人无遮挡网站| 无遮挡黄片免费观看| 午夜精品一区二区三区免费看| 91久久精品国产一区二区成人| 日韩欧美国产一区二区入口| 国产在线精品亚洲第一网站| 69av精品久久久久久| 国产精品久久久久久亚洲av鲁大| 国产 一区 欧美 日韩| 两个人视频免费观看高清| 日韩精品青青久久久久久| 国产大屁股一区二区在线视频| 51午夜福利影视在线观看| 日韩人妻高清精品专区| 国产又黄又爽又无遮挡在线| 亚洲av熟女| 久久久久亚洲av毛片大全| 99热这里只有是精品50| 男女视频在线观看网站免费| 国产精品影院久久| 午夜精品一区二区三区免费看| 嫩草影院入口| 国产真实伦视频高清在线观看 | 日韩欧美国产一区二区入口| 亚洲av成人精品一区久久| 天天躁日日操中文字幕| 亚洲自拍偷在线| a级一级毛片免费在线观看| 午夜免费激情av| 美女免费视频网站| 18+在线观看网站|