• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CYGNSS海表風場觀測數(shù)據(jù)驗證及其可能的應用

    2018-05-30 12:50:50胡運王曉春王東曉
    南京信息工程大學學報 2018年3期
    關鍵詞:驗證

    胡運 王曉春 王東曉

    摘要海表面風場可以用于獲取許多大氣和海洋現(xiàn)象的信號,高質量、高時空分辨率的海表面風場數(shù)據(jù)產(chǎn)品將有利于海洋-大氣動力過程的研究.本文使用全球熱帶系泊浮標陣列計劃(Global Tropical Moored Array Programs)的錨定浮標風場數(shù)據(jù)和西沙通量塔氣象觀測資料驗證了 Cyclone Global Navigation Satellite System (CYGNSS)的35°N~35°S海面遙感風場觀測數(shù)據(jù).結果表明,CYGNSS海表面風場與實測資料存在著2.17 m/s左右的平均均方根誤差(RMSD),它可能源于觀測數(shù)據(jù)和衛(wèi)星遙感資料的觀測誤差,以及兩者在空間和時間上未嚴格匹配而引起的代表性誤差.另外,CYGNSS海表面風速的時間演變與實測資料非常一致,展現(xiàn)了CYGNSS在研究海洋-大氣能量和動量交換過程方面的潛在應用價值.本文使用Madden-Julian Oscillation (MJO)和赤道東部印度洋上升流事件作為兩個個例,說明了CYGNSS海表面風場資料的潛在應用價值.

    關鍵詞CYGNSS;觀測數(shù)據(jù);驗證;潛在應用;MJO;沿岸上升流

    中圖分類號P414.4

    文獻標志碼A

    0 導讀

    本文原文為英文,希望感興趣的讀者進一步關注原文.

    海表風場是海氣界面主要的動量通量和能量通量的來源.為了正確認識海氣相互作用過程,需要進一步提高海表風場數(shù)據(jù)的質量、時間和空間分辨率,以便模擬和預測海洋和大氣現(xiàn)象的發(fā)生及發(fā)展過程.現(xiàn)有的海表風場數(shù)據(jù)的時間和空間分辨率逐漸提高,但降水對風場數(shù)據(jù)的影響仍然存在.2016年底,美國航空航天局的旋風全球導航衛(wèi)星系統(tǒng)(CYGNSS)飛行任務啟動,它是一個用于提高颶風預報準確性的包含8顆微小衛(wèi)星的星座,可以對熱帶氣旋、臺風以及颶風整個壽命周期中的眼壁內(nèi)和眼壁附近的海洋表面風進行頻繁測量,每秒可得到32個實際風速值.另外,CYGNSS觀測系統(tǒng)可對單一樣本點進行多次觀測,時間間隔為幾分鐘至幾小時.總之,CYGNSS觀測數(shù)據(jù)具有兩個明顯優(yōu)點:1)幾乎不受降水影響;2)時間步長短.

    本文使用較多的單點觀測數(shù)據(jù)來驗證CYGNSS觀測數(shù)據(jù)的可靠性.選取的時間段為2017年8月1日—10月4日,共65 d.首先將CYGNSS風場數(shù)據(jù)與中國南海西沙通量塔風場數(shù)據(jù)進行對比.衛(wèi)星數(shù)據(jù)與站點觀測存在著2.49 m/s的均方根誤差(RMSD).另外,時間上均勻、空間上網(wǎng)格化的CYGNSS風場產(chǎn)品更適用于海洋和大氣的研究.將CYGNSS風場數(shù)據(jù)與全球熱帶系泊浮標陣列計劃的錨定浮標風場數(shù)據(jù)進行對比,結果顯示,相對于錨定浮標數(shù)據(jù),CYGNSS風場產(chǎn)品存在著2.17 m/s的平均RMSD.該數(shù)值符合CYGNSS任務數(shù)據(jù)產(chǎn)品的要求,即低于20 m/s風速時,其反演不確定性為2.0 m/s.這些誤差可能源于觀測數(shù)據(jù)和衛(wèi)星資料的觀測誤差,以及兩者在空間和時間上未嚴格匹配而引起的代表性誤差.CYGNSS海表面風速的時間演變與實測資料非常一致,展現(xiàn)了CYGNSS在研究海洋-大氣能量和動量交換過程方面的潛在應用價值.

    為了展現(xiàn)CYGNSS數(shù)據(jù)產(chǎn)品的潛在應用價值,本文使用Madden-Julian Oscillation(MJO)和赤道東部印度洋上升流事件作為兩個個例,驗證CYGNSS風場在獲取兩者信號時的表現(xiàn).結果表明,CYGNSS海表風場較好地展現(xiàn)了MJO東傳的速度和位相,這與850 hPa風場表現(xiàn)一致;同時,CYGNSS海表風場可通過算法來指示赤道印度洋東部上升流的強度,該強度與海表溫度異常值變化一致.

    Abstract Many phenomena in the atmosphere and the ocean can be detected by sea surface winds.High quality and high temporal and spatial resolution sea surface wind data product is needed to study these phenomena.In this paper,sea surface winds from Cyclone Global Navigation Satellite System (CYGNSS) mission over 35°N-35°S are validated against in situ observations in order to evaluate the performance of CYGNSS.The in situ wind observations include measurements from the Xisha flux tower in South China Sea (SCS),and moored buoy data from the Global Tropical Moored Buoy Array (GTMBA).The result indicates a mean root-mean-square-difference (RMSD) of 2.17 m/s of CYGNSS winds with respect to in situ observations.Part of this discrepancy may come from instrument error,and part of it may come from representative error because of not-exact match of in situ and satellite measurements.The time evolution of CYGNSS winds,however,is consistent with that of in-situ winds,suggesting its potential application in understanding the complex mass and energy interchange processes of atmosphere and ocean.Examples using surface wind to analyze the MJO and the equatorial eastern Indian Ocean upwelling events are also discussed,which indicates potential applications of CYGNSS observation.

    Key words CYGNSS;observations;validation;potential application;Madden-Julian oscillation;coastal upwelling

    1 Introduction

    Sea surface wind is the typical movement of near-surface air and the largest source of momentum for the upper ocean.It can drive ocean currents,develop convection via surface wind convergence and divergence[1],and transfer heat flux,moisture,gases and particulates into and out of the ocean[2].Accurate measurements of sea surface wind will provide researchers with more detailed information about these dynamic processes of the atmosphere and the ocean.Throughout history,the poor spatial and temporal coverage of ship-and buoy-based observations set limits to describe meteorological conditions over the open ocean[3].Of late,as technology developed,many satellite-based monitoring methods have measured higher-quality wind datasets over tropical and global oceans[4].For instance,Quick Scatterometer provides global winds from 1999 to 2009[5],and the National Centers for Environmental Prediction is involved to present two global reanalysis projects,including Reanalysis-1 and Reanalysis-2[6-7].The Cross-Calibrated Multi-Platform (CCMP) gridded surface vector winds are also widely used[8].Many efforts have been made to evaluate or compare the existing wind data products.The resolution of measurements is improved due to the development of technology,while the rainfall effects on the quality of wind data is still a key limitation[9-10].

    At the end of 2016,the orbital injection of a single launch vehicle carrying a constellation of eight small satellites marks the beginning of the Cyclone Global Navigation Satellite System (CYGNSS) mission.One of the primary CYGNSS objectives is to leverage Global Positioning System (GPS) reflectometry to measure wind speeds in tropical cyclones (TCS) inner core with sufficient frequency to resolve genesis and rapid intensification phases of the TC life cycle[11].And another objective is to measure sea wind speeds under rainy conditions,especially those in the eye of the storm.Rather than previous satellite scatterometers,CYGNSS provides more samples of the study area.For instance,if compared with two current scatterometers combined,the percentage of 3-hour intervals that TC inner core regions can be sampled by satellite sensors is improved from 25% to nearly 35%.

    Ground tracks for 6 hours in a particular day are shown in Figure 1.Eight low earth orbit satellites with an inclination of 35 degrees to the equator are each capable of measuring 4 simultaneous reflections,resulting in 32 wind measurements per second across the globe[12].Besides,the satellite revisit time for the same geographical point during the science mission is reduced to a shorter time,few minutes to few hours.The median value of revisit times is 2.8 hours and the mean revisit time is 7.2 hours.Thus,these satellites provide space-based measurements with the following temporal and spatial sampling:(a) temporal sampling better than 12-hour mean revisit time and (b) spatial sampling 70% of all storm tracks between 35°N and 35°S latitude to be sampled within 24 hours.The number of satellites,their orbit altitudes and inclinations,and the alignment of the antennas are all optimized to provide unprecedented high temporal-resolution wind field imagery of TC genesis,intensification and decay.

    Despite the focus on tropical cyclones,the ability of CYGNSS to provide rapid updates of winds,unbiased by the presence of rainfall,shows many other potential applications related to general tropical convection.A reliable application of near-surface wind conditions,observed at a given time at sea,is necessary for practically every kind of human activity both at open sea and in the coastal zone.The Madden-Julian oscillation (MJO) is a large-scale air-sea coupled process that propagates eastward at about 5 m/s with a period of 30-60 day,and the primary mode of intraseasonal variability in the tropical atmosphere[13].Strong MJO activity has significant features with deep clouds,heavier rainfall and westerly wind anomalies.More information about MJO structure and the skill of MJO forecast require detailed knowledge of sea surface winds,which is limited by existing measurement systems and heavy rainfall due to the MJO[12].In addition,much of the signals of enhanced deep convective system comes from the result of empirical orthogonal functions of meteorological measurements,including outgoing long-wave radiation,850 hPa and 250 hPa wind fields,or their combinations[14].Since the low-level zonal wind anomalies are out of phase with those at upper levels due to the MJO[15],sea surface winds may be an alternative indicator for detecting the MJO signal.However,the greatest mean and diurnal maximum of rainfall rate over ocean exist in the MJO envelope.And in theory,little to no rainfall effect on CYGNSS measurements enables researchers to better understand the mechanisms of tropical deep convective system.

    Besides the above,a more robust wind product is also needed by the research of ocean process.In the equatorial eastern Indian Ocean,surface water is driven by the strong,local southeast monsoon winds from June to October.Surface Ekman transport replaces the offshore moving water by upwelled water,leading to lower sea-level altitudes and cold sea surface temperature (SST) anomalies[16].However,long-time series of ocean surface currents are not available,and directly quantifying upwelling is also extremely difficult[17].The idea behind the offshore component of surface Ekman transport driven by geostrophic wind stress is good to describe the intensity of coastal upwelling.Reasonable estimates of surface transport and coastal upwelling may be made using planetary boundary layer theory and the geostrophic wind approximation.Many publications refer to the Bakun (1973) technical memorandum that initially described the upwelling indices.In this method,Ekman mass transport is defined as the wind stress divided by the Coriolis parameter[18].Therefore,the increasing of high temporal and temporal resolution in wind product will be fed back into the improved understanding on quantitative intensity of coastal upwelling in the equatorial eastern Indian Ocean.

    The rest of the paper is organized as follows.Section 2 describes in situ wind data and verifies the performance of CYGNSS observations.Section 3 describes the potential applications of this satellite measurement,including the MJO and the equatorial eastern Indian Ocean events.Section 4 provides a summary and discussion.Results from this study will advance our understanding of the quality and potential application of CYGNSS observations.

    2 Validation of CYGNSS observations

    In general,the results of recent verification studies of satellite winds come from the comparison between model simulations and satellite observations,or on the inter-comparison with in situ buoys[19-20].In this study,the performance of CYGNSS winds is compared with respect to in situ data,including observations from the Xisha Station and the Global Tropical Moored Buoy Array (GTMBA).Within this section,sea surface winds are examined over a 65-day period,from August 1 to October 4,2017.This type of exercise gives a better understanding on the quality of CYGNSS wind in terms of these independent in situ observations.Part of this section describes the winds from Xisha flux tower and moored buoy winds in Indian,Pacific and Atlantic Ocean.

    The Xisha flux tower is located in the South China Sea (SCS),which belongs to a mesoscale hydrological and marine meteorological observation network established by the SCS Institute of Oceanology.This flux tower is off the coast of Yongxing Island (16°49′N,112°20′E;see red point in Fig.2 for its location),and categorized as both a coastal and a deep-sea station due to the deep water (more than 1 000 meters) basin of the northern-central SCS[21-22].This measurement provides meteorological parameters hourly,such as latent and sensible heat flux,carbon dioxide flux,and winds at a height of 5 m,10 m,and 15m above the mean sea-level.Many efforts have also been made to verify the performance of observations from Xisha Station,such as the passages of tropical cyclones[23],the response of heat flux to monsoon[24],as well as the validation of satellite SST[25].

    In this study,moored buoy winds are also compared against CYGNSS observations.They are available from GTMBA through Pacific Marine Environmental Laboratory (www.pmel.noaa.gov).This moored buoy observing system is based on international cooperation and designed to provide real-time measurements for researching and forecasting tropical climate variations.It consists of three major components:the Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) in the Indian Ocean,the Tropical Atmosphere Ocean/Triangle Trans-Ocean Buoy Network (TAO/TRITON) in the Pacific and the Prediction and Research Moored Array in the Atlantic (PIRATA)[26].High quality time series data of these moored arrays have been advancing the research on air-sea interaction in time and space since their implementations.

    Note that only 7 buoys in RAMA,47 buoys in TAO/TRITON and 7 buoys in PIRATA are considered in this study due to the time matching between in situ and satellite winds.Moored buoys are described in Table 1 and shown in Figure 3 (red points).Since satellite winds over the sea surface are provided at the 10 meters neutral stability height,all moored buoy winds are adjusted from 3.1-4.0 meters to a height of 10 meters assuming neutral stability and using a logarithmic profile method[25].This method requires only the wind speed at the reference height.

    Before deriving overall verification statistics,satellite winds are collocated with in situ winds only if they are spatially within a box of 0.2°×0.2° and temporally within 15 minutes.Each buoy wind is used only one time for collocation with the above mentioned resolutions.To make sure that the correct satellite wind is selected,the collocated pair is retained only if none of them conclude the missing data.Since science measurement requirements of CYGNSS mission is to provide wind speed over a dynamic range of 3-70 m/s as determined by a spatially averaged wind field with a resolution of 5.0×5.0 km,in situ winds below 3.0 m/s are not considered for collocation[12].

    Time series comparison of CYGNSS observations and in situ winds from Xisha flux tower is shown in Figure 4.The number of collocations of CYGNSS Level 2 version (L2) and Level 3 version (L3) data against in situ winds is 116 and 100.The L3 gridded wind product is surface wind speed,averaged in space and time (0.2° latitude and longitude,1 hour).As shown in Figure 4a,CYGNSS L2 version data shows positive bias with respect to in situ wind from Xisha flux tower,while its time evolution is consistent with that of in situ winds.Figure 4b is similar to Figure 4a,but for L3 version.Reduced RMSD value (from 2.49 to 2.11) is obtained from the updated version of CYGNSS winds,suggesting a better performance of L3 version due to the gridding of irregular data.

    The CYGNSS winds are also compared against buoy winds from RAMA,TAO/TRITON and PIRATA net works.Here,CYGNSS L3 data are used.A summary of comparison between CYGNSS and in situ observations is listed in Table 1.This table describes the mean buoy wind speed,the mean CYGNSS wind speed,their root-mean-square-difference (RMSD) and the number of collocations.Most of the CYGNSS wind speed values are lower than the buoy measured mean wind speeds.The quick revisit time of CYGNSS satellite on the same geographic points leads to larger number of collocations.The 65-day period is enough for the validation of CYGNSS observations.In addition,the mean RMSD is 2.17 m/s,which meets 2.0 m/s retrieval uncertainty for winds less than 20.0 m/s in terms of CYGNSS mission scientific data product baseline requirements.Part of this discrepancy may come from instrument error,and part of it may come from representative error because of not-exact match of in situ and satellite measurements.Although CYGNSS observations do well on the comparison against in situ winds,much work is needed to be done to increase the satellite data accuracy.

    3 Applications

    High-resolution,time-resolved sea surface wind datasets are needed to better understand,assess,and predict the complex mass and energy interchange processes of atmosphere and ocean,as well as to document any changes that occur because of long-term fluc

    tuations,such as Madden-Julian oscillation (MJO) and coastal upwelling events.Global or tropical sampling for near-surface measurements is necessary to create the required datasets for these phenomena.Analyzing CYGNSS data from the perspective of eight tracks of specular points may enhance the accuracy and the spatio-temporal sampling of retrieved winds.In this section,we apply the results about the MJO and equatorial eastern Indian Ocean coastal upwelling events to discuss the potential applications of CYGNSS observations.

    One of the most distinctive signals of the Madden-Julian oscillation (MJO) is the upscale development and organization of convection in the Indian Ocean.To estimate the fidelity with respect to eastward propagation of MJO,30-60 day filtered 850 hPa and 10 m zonal wind anomalies are regressed against the filtered wind anomalies averaged over an equatorial Indian Ocean box (60-90°E,5°S-5°N),respectively,for time lags from day -20 to day +20.The lag-longitude sections of the regression coefficients are computed over longitudes 30°E-150°W by averaging the coefficients in the 10°S-10°N latitudinal band.The regression coefficient plots with respect to the reference box are shown in Figure 5.The maximum positive regression coefficients are located in the 60-90°E longitudinal band on day -5 to day+5.The eastward propagation phase speed of 5 m/s observed in wind fields is overlaid as a dashed line on all plots for comparison.The observed eastward propagating wind signals are reasonably detected by both 850 hPa and 10 m winds.Thus,10 m wind can be used to detect the MJO signals,suggesting a potential application of CYGNSS observations.

    To further show the potential applications of satellite winds in the eastern equatorial Indian Ocean,we compare the coastal upwelling indices against SST anomalies near the Java Island.The coastal upwelling indices are estimated from CCMP 10 m winds,and SST is available from Remote Sensing Systems Optimally Interpolated SST daily products at 25 km resolution.The time evolution of coastal upwelling indices shows remarkable agreement with that of SST anomalies from 2000 to 2011 (Fig.6).When these indices decrease in the second half of the year,the SST anomalies also decrease.The standard deviations of upwelling indices and SST anomalies are 16.35 and 1.32.Such tight relationship between upwelling indices and SST variations suggests that the dynamical responses of SST in eastern equatorial Indian Ocean to atmospheric forcing exhibits a striking feature,with upwelling being associated with an enhanced offshore Ekman transport and wind speed.Sea surface wind is a good indicator to detect the intensity of coastal upwelling.

    4 Conclusion

    Near-surface winds over the ocean are major contributors to the momentum and energy fluxes at the air-sea interface.To understand the complex mass and energy interchange processes of atmosphere and ocean,high quality of sea surface wind product is key to properly modeling and forecasting the genesis and intensification of phenomena in the atmosphere and the ocean.The limitations of existing satellite measurements of sea surface winds under rainfall conditions become even more severe.By combining the all-weather performance of GPS-based bistatic scatterometry with the sampling properties of a dense satellite constellation,CYGNSS mission measures the ocean surface wind field with unprecedented temporal resolution and spatial coverage,under all precipitating conditions,and over the full dynamic range of wind speeds experienced in tropical cyclones.In short,the CYNSS observation has the advantages as follows:1.Little to no rainfall effect;2.Quick revisit time.

    To verify the performance of satellite measurements,CYGNSS observations over the tropical areas between 35°N and 35°S are evaluated against in situ winds from Xisha flux tower in SCS and moored buoy winds from RAMA buoy network over the Indian Ocean,TAO/TRITON over the Pacific and PIRATA over the Atlantic during August-October 2017.Validation of CYGNSS winds shows maximum collocations in the Pacific Ocean due to the larger group of moored buoys in this area.The comparison of satellite and in situ winds are temporally and spatially separated within 15 minutes and 0.2°.CYGNSS winds show a mean RMSD of 2.17 m/s with respect to in situ winds,suggesting that wind speeds observed by CYGNSS agree with in situ winds.

    CYNSS observations have many potential applications,such as the detection of MJO and coastal upwelling signals.The version of CYGNSS winds updated with space-time homogeneity is better for studying the Indian Ocean and Western-Pacific Warm Pool.High quality and high temporal and spatial resolution sea surface wind data product from CYNSS will advance the study of earth sciences.

    References

    [1] Graham N E,Barnett T P.Sea surface temperature,surface wind divergence,and convection over tropical oceans[J].Science,1987,238(4827):657-659

    [2] Smith S D.Coefficients for sea surface wind stress,heat flux,and wind profiles as a function of wind speed and temperature[J].J Geophys Res,1988,93(C12):15467-15472

    [3] Risien C M,Chelton D B.A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data[J].Journal of Physical Oceanography,2008,38(11):2379-2413

    [4] Kumar B P,Vialard J,Lengaigne M,et al.TropFlux wind stresses over the tropical oceans:evaluation and comparison with other products[J].Climate Dynamics,2013,40(7/8):2049-2071

    [5] Schlax M G,Chelton D B,F(xiàn)reilich M H.Sampling errors in wind fields constructed from single and tandem scatterometer datasets[J].Journal of Atmospheric and Oceanic Technology,2001,18(6):1014-1036

    [6] Kalnay E,Kanamitsu M,Kistler R.The NCEP/NCAR 40-year reanalysis project[J].Bulletin of the American Meteorological Society,1996,77(3):437-470

    [7] Kanamitsu M,Ebisuzaki W,Woolen J,et al.NCEP/DOE AMIP-II reanalysis (R-2)[J].Bulletin of the American Meteorological Society,2002,83(11):1631-1643

    [8] Atlas R,Hoffman R N,Ardizzone J,et al.A cross-calibrated,multiplatform ocean surface wind velocity product for meteorological and oceanographic applications[J].Bulletin of the American Meteorological Society,2011,92(2):157-174

    [9] Jones W L,Zec J.Evaluation of rain effects on NSCAT wind retrievals[C]∥Oceans 96 MTS/IEEE,Prospects for the 21st Century,1996:1171-1176

    [10] Nie C,Long D G.The effect of rain on ERS scatterometer measurements[C]∥IEEE International Conference on Geoscience and Remote Sensing Symposium,2013:4119-4121

    [11] Ruf C,Gleason S,Jelenak z,et al.The NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) mission[C]∥IEEE Aerospace Conference,2013:1-7

    [12] Ruf C S,Atlas R,Chang P S,et al.New ocean winds satellite mission to probe hurricanes and tropical convection[J].Bulletin of the American Meteorological Society,2012,97(3):150626133330005

    [13] Madden R A,Julian P R.Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific[J].Journal of the Atmospheric Sciences,1971,28(5):702-708

    [14] Wheeler M C,Hendon H H.An all-season real-time multivariate MJO index:development of an index for monitoring and prediction[J].Monthly Weather Review,2004,132(8):1917-1932

    [15] Demott C A,Klingaman N P,Woolnough S J.Atmosphere-ocean coupled processes in the Madden-Julian oscillation[J].Reviews of Geophysics,2015,53(4):1099-1154

    [16] Chen G X,Han W Q,Li Y L,et al.Intraseasonal variability of upwelling in the equatorial eastern Indian Ocean[J].J Geophys Res,2016,120(11):7598-7615

    [17] Schwing F B,OFarrell M,Steger J M,et al.Coastal upwelling indices west coast of North America 1946-1995[J].Cambridge Studies in Applied Econometric,1996,47(1):313

    [18] Bakun A.Coastal upwelling indices,west coast of North America,1946-71[R].NOAA Technical Report NMFS SSRF-671,1973:103

    [19] Schulz E W,Kepert J D,Greenslade D J M.An assessment of marine surface winds from the Australian Bureau of Meteorology numerical weather prediction systems[J].Weather & Forecasting,2010,22(3):226-227

    [20] Rani S I,Gupta M D.Oceansat-2 and RAMA buoy winds:a comparison[J].Journal of Earth System Science,2013,122(6):1571-1582

    [21] Yang L,Wang D,Huang J,et al.Toward a mesoscale hydrological and marine meteorological observation network in the South China Sea[J].Bulletin of the American Meteorological Society,2015,96(7):150204133247008

    [22] Zeng L L,Wang Q,Xie Q,et al.Hydrographic field investigations in the northern South China Sea by open cruises during 2004-2013[J].Science Bulletin,2015,60(6):607-615

    [23] Wang D X,Li J,Yang L,et al.The variations of atmospheric variables recorded at Xisha station in the South China Sea during tropical cyclone passages[M]∥Hickey K.Advances in hurricane research-modelling,meteorology,preparedness and impacts.Rijeka,Croatia:InTech,2012

    [24] Shi R,Guo X Y,Wang D X,et al.Seasonal variability in coastal fronts and its influence on sea surface wind in the northern South China Sea[J].Deep-Sea Research Part II:Topical Studies in Oceanography,2015,119:30-39

    [25] Qin H L,Chen G X,Wang W Q,et al.Validation and application of MODIS-derived SST in the South China Sea[J].International Journal of Remote Sensing,2014,35 (11/12):4315-4328

    [26] McPhaden M J.The global tropical moored buoy array[C]∥Proceedings of Oceanobs09 Sustained Ocean Observations & Information for Society,2010,DOI:10.5270/OceanObs09.cwp.61

    猜你喜歡
    驗證
    歷史不可驗證說的語義結構與內(nèi)在邏輯
    讓冷峻與溫情并存
    校核、驗證與確認在紅外輻射特性測量中的應用
    剖析智能化斷路器機械特性在線監(jiān)測關鍵技術設計及驗證
    科技資訊(2016年25期)2016-12-27 18:48:31
    合理猜想,有效驗證
    晶閘管關斷特性的驗證解析
    小題也可大做
    彈藥保障需求分析實驗模型輸出數(shù)據(jù)的驗證研究
    價值工程(2016年30期)2016-11-24 14:19:29
    汽車外后視鏡抖動問題模型的試驗驗證
    汽車科技(2016年5期)2016-11-14 08:08:15
    核電項目A1號機組L521電氣貫穿件H通道問題處理
    科技視界(2016年23期)2016-11-04 15:08:42
    各种免费的搞黄视频| 中文字幕精品免费在线观看视频| 欧美日韩av久久| 女人高潮潮喷娇喘18禁视频| 欧美变态另类bdsm刘玥| 精品福利永久在线观看| 高清av免费在线| 一级毛片我不卡| 欧美 日韩 精品 国产| 宅男免费午夜| 欧美日韩成人在线一区二区| 中国国产av一级| 国产成人aa在线观看| 天天影视国产精品| 午夜福利在线免费观看网站| 久久久久精品久久久久真实原创| 亚洲,一卡二卡三卡| 久久久精品区二区三区| 99re6热这里在线精品视频| 18在线观看网站| 国产精品三级大全| 久久精品夜色国产| 亚洲视频免费观看视频| 久久99精品国语久久久| 搡老乐熟女国产| 热99国产精品久久久久久7| 欧美成人午夜精品| 九色亚洲精品在线播放| 免费在线观看黄色视频的| 只有这里有精品99| 日韩伦理黄色片| 亚洲欧洲日产国产| 精品午夜福利在线看| 制服人妻中文乱码| 国产精品久久久久久av不卡| 麻豆乱淫一区二区| 久久久久久人人人人人| 国产色婷婷99| 九草在线视频观看| 亚洲av电影在线进入| 成年美女黄网站色视频大全免费| 一级毛片黄色毛片免费观看视频| 男女免费视频国产| 成人手机av| 女人精品久久久久毛片| 伦理电影免费视频| 热re99久久国产66热| 亚洲欧美精品综合一区二区三区 | 亚洲av电影在线观看一区二区三区| 亚洲欧洲国产日韩| 26uuu在线亚洲综合色| xxx大片免费视频| 国产成人av激情在线播放| 欧美日韩国产mv在线观看视频| 在线 av 中文字幕| 香蕉精品网在线| 国产精品久久久av美女十八| 国产成人一区二区在线| 欧美日韩综合久久久久久| 国产极品天堂在线| 国产成人91sexporn| 久久ye,这里只有精品| 王馨瑶露胸无遮挡在线观看| 最近的中文字幕免费完整| 久久精品国产a三级三级三级| 成年动漫av网址| 亚洲国产欧美日韩在线播放| 有码 亚洲区| av一本久久久久| 国产免费视频播放在线视频| 亚洲精品国产色婷婷电影| 观看av在线不卡| 十分钟在线观看高清视频www| 久久久久精品久久久久真实原创| 一本色道久久久久久精品综合| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品乱久久久久久| 欧美精品av麻豆av| 日本欧美国产在线视频| 亚洲精品一区蜜桃| 赤兔流量卡办理| 人体艺术视频欧美日本| 国产黄色免费在线视频| av福利片在线| 国产亚洲午夜精品一区二区久久| 美女xxoo啪啪120秒动态图| 婷婷色综合www| 丰满饥渴人妻一区二区三| 午夜福利视频在线观看免费| 中文字幕人妻丝袜一区二区 | 成人免费观看视频高清| a级毛片在线看网站| 伦理电影免费视频| 日韩制服丝袜自拍偷拍| 午夜福利网站1000一区二区三区| 激情五月婷婷亚洲| 韩国高清视频一区二区三区| 90打野战视频偷拍视频| 菩萨蛮人人尽说江南好唐韦庄| 91在线精品国自产拍蜜月| 伊人久久大香线蕉亚洲五| 久久女婷五月综合色啪小说| 国产激情久久老熟女| 侵犯人妻中文字幕一二三四区| 日韩一区二区视频免费看| 国产极品天堂在线| 精品人妻在线不人妻| 欧美最新免费一区二区三区| 一级片'在线观看视频| 下体分泌物呈黄色| 少妇精品久久久久久久| 国产极品天堂在线| av国产久精品久网站免费入址| 99久久人妻综合| 人体艺术视频欧美日本| 一级毛片电影观看| 飞空精品影院首页| 国产有黄有色有爽视频| 国产精品欧美亚洲77777| 建设人人有责人人尽责人人享有的| 精品亚洲乱码少妇综合久久| 少妇的逼水好多| 91aial.com中文字幕在线观看| 一级毛片电影观看| 美女国产高潮福利片在线看| 国产乱人偷精品视频| 少妇的逼水好多| www.av在线官网国产| 九草在线视频观看| 久久精品久久久久久噜噜老黄| 欧美少妇被猛烈插入视频| 在现免费观看毛片| 久久久国产欧美日韩av| 成人免费观看视频高清| 久久99蜜桃精品久久| 中文精品一卡2卡3卡4更新| 久久精品国产综合久久久| 婷婷色av中文字幕| 少妇被粗大的猛进出69影院| 日本免费在线观看一区| 婷婷色综合大香蕉| 久久影院123| 国产精品久久久久久精品电影小说| 男人舔女人的私密视频| 亚洲第一青青草原| 国产女主播在线喷水免费视频网站| 香蕉国产在线看| 男女高潮啪啪啪动态图| 久久久久网色| 国产深夜福利视频在线观看| 99re6热这里在线精品视频| 亚洲人成电影观看| 自拍欧美九色日韩亚洲蝌蚪91| www.熟女人妻精品国产| 曰老女人黄片| 欧美精品高潮呻吟av久久| 国产精品一区二区在线观看99| 少妇被粗大猛烈的视频| 国产1区2区3区精品| 久久久久久久国产电影| 国产av精品麻豆| 国产精品亚洲av一区麻豆 | 亚洲精品av麻豆狂野| av国产久精品久网站免费入址| 婷婷色av中文字幕| 免费看不卡的av| 熟女av电影| 少妇 在线观看| 狠狠精品人妻久久久久久综合| 9191精品国产免费久久| 嫩草影院入口| 久久99蜜桃精品久久| 少妇人妻 视频| av网站在线播放免费| 日本av手机在线免费观看| 一本大道久久a久久精品| av线在线观看网站| 国产成人精品福利久久| 在线观看免费日韩欧美大片| 免费久久久久久久精品成人欧美视频| av国产精品久久久久影院| 另类精品久久| 亚洲精品美女久久久久99蜜臀 | 少妇 在线观看| 成年女人在线观看亚洲视频| 亚洲欧美精品自产自拍| 日日撸夜夜添| 国产成人a∨麻豆精品| 免费黄色在线免费观看| 日韩视频在线欧美| 国产av码专区亚洲av| 国产成人91sexporn| 色播在线永久视频| 黄网站色视频无遮挡免费观看| 在线观看一区二区三区激情| 免费观看在线日韩| av又黄又爽大尺度在线免费看| 王馨瑶露胸无遮挡在线观看| 国产亚洲av片在线观看秒播厂| 久久久久久久久久人人人人人人| 国产极品粉嫩免费观看在线| 中国国产av一级| 桃花免费在线播放| 亚洲av.av天堂| 亚洲国产最新在线播放| 丝袜在线中文字幕| 久久久久精品人妻al黑| 91aial.com中文字幕在线观看| 亚洲综合色惰| 亚洲精品av麻豆狂野| 99热全是精品| 国产不卡av网站在线观看| 伊人亚洲综合成人网| 亚洲精品国产一区二区精华液| 美国免费a级毛片| 国产在线一区二区三区精| 国产成人精品在线电影| 国产国语露脸激情在线看| 久久 成人 亚洲| 18禁动态无遮挡网站| 美女高潮到喷水免费观看| 99热国产这里只有精品6| 国产又色又爽无遮挡免| 国产黄频视频在线观看| 国产精品女同一区二区软件| 麻豆精品久久久久久蜜桃| 亚洲久久久国产精品| 国产极品粉嫩免费观看在线| 大片免费播放器 马上看| 久久精品国产亚洲av天美| 性高湖久久久久久久久免费观看| www.精华液| 久久精品国产鲁丝片午夜精品| 午夜福利网站1000一区二区三区| 精品少妇内射三级| 亚洲男人天堂网一区| 18禁裸乳无遮挡动漫免费视频| 最近的中文字幕免费完整| 夫妻性生交免费视频一级片| 天美传媒精品一区二区| 男女无遮挡免费网站观看| 久久久久精品久久久久真实原创| 国产日韩欧美视频二区| 成人毛片a级毛片在线播放| 一二三四中文在线观看免费高清| 日韩精品免费视频一区二区三区| 成人国产麻豆网| 国产精品免费视频内射| 国产成人精品无人区| 啦啦啦视频在线资源免费观看| 国产成人精品一,二区| av福利片在线| 欧美成人午夜精品| 精品人妻偷拍中文字幕| 老司机影院成人| 五月开心婷婷网| 中国国产av一级| 美女午夜性视频免费| 看非洲黑人一级黄片| 日韩 亚洲 欧美在线| 国产男女超爽视频在线观看| 啦啦啦中文免费视频观看日本| 亚洲第一av免费看| 视频区图区小说| 少妇熟女欧美另类| 亚洲av欧美aⅴ国产| 久久午夜福利片| 考比视频在线观看| 黄片无遮挡物在线观看| 色播在线永久视频| 国产又爽黄色视频| 人妻 亚洲 视频| 国产成人精品一,二区| 午夜福利在线观看免费完整高清在| 99国产综合亚洲精品| 男女无遮挡免费网站观看| 久久精品国产亚洲av高清一级| 青草久久国产| 99热国产这里只有精品6| 美国免费a级毛片| 青春草视频在线免费观看| 91午夜精品亚洲一区二区三区| 色哟哟·www| 三级国产精品片| 国产免费现黄频在线看| 大码成人一级视频| 一级黄片播放器| 在线天堂中文资源库| 亚洲av国产av综合av卡| 欧美日韩亚洲国产一区二区在线观看 | 午夜福利视频在线观看免费| 一级片免费观看大全| av天堂久久9| 三上悠亚av全集在线观看| 叶爱在线成人免费视频播放| 亚洲内射少妇av| 国产精品一二三区在线看| 欧美激情极品国产一区二区三区| 免费观看a级毛片全部| 免费观看无遮挡的男女| 另类精品久久| 久久精品亚洲av国产电影网| 9热在线视频观看99| 99国产综合亚洲精品| 卡戴珊不雅视频在线播放| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 秋霞在线观看毛片| 交换朋友夫妻互换小说| 色婷婷久久久亚洲欧美| 永久网站在线| 我要看黄色一级片免费的| 90打野战视频偷拍视频| 大片免费播放器 马上看| 日本黄色日本黄色录像| 人人妻人人添人人爽欧美一区卜| 国产成人午夜福利电影在线观看| 日韩av免费高清视频| 国产亚洲av片在线观看秒播厂| 日本色播在线视频| 国产无遮挡羞羞视频在线观看| 亚洲av日韩在线播放| 亚洲国产最新在线播放| 国产av码专区亚洲av| 午夜日韩欧美国产| 免费高清在线观看日韩| 亚洲国产最新在线播放| 精品国产露脸久久av麻豆| 大片免费播放器 马上看| 国产在线免费精品| 国产成人a∨麻豆精品| 不卡视频在线观看欧美| 久久青草综合色| 久久亚洲国产成人精品v| 亚洲av福利一区| 精品亚洲成国产av| 十分钟在线观看高清视频www| 亚洲精品国产av蜜桃| 国产精品无大码| 99热全是精品| 中文欧美无线码| 亚洲五月色婷婷综合| 欧美精品一区二区大全| a 毛片基地| 午夜福利网站1000一区二区三区| 老司机亚洲免费影院| 你懂的网址亚洲精品在线观看| 久久 成人 亚洲| 九草在线视频观看| 美女福利国产在线| 久久女婷五月综合色啪小说| 咕卡用的链子| 一级毛片黄色毛片免费观看视频| av电影中文网址| 亚洲人成77777在线视频| 热re99久久国产66热| 成人免费观看视频高清| 亚洲国产最新在线播放| 日本-黄色视频高清免费观看| 精品卡一卡二卡四卡免费| 亚洲经典国产精华液单| 午夜日韩欧美国产| 在线天堂最新版资源| 咕卡用的链子| 国产成人精品久久久久久| 2021少妇久久久久久久久久久| 九草在线视频观看| 99久久综合免费| 色94色欧美一区二区| 一二三四中文在线观看免费高清| 美女高潮到喷水免费观看| 少妇猛男粗大的猛烈进出视频| 久久精品国产亚洲av涩爱| 我的亚洲天堂| 免费大片黄手机在线观看| 亚洲色图综合在线观看| 看十八女毛片水多多多| 精品卡一卡二卡四卡免费| 黑丝袜美女国产一区| 久久精品久久精品一区二区三区| 亚洲,欧美精品.| 久久久久人妻精品一区果冻| 高清视频免费观看一区二区| 啦啦啦中文免费视频观看日本| 高清视频免费观看一区二区| 亚洲,一卡二卡三卡| 亚洲中文av在线| 亚洲成人手机| 一级毛片黄色毛片免费观看视频| 最近手机中文字幕大全| 国产免费福利视频在线观看| 久久久久网色| 这个男人来自地球电影免费观看 | 精品人妻在线不人妻| 一级毛片电影观看| 亚洲,欧美,日韩| 黄片播放在线免费| 黄色一级大片看看| 精品国产国语对白av| 国产熟女欧美一区二区| 中文乱码字字幕精品一区二区三区| 亚洲欧美一区二区三区黑人 | 视频在线观看一区二区三区| 热re99久久精品国产66热6| 国产 一区精品| 晚上一个人看的免费电影| 免费播放大片免费观看视频在线观看| 精品99又大又爽又粗少妇毛片| 日本午夜av视频| 中文字幕亚洲精品专区| 美女国产视频在线观看| 国产色婷婷99| av天堂久久9| 中文字幕人妻丝袜一区二区 | 飞空精品影院首页| 国产成人91sexporn| 免费黄频网站在线观看国产| 国产激情久久老熟女| 亚洲精华国产精华液的使用体验| 男女国产视频网站| 精品人妻熟女毛片av久久网站| 色视频在线一区二区三区| 美女高潮到喷水免费观看| 精品国产国语对白av| 成年美女黄网站色视频大全免费| 亚洲一区中文字幕在线| 国产成人精品无人区| 免费黄色在线免费观看| 美女主播在线视频| 日本91视频免费播放| 精品久久蜜臀av无| kizo精华| 亚洲 欧美一区二区三区| 五月开心婷婷网| 美国免费a级毛片| 男女下面插进去视频免费观看| 亚洲欧美中文字幕日韩二区| 18在线观看网站| 日韩中文字幕欧美一区二区 | 国产精品久久久久久久久免| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧洲精品一区二区精品久久久 | 人妻少妇偷人精品九色| 欧美激情 高清一区二区三区| av免费在线看不卡| 香蕉精品网在线| 最新的欧美精品一区二区| 欧美国产精品va在线观看不卡| 99国产精品免费福利视频| 亚洲欧洲精品一区二区精品久久久 | 女人精品久久久久毛片| 丰满饥渴人妻一区二区三| 中文字幕另类日韩欧美亚洲嫩草| 国产精品 欧美亚洲| 国产精品久久久久久精品古装| 最近最新中文字幕大全免费视频 | 一级毛片我不卡| 国产福利在线免费观看视频| 亚洲五月色婷婷综合| 欧美日韩精品成人综合77777| 久久人人97超碰香蕉20202| 各种免费的搞黄视频| 成人午夜精彩视频在线观看| 91在线精品国自产拍蜜月| 叶爱在线成人免费视频播放| 最近的中文字幕免费完整| 69精品国产乱码久久久| 国产一区有黄有色的免费视频| 2018国产大陆天天弄谢| 亚洲,欧美,日韩| 99久久综合免费| 国产成人精品久久二区二区91 | 成年av动漫网址| 18禁裸乳无遮挡动漫免费视频| 欧美97在线视频| 中文字幕最新亚洲高清| 色94色欧美一区二区| 在线 av 中文字幕| 国产 一区精品| 国产日韩欧美亚洲二区| 国产精品欧美亚洲77777| 精品人妻熟女毛片av久久网站| 毛片一级片免费看久久久久| 永久免费av网站大全| 麻豆精品久久久久久蜜桃| 亚洲av成人精品一二三区| 国产成人精品一,二区| 亚洲av电影在线观看一区二区三区| 不卡视频在线观看欧美| 日韩免费高清中文字幕av| 精品人妻偷拍中文字幕| 狠狠精品人妻久久久久久综合| 七月丁香在线播放| 亚洲精华国产精华液的使用体验| 亚洲精品av麻豆狂野| 天堂中文最新版在线下载| 亚洲精品成人av观看孕妇| 亚洲欧洲国产日韩| 一区福利在线观看| 黄色毛片三级朝国网站| 中文字幕人妻丝袜制服| 国产乱来视频区| 精品国产一区二区久久| 在线观看免费视频网站a站| 校园人妻丝袜中文字幕| 欧美xxⅹ黑人| 久久久精品区二区三区| 亚洲一级一片aⅴ在线观看| 日韩在线高清观看一区二区三区| 国产免费视频播放在线视频| 精品福利永久在线观看| 久久久久久久国产电影| 亚洲欧洲日产国产| 女性生殖器流出的白浆| 欧美精品亚洲一区二区| av免费观看日本| 少妇精品久久久久久久| 我的亚洲天堂| 寂寞人妻少妇视频99o| 成人二区视频| 大码成人一级视频| 日本黄色日本黄色录像| 亚洲一区中文字幕在线| 精品国产乱码久久久久久小说| 国产亚洲精品第一综合不卡| 成人漫画全彩无遮挡| 免费高清在线观看日韩| 久久人人爽人人片av| 国产麻豆69| 久久毛片免费看一区二区三区| 啦啦啦在线免费观看视频4| 永久网站在线| 飞空精品影院首页| 国产男女内射视频| 国产成人精品福利久久| 九色亚洲精品在线播放| 成人国产麻豆网| 久久久精品免费免费高清| 国产精品久久久久久av不卡| 一级,二级,三级黄色视频| 99久久人妻综合| 国产高清国产精品国产三级| 国产熟女欧美一区二区| 亚洲成人一二三区av| av又黄又爽大尺度在线免费看| 赤兔流量卡办理| 王馨瑶露胸无遮挡在线观看| 超色免费av| 精品亚洲成a人片在线观看| 国产一区二区 视频在线| 免费女性裸体啪啪无遮挡网站| 麻豆乱淫一区二区| 一本—道久久a久久精品蜜桃钙片| 成人午夜精彩视频在线观看| 大片免费播放器 马上看| freevideosex欧美| 精品亚洲成a人片在线观看| 亚洲情色 制服丝袜| 成年美女黄网站色视频大全免费| 久久精品久久久久久久性| 亚洲精品乱久久久久久| 欧美日本中文国产一区发布| 水蜜桃什么品种好| 日本vs欧美在线观看视频| 国产毛片在线视频| 欧美 亚洲 国产 日韩一| 国产熟女午夜一区二区三区| 午夜免费观看性视频| 国产免费一区二区三区四区乱码| 美女大奶头黄色视频| 欧美xxⅹ黑人| 中文字幕制服av| 一边亲一边摸免费视频| 久久女婷五月综合色啪小说| 建设人人有责人人尽责人人享有的| av片东京热男人的天堂| 欧美人与善性xxx| 久久久久网色| 精品国产一区二区久久| 亚洲,欧美精品.| 国产精品嫩草影院av在线观看| 久久99蜜桃精品久久| 黑人巨大精品欧美一区二区蜜桃| 欧美少妇被猛烈插入视频| 美女脱内裤让男人舔精品视频| 麻豆乱淫一区二区| av又黄又爽大尺度在线免费看| 在线精品无人区一区二区三| 在现免费观看毛片| 国产国语露脸激情在线看| 欧美老熟妇乱子伦牲交| 色婷婷久久久亚洲欧美| 精品国产一区二区久久| 午夜福利,免费看| 曰老女人黄片| 99热网站在线观看| 日本黄色日本黄色录像| 97精品久久久久久久久久精品| 亚洲国产av新网站| 深夜精品福利| 亚洲一区中文字幕在线| 菩萨蛮人人尽说江南好唐韦庄| 18+在线观看网站| 亚洲四区av| 日韩不卡一区二区三区视频在线| 少妇被粗大的猛进出69影院| 99久久精品国产国产毛片| 少妇被粗大猛烈的视频| 1024香蕉在线观看| 在线 av 中文字幕| 日本vs欧美在线观看视频| 国产在线视频一区二区| 亚洲五月色婷婷综合| 亚洲av福利一区| 夫妻性生交免费视频一级片| 婷婷成人精品国产|