• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    斯里蘭卡近岸風(fēng)暴潮模擬中風(fēng)暴潮—潮汐相互作用特征分析:一個(gè)個(gè)例研究

    2018-05-30 12:50:50R.K.K.A.S.N.KODITHUWAKKU李毅能彭世球朱宇航李少鈿TilakP.D.GAMAGE付莉莉
    關(guān)鍵詞:風(fēng)暴潮潮汐斯里蘭卡

    R.K.K.A.S.N.KODITHUWAKKU 李毅能 彭世球 朱宇航 李少鈿 Tilak P.D.GAMAGE 付莉莉

    摘要利用三維普林斯頓海洋模型(POM)以及逐時(shí)水位觀測(cè)數(shù)據(jù),研究印度洋北部斯里蘭卡北部海岸風(fēng)暴潮-潮汐相互作用特征.選擇了2008年的“Nisha”臺(tái)風(fēng)作為臺(tái)風(fēng)風(fēng)暴潮個(gè)例進(jìn)行研究,并進(jìn)行了3個(gè)數(shù)值敏感性試驗(yàn).經(jīng)驗(yàn)證,該風(fēng)暴潮模型可以很好地再現(xiàn)該臺(tái)風(fēng)期間研究區(qū)域內(nèi)的潮汐和總海水水位.試驗(yàn)結(jié)果表明,沿斯里蘭卡西北海岸的風(fēng)暴潮-潮汐相互作用顯著,其強(qiáng)度與臺(tái)風(fēng)的強(qiáng)度和軌跡相關(guān).當(dāng)TC在42 h達(dá)到較大強(qiáng)度時(shí),可以得到風(fēng)暴潮-潮汐相互作用導(dǎo)致的最大增水值TSI(0.6 m)和從印度洋外海向斯里蘭卡西北部淺灘流入的最大相互作用流場(chǎng).在TC強(qiáng)度較弱的第30小時(shí),得到最大負(fù)TSI(-0.6 m)和向南流出西北部淺水區(qū)域的較弱的相互作用流場(chǎng).在整個(gè)臺(tái)風(fēng)期間,強(qiáng)TSI都發(fā)生在斯里蘭卡西北部海灘到對(duì)岸的印度洋近岸區(qū)域.

    關(guān)鍵詞普林斯頓海洋模型(POM);潮汐-風(fēng)暴潮相互作用;風(fēng)暴潮;斯里蘭卡

    中圖分類號(hào)P731.23

    文獻(xiàn)標(biāo)志碼A

    0 導(dǎo)讀

    本文原文為英文,希望感興趣的讀者進(jìn)一步關(guān)注原文.

    本研究利用一個(gè)三維普林斯頓海洋模型(POM)(2002版)以及觀測(cè)到的逐時(shí)水位數(shù)據(jù)研究北印度洋斯里蘭卡北海岸風(fēng)暴潮和潮汐模擬及其相互作用.以2008年的 “Nisha”作為個(gè)例,并進(jìn)行了3個(gè)數(shù)值試驗(yàn)來(lái)評(píng)估所選模式區(qū)域內(nèi)的風(fēng)暴潮-潮汐相互作用.Trincomalee站的每小時(shí)觀測(cè)水位數(shù)據(jù)由斯里蘭卡國(guó)家水產(chǎn)資源研究與發(fā)展機(jī)構(gòu)(NARA)提供.使用潮汐諧波分析軟件包T-TIDE獲得觀測(cè)海平面的潮汐升高和非潮汐殘差(NTR).Nisha(2008)的最佳臺(tái)風(fēng)路徑數(shù)據(jù)和中心壓力數(shù)據(jù)來(lái)自美國(guó)海軍聯(lián)合臺(tái)風(fēng)警報(bào)中心(JTWC).

    POM是一個(gè)三維的原始方程式海洋模型,被廣泛用于近岸和海盆尺度的海洋過(guò)程研究中.用于本研究的海底地形數(shù)據(jù)采用歐洲的海洋一般測(cè)深圖(GEBCO)的全球測(cè)深數(shù)據(jù)集,數(shù)據(jù)經(jīng)過(guò)插值得到模式網(wǎng)格點(diǎn)上的地形數(shù)據(jù).對(duì)于海表風(fēng)場(chǎng)的數(shù)據(jù),我們?cè)贘TWC最佳臺(tái)風(fēng)路徑和強(qiáng)度數(shù)據(jù)的基礎(chǔ)上采用經(jīng)驗(yàn)Holland模型計(jì)算臺(tái)風(fēng)的10 m風(fēng)速.本研究中的風(fēng)暴潮模型由潮汐強(qiáng)迫和大氣強(qiáng)迫驅(qū)動(dòng).為了評(píng)估風(fēng)暴潮-潮汐相互作用,我們進(jìn)行了3個(gè)同驅(qū)動(dòng)力組合的數(shù)值試驗(yàn).

    結(jié)果表明,沿斯里蘭卡西北海岸得到的風(fēng)暴潮-潮汐相互作用非常顯著.Nisha(2008)是一個(gè)中等強(qiáng)度的熱帶氣旋,但仍在斯里蘭卡北部海岸造成了一些顯著的風(fēng)暴潮災(zāi)害.該模型很好地再現(xiàn)了潮汐水位、總水位以及潮汐相互作用水位變化過(guò)程.數(shù)值結(jié)果表明:沿斯里蘭卡西北海岸得到的最大風(fēng)暴潮增水最顯著(達(dá)到2 m);沿印度東南海岸得到風(fēng)暴潮減水的最大值(-2 m).風(fēng)暴潮-潮汐相互作用(TSI)強(qiáng)度與臺(tái)風(fēng)的強(qiáng)度和軌跡相關(guān).在該臺(tái)風(fēng)風(fēng)暴潮過(guò)程中,當(dāng)TC在42 h達(dá)到較大強(qiáng)度時(shí),可以得到風(fēng)暴潮-潮汐相互作用導(dǎo)致的最大增水值TSI(0.6 m).在TC強(qiáng)度較弱的第30小時(shí),得到最大負(fù)TSI(-0.6 m)和強(qiáng)度達(dá)到0.2 m/s的TSI流場(chǎng)流出斯里蘭卡西北部淺水區(qū)域.在整個(gè)臺(tái)風(fēng)期間,強(qiáng)TSI都是發(fā)生在斯里蘭卡西北部海灘到對(duì)岸的印度洋近岸區(qū)域,說(shuō)明風(fēng)暴潮-潮汐相互作用在這些區(qū)域的風(fēng)暴潮研究中不能被忽略.

    后續(xù)需要進(jìn)一步的研究來(lái)檢驗(yàn)和量化風(fēng)暴潮-潮汐相互作用對(duì)該地區(qū)海平面的影響,并進(jìn)行多個(gè)臺(tái)風(fēng)個(gè)例比較和統(tǒng)計(jì)分析.

    Abstract A three-dimensional Princeton Ocean Model (POM) along with the observed hourly sea level data are used in this study to investigate the characteristics of the Tide-Surge Interaction (TSI) along the north coast of Sri Lanka in north Indian Ocean.In this study,the cyclone ‘Nisha 2008 case was selected and three numerical experiments were performed.The model reproduces reasonably well the tides,surges and total sea water levels and TSI water levels over the study region during this cyclone.The results show that the characteristics of the TSI are significantly shown along the northwestern coast of Sri Lanka.The maximum TSI intensity is associated with the strength and track of the cyclone.In this study,the maximum positive TSI reaches 0.6 m at hour 42 when the TC was strong.At hour 30 when the TC track was relatively weak,the maximum negative TSI reaches about -0.6 m.The magnitude of the interaction current (UTSI) (0.2 m/s) and the direction of the UTSI were observed significantly to flow out the northwestern coast.During the whole TC cycle,strong TSI occurs in the northwestern coast of Sri Lanka and the opposite coast of India,which indicates that the tidal effect cannot be ignored in the storm surge simulation in this region.

    Key words Princeton Ocean Model(POM);Tide-Surge Interaction (TSI);storm surge;Sri Lanka

    1 Introduction

    The global warming has caused the increase in the intensity of Tropical Cyclones (TCs) which severely affect the TC-induced storm surges on coastal regions with dense population and large economic community[1].Most of the largest cities in the world are located on the coast and most of the worlds population lives within 150 km of the ocean.Coastal regions are often low lying and susceptible to an increase in sea surface elevation[2].

    During the past half century,enormous progress has been made in numerical prediction of storm surge[3-4].Storm surge is a phenomenon related to abnormal rise in near shore water levels above the regular astronomical tides.Forcing mechanisms for storm surge are maximum sustained wind speed,waves,and reduced atmospheric pressure[5].

    A meteorologically forced (strong wind stress and atmospheric pressure depression) long wave motion,and the extremely sustained storm surge increases the water surface elevations above the astronomical tide,causing inundation in low-lying coastal areas[6].

    Storm surges are an extremely serious hazard along the east coast of India,Bangladesh,Myanmar,and Sri Lanka.Although Sri Lanka is affected only occasionally by the storm surge,tropical cyclones of November 1964 and November 1978,and cyclone of November 1992 have caused extensive loss of lives and property damage in the region[7].

    Sri Lanka,an island nation located off the southern tip of India,is vulnerable to cyclones generated mostly in southern part of Bay of Bengal,and to a lesser extent,those in southeast of Arabian Sea[8].However,unfortunately very rare analysis and assessment of the storm surge hazard has been carried out for the coastline of Sri Lanka[9].Therefore,the real-time monitoring and warning of storm surges is of great interest.

    A three-dimensional Princeton Ocean Model along with the observed hourly sea level data are used in this study to investigate the characteristics of the TSI around Sri Lanka in north Indian Ocean.

    The selected tropical cyclone case of Cyclone Nisha hit northern Sri Lanka on November 25,2008,causing heavy rains and flooding that reportedly displaced 70 000 people in Vanni and 20 000 people in Jaffna district.Jaffna recorded the highest weekly cumulative rainfall since 1918.

    Many previous studies were made to improve the storm surge forecasting skills.These studies have identified that the accuracy of storm surge forecasting can be improved by investigating the TSI[10] and by optimizing the wind drag coefficient[1,11].

    Most of the previous studies have analyzed the mechanism of TSI using various approaches.Along the UK coastline[12] this is well studied and a spatial sea level trend estimate was obtained for all UK coastlines including the South and West.Along the North Sea coastline around UK[13] it shows that the mode of peak residual occurrence can be found everywhere 3 to 5 hours before the nearest high water.

    The non-linear interaction between tides and surges has been studied in many other regions such as,off the east coast of Canada,northeastern United States[14],north Queensland coast of Australia[15],and Taiwan Strait[16].

    Extreme sea levels associated with storm surges and tides over the northwest Pacific are investigated[17] and it is showed that the model well reproduces tides and storm surges over the study region and the extreme total sea levels are mainly determined by tides and tropical cyclones.

    The effects of TSI on storm surge elevations along the coast of Bohai Sea,Yellow Sea,and East China Sea[18]have been identified to be very significant.

    In the north Indian Ocean around Bay of Bengal the TSI studies were started by Johns & Ali[19]with numerical modelling experiments.They used a non-linear model to determine the interaction between tides and surges.

    By using numerical modeling studies in the Meghna estuary,As-Salek & Yasuda[20] found that the cyclone which makes landfall before the arrival of the tidal peak produces a higher and shorter-duration surge than the cyclone that makes landfall after the tidal peak.

    Nearly thirty years of hourly tide-gauge data were analyzed from four stations of east coast of India and in the head of the Bay of Bengal and showed that the tide-surge interaction characteristics observed are identical to those reported in extra tropical regions,such as the North Sea[21].

    The tide-surge interaction along the east coast of the Leizhou Peninsula,South China Sea[10] was identified as significant in recent study,and it is showed that the nonlinear bottom friction is the main contributor to tide-surge interaction,while the contribution of the nonlinear advective effect can be neglected.

    There is no research has been published about the tide-surge interactions along the Sri Lankan coastal region to the best of our knowledge.Accordingly,this study is based on the Princeton Ocean Model and the characteristics of tide-surge interaction around Sri Lanka in northern Indian Ocean during the selected tropical cyclone 2008 case occurred within the selected model domain.The purpose of this work is to investigate the characteristics of tide-surge interaction and to improve the forecasting skills of storm surges by identifying the tide-surge interaction.

    The rest of this paper is organized as follows.In section 2 the data,the POM used in this study and model setup and forcing and the experimental set up are briefly introduced.Section 3 presents the results and corresponding analysis.Discussion and conclusion are given in section 4,section 5 respectively.

    2 Methods

    2.1 Data

    The oceanographic data used to analyze the TSI in this study are 2008 November month hourly observed sea levels from Trincomalee station of Sri Lanka.The observational data of Colombo station and Trincomalee station were provided by Oceanography and Hydrography unit of National Aquatic Resources Research and Development Agency (NARA),Sri Lanka.

    The tidal elevations and non-tidal residuals (NTR) of the observed sea levels were obtained using a harmonic analysis package,T-TIDE[22].The resultant tidal elevations and NTR of the observed sea levels were used to analyze the tide-surge interaction and assess the model performances[10].

    2.2 The Princeton Ocean Model setup and forcing

    The Princeton Ocean Model (POM) 2002 version (referred to as pom2k) is used for the forward prediction model in this study.The POM is a three-dimensional,primitive equation ocean model[23-24].

    The bathymetry data,which were interpolated onto the model grid (Fig.1) were obtained from the General Bathymetric Chart of the Oceans (GEBCO) 1 arc-minute global bathymetric dataset.(http:∥www.gebco.net/data-and-products/gridded-bathymetry-data/).

    1)Only Wind Run (exp-OW):The model in this experiment is driven by wind forcing and atmospheric pressure fields,and the insertion of a vortex associated with a cyclone based on Hollands hurricane model.

    2)With Tide and Wind Run (exp-TW):Both forcing functions including Tidal forcing and Wind forcing are included in this experiment.

    3)Only Tide Run (exp-OT):Only the Tidal forcing is included in this experiment.

    The POM was implemented in the above three experiments for the selected 2008 case study.These model results were used in the discussion section.

    2.3 Experimental setup

    In this study the model domain (Fig.1) is set to cover an area of 2-15°N,75-93°E with a horizontal resolution of 1/60°×1/60° and four vertical levels.

    The cyclonic storm Nisha (2008) was chosen for the numerical experiments in this study (Figs.2a,b).This cyclonic storm (IMD designation:BOB 07,JTWC designation:06B) was the ninth tropical cyclone of the 2008 north Indian Ocean cyclone season,and the seventh tropical cyclone in the Bay of Bengal 2008 year.

    Nisha (2008) is formed as a deep depression over Sri Lanka in southwest Bay of Bengal at 0006 UTC 24 Nov 2008.And then this deep depression is intensified into a cyclonic storm at 0000 UTC 26 Nov 2008.The India Meteorological Department named it as Nisha which moved northwest towards India.This cyclonic storm was weakened into a depression at 0000 UTC 28 Nov 2008.

    The north Indian Ocean best track data and central pressure data of Nisha (2008) case were obtained from Joint Typhoon Warning Centre (JTWC) of US Navy(http:∥www.usno.navy.mil/NOOC/nmfcph/RSS/jtwc/best-tracks/ioindex.php).

    The 6-hour interval data was interpolated into hourly data.These interpolated hourly Minimum Sea Level Pressure (MSLP) data with longitudes and latitudes data were used with POM for analysis.

    Before perform the three numerical experiments,a 6 h spin-up of POM started at 0600 UTC 24 December 2008 was carried out.A 48 h forward model run starting at 1200 UTC 24 December 2008 was performed.

    3 Results

    The spatial distribution of water level variations during Nisha (2008) cyclone for the three numerical experiments exp-OW (Fig.3),exp-TW,exp-OT were done for 48 h forward model which runs starting at 1200 UTC 24 December 2008 case.

    obtained for 48 hours and it can be seen that the high storm surge occurs along the storm track.This experiment includes the difference between the all forcing and only tide forcing which gives the surge variation.In this figure the maximum surge is about 2 m and the minimum surge is about -2 m.Similar to the result of exp-OW,the maximum surge can be observed significantly along the northwest coast of Sri Lanka,while the minimum surge can be observed along the southeast coast of India.

    is greater than zero,tide-surge interaction makes surges produced by exp-TW larger than surges produced by exp-OW,and vice versa[10].In this figure the maximum positive TSI (0.6 m) can be observed at hour 42 around the north coast(9.5°N,80.5°E).And the minimum negative TSI (maximum absolute value) (-0.6 m) can be observed at hour 30 along northwest coast (9.2°N,80.2°E).

    At the maximum positive TSI of 0.6 m,the TC track (Fig.2a) is located at 0600 UTC 26th November 2008 around 10.6°N,80.7°E with 50 m/s maximum sustained wind speed (Fig.2b) and 985 hPa minimum SLP.At the maximum negative TSI of -0.6 m,the TC track is located (Fig.2a) at 1800 UTC 25th November 2008 around (9.9°N,80.5°E) with 35 m/s maximum sustained wind speed (Fig.2b) and 996 hPa minimum SLP.

    In order to further examine the impact of tide-surge interaction on maximum surge region,time series of surge water levels variation(Fig.7) at the selected northwest point were presented for surge with tidal effect and surge variations for exp-OW and surge induced by TSI for 48 hours.This figure shows that at around hour 30 the surge reduced and then at around hour 42 the surge increased,similar to the results shown in Figure 4 in this northwest region.According to Figure 5 the TSI reaches the maximum positive TSI at hour 42 and gets the maximum negative TSI at hour 30 at this selected location of northwest region.In addition,the TSI has a similar period to the semi-diurnal tide but the amplitude is varying along with the total surge.

    The magnitudes and directions of surge-tide interaction on current (UTSI) at hour 30 are shown in Figure 8.At hour 30 the maximum magnitude of UTSI about 0.2 m/s can be observed and the direction of UTSI represented with red arrows in Figure 8 indicates that the water currents flow out off the northwestern coast of Sri Lanka,resulting in the maximum negative surge-tide interaction.Moreover,the pattern of the UTSImagnitudes shows that the energy of UTSI propagates in the form of tidal wave.During the whole TC cycle,strong surge-tide interaction occurs in the northwestern coast of Sri Lanka and the opposite coast of India,which indicates that the tidal effect cannot be ignored in this region.

    4 Discussion

    In this study the characteristics of tide-surge interaction along the north coast of Sri Lanka during the selected tropical cyclone case of Nisha (2008) was examined based on the POM.Model performance was assessed by comparing the simulated and observed hourly sea water levels.It is found that the model reproduces reasonably well the tides,surges and total sea water levels over the study region,with some discrepancy due to model grid resolution,inaccurate topography data and simplified cyclone structure.

    The difference between the three numerical experiments (exp-TW),(exp-OT) and (exp-OW) during cyclone Nisha (2008) produced by the model were used to study the tide-surge interaction in this selected region.The tide-surge interaction is a function of storm strength,storm track and topography[10].Although this Nisha (2008) was a fairly weak tropical cyclone,it still caused some notable damage in the north coast of Sri Lanka.The most significant tide-surge interaction was observed in the northwest coast of Sri Lanka,which reaches around 0.6 m.

    For the maximum of tide-surge interaction intensity (maximum absolute value of ηTSI

    during the cyclone event),the differences are shown to be associated with the strength and track of the cyclone.The impact of tide-surge interaction on the surge maximum can be investigated by focusing on the ηTSI

    when the surge reaches its maximum values.

    Tide-surge interaction makes destructive/constructive contribution to the maximum surge depending on the tidal phase (high tide/low tide) during the cyclone.In addition,the tide-surge interaction increases the duration of storm surge event while reduces the maximum surge,and vice versa[10].

    According to our results the maximum surge (2 m) was observed along the northwest coast of Sri Lanka and the minimum surge (-2 m) was observed along the southeast coast of India.In addition,the maximum positive TSI and negative TSI both occurred (about 0.6 m and -0.6 m) within this northwest region of Sri Lanka.Maximum positive TSI occurred at hour 42(0600 UTC 26th November 2008) and at the same time the TC track tended towards the northwest of India.

    At hour 42 when the maximum positive TSI occurred,the TC track strength increased with 50 m/s maximum sustained wind speed (Fig.2b) and 985 hPa minimum SLP.The TC track tended towards northwest direction(Fig.2a).At hour 30 when the maximum negative TSI occurred,the maximum sustained wind speed was 35 m/s(Fig.2b) and minimum SLP was 996 hPa which showed the TC track was weakened.Maximum negative TSI occurred at hour 30 which represents the 1800 UTC 25th November 2008.At this hour the TC track tended towards northeast direction(Fig.2a).The magnitude of UTSI (Fig.8) about 0.2 m/s and the direction of interaction current were observed significantly pointed out along the northwestern coast.In addition,the energy of UTSI propagates in the form of tidal wave and has similar period to the semi-diurnal tide in this region.

    All these results identified that the maximum of tide-surge interaction intensity is associated with the strength and track of the cyclone,and mainly occurs in the northwestern coast of Sri Lanka and the opposite coast of India.

    More work is needed to improve the accuracy of simulated storm surge,storm tide and tide-surge interaction in this region.Studies are needed to analyze different cyclone events to get a comparative examination of tide-surge interaction characteristics.

    The only national agency which provides observed sea level data for Sri Lanka is National Aquatic Resources Research and Development Agency (NARA).But it only provides observed sea level data for two stations (Colombo and Trincomalee) and these data are limited to 2007 to present time.The main reason for the lack of observed data in northern Sri Lanka could be the ethnic war period of Sri Lanka.

    The observed data are of limited quality,both in terms of time period and spatial coverage.It would be favorable if more data would be made accessible for scientific analysis in future by increasing tide gauge stations around Sri Lanka.And also it is showed in this study that the most significant tide-surge interaction was observed in the northwest coast of Sri Lanka.So it is important to locate a tide gauge station to observe sea level in northwest coast of Sri Lanka.

    The observed sea level data are needed to be analyzed further with statistical approach to find the significance of tide surge interaction and to validate the model results.This is successfully done in North Sea[13],the English Channel[26],the Bay of Bengal[21] and the China Sea[10,27].

    In addition,further investigations are needed to be done on the impacts of the nonlinear advective and the nonlinear bottom friction on the temporal variation of tide-surge interaction.To better understand the response of tide-surge interaction to different storm strengths and tracks,more case studies should be carried out for different number of specific cyclone events within this region in further analysis.

    5 Conclusion

    The present study shows that the observed characteristics of tide-surge interactions are significant along the northwest coast of Sri Lanka.The model reproduces reasonably well the tides,surges and total sea water levels.The maximum of the tide-surge interaction (TSI) intensity is associated with the strength and track of the cyclone.In this study the maximum positive TSI (0.6 m) was observed at hour 42 when the TC track was strengthened.The maximum negative TSI (-0.6 m) was observed at hour 30 when the TC track was weakened.The magnitude of interaction current (UTSI) (0.2 m/s) and the direction of red arrows were observed significantly pointed along the northwestern coast.This positive and negative maximum TSI intensified water levels were observed along the northwest coast of Sri Lanka.Further studies are needed to examine and quantify the impact of tide-surge interaction on sea levels in this selected region,and to carry out a comparative analysis it is needed to study on different cyclones.

    Acknowledgements:This work was jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos.XDA19060503,XDA11010304 and XDA13030103),National Natural Science Foundation of China (Grants Nos.41776028,41676016,41376021,and 41521005),the MOST of China (Grant No.2014CB953904),Science and Technology Program of Guangzhou,China (Grant No.201607020043),and supported by Science and Technology Planning Project of Guangdong Province,China (Grant No.20150217),F(xiàn)unding of China Scholarship Council (Grant No.201704910146).The authors gratefully acknowledge the joint program of China Sri Lanka Research and Education Center (CSL-CER) and the use of the HPCC for all numeric simulations at the South China Sea Institute of Oceanology,Chinese Academy of Sciences.We also thank the National Aquatic Resources Research and Development Agency (NARA),Sri Lanka for providing the hourly observed sea level data.

    References

    [1] Li Y N,Peng S Q,Yan J,et al.On improving storm surge forecasting using an adjoint optimal technique[J].Ocean Model,2013,72(12):185-197

    [2] Resio D,Westerink J J.Modelling the physics of storm surges[J].Phys Today,2008,61(9):33-38

    [3] Xie L,Pietrafesa L,Peng M C.Incorporation of a mass-conserving inundation scheme into a three-dimensional storm surge model[J].J Coastal Res,2004,20(4):1209-1223

    [4] Peng S Q,Xie L.Effect of determining initial conditions by four-dimensional variational data assimilation on storm surge forecasting[J].Ocean Model,2006,14(1/2):1-18

    [5] Lakshmi D D,Murty P L N.Bhaskaran K P,et al.Performance of WRF-ARW winds on computed storm surge using hydodynamic model for Phailin and Hudhud cyclones[J].Ocean Eng,2017,131:135-148

    [6] Zhang A,Wei E,Parker B B.Optimal estimation of tidal open boundary conditions using predicted tides and adjoint data assimilation technique[J].Cont Shelf Res,2003,23:1055-1070

    [7] Dube S K,Jain I,Rao A D,et al.Storm surge modelling for the Bay of Bengal and Arabian Sea[J].Natural Hazards,2009,51(1):3-27

    [8] Wijetunge J.Disaster risk assessment and mitigation strategy for tropical cyclone induced storm surge hazard and coastal impacts of climate change in Sri Lanka.[C]∥11th International Conference on Hydroinformatics,2014

    [9] Wijetunge J.Multi-scenario analysis of the storm surge hazard for Sri Lanka[C]∥35th IAHR World Congress,2013

    [10] Zhang H,Cheng W C,Qiu X X,et al.Tide-surge interaction along the east coast of the Leizhou Peninsula,South China Sea[J].Cont Shelf Res,2017,142:32-49

    [11] Peng S Q,Li Y N.A parabolic model of drag coefficient for storm surge simulation in the South China Sea[J].Sci Rep,2015,5:15496

    [12] Dixon M J,Tawn J A.Estimates of extreme sea conditions:spatial analyses for the UK Coast[R].Proudman Oceanographic Laboratory,1997:112-217

    [13] Horsburgh K J,Wilson C.Tide-surge interaction and its role in the distribution of surge residuals in the North Sea[J].J Geophys Res,2007,112(C8),DOI:10.1029/2006JC004033

    [14] Bernier N B,Thompson K R.Tide-surge interaction off the east coast of Canada and northeastern United States[J].J Geophys Res,2007,112(C6),DOI:10.1029/2006JC003793

    [15] Tang Y M,Grimshaw R,Sanderson B,et al.A numerical study of storm surges and tides with application to the North Queensland coast[J].J Phys Oceanogr,1996,26(12):2700-2711

    [16] Zhang W Z,Shi F Y,Hong H S,et al.Tide-surge interaction intensified by the Taiwan Strait[J].J Geophys Res,2010,115(C6),DOI:10.1029/2009JC005762

    [17] Zhang H,Sheng J Y.Examination of extreme sea levels due to storm surges and tides over the northwest Pacific Ocean[J].Cont Shelf Res,2015,93(1):81-97

    [18] Xu J L,Zhang Y H,Cao A Z,et al.Effects of tide-surge interactions on storm surges along the coast of the Bohai Sea,Yellow Sea,and East China Sea[J].Science China Earth Sciences,2016,59(6):1308-1316

    [19] Johns B,Ali M A.The numerical modelling of storm surges in the Bay of Bengal[J].Quarterly Journal of the Royal Meteorological Society,1980,106(447):1-18

    [20] As-Salek J A,Yasuda T.Tide-surge interaction in the Meghna Estuary:most severe conditions[J].J Phys Oceanogr,2001,31(10):3059-3072

    [21] Antony C,Unnikrishnan A S.Observed characteristics of tide-surge interaction along the east coast of India and the head of Bay of Bengal[J].Estuar Coast Shelf Sci,2013,131(6):6-11

    [22] Pawlowicz R,Beardsley B,Lentz S.Classical tidal harmonic analysis including error estimates in Matlab using T-TIDE[J].Computers & Geosciences,2002,28(8):929-937

    [23] Mellor G L.Users guide for a three-dimensional,primitive equation,numerical ocean model June 2003 version[M].Princeton,NJ:Program in Atmospheric Ocean Science,2003:5

    [24] Blumberg A F,Mellor G L.A description of a three dimensional coastal ocean circulation model[M]∥Heaps N S.Three-Dimensional Coastal Ocean Models.Washing D C:America Geophysical Union,1987:1-16

    [25] Holland G J.An analytic model of the wind and pressure profiles in hurricanes[J].Mon Wea Rev,1980,108(8):1212-1218

    [26] Haigh I,Nicholls R,Wells N.Assessing changes in extreme sea levels:application to the English Channel,1900-2006[J].Cont Shelf Res,2010,30(9):1042-1055

    [27] Feng X B,Tsimplis M N.Sea level extremes at the coasts of China[J].J Geophys Res,2014,119(3):1593-1608

    猜你喜歡
    風(fēng)暴潮潮汐斯里蘭卡
    潮汐與戰(zhàn)爭(zhēng)(上)
    2012年“蘇拉”和“達(dá)維”雙臺(tái)風(fēng)影響的近海風(fēng)暴潮過(guò)程
    防范未來(lái)風(fēng)暴潮災(zāi)害的綠色海堤藍(lán)圖
    科學(xué)(2020年4期)2020-11-26 08:27:00
    基于多變量LSTM神經(jīng)網(wǎng)絡(luò)模型的風(fēng)暴潮臨近預(yù)報(bào)
    絕美海灘
    斯里蘭卡的高蹺海釣
    斯里蘭卡·鄉(xiāng)愁·舊時(shí)光
    基于HYCOM的斯里蘭卡南部海域溫、鹽、流場(chǎng)統(tǒng)計(jì)分析
    潮汐式灌溉控制系統(tǒng)的設(shè)計(jì)及應(yīng)用
    電子制作(2017年9期)2017-04-17 03:00:56
    干法紙的潮汐
    生活用紙(2016年6期)2017-01-19 07:36:25
    久久99热这里只有精品18| 丝袜喷水一区| 中文欧美无线码| 尾随美女入室| 欧美成人免费av一区二区三区| 在线观看美女被高潮喷水网站| 日本五十路高清| 日韩一本色道免费dvd| 人人妻人人看人人澡| 精品久久久噜噜| 亚洲国产精品久久男人天堂| 少妇人妻精品综合一区二区 | www.色视频.com| 欧美日韩综合久久久久久| 亚洲电影在线观看av| 国产精品一区二区三区四区免费观看| 一卡2卡三卡四卡精品乱码亚洲| 18禁在线播放成人免费| 成人三级黄色视频| 日本熟妇午夜| 亚洲av电影不卡..在线观看| 99riav亚洲国产免费| 色吧在线观看| 国产成人精品久久久久久| 免费人成在线观看视频色| 亚洲人与动物交配视频| 九九热线精品视视频播放| 亚洲精品日韩在线中文字幕 | 人妻夜夜爽99麻豆av| 日韩视频在线欧美| 在线免费十八禁| a级毛片a级免费在线| 久久人人精品亚洲av| 国产免费男女视频| 亚洲美女搞黄在线观看| 天天躁日日操中文字幕| 亚洲美女视频黄频| 九九在线视频观看精品| 久久久久久久亚洲中文字幕| 亚洲欧美中文字幕日韩二区| 亚洲自偷自拍三级| 亚洲欧洲国产日韩| 国内揄拍国产精品人妻在线| 国产精品免费一区二区三区在线| 少妇熟女欧美另类| 国产男人的电影天堂91| 大型黄色视频在线免费观看| 成人无遮挡网站| 久久亚洲精品不卡| 夜夜看夜夜爽夜夜摸| 日韩一区二区视频免费看| 中文字幕精品亚洲无线码一区| 激情 狠狠 欧美| av国产免费在线观看| 在线观看免费视频日本深夜| 亚洲av中文字字幕乱码综合| 久久99热6这里只有精品| 日韩欧美一区二区三区在线观看| 午夜视频国产福利| 婷婷色av中文字幕| 久久午夜福利片| 一边亲一边摸免费视频| 久久人人精品亚洲av| .国产精品久久| 成人一区二区视频在线观看| 桃色一区二区三区在线观看| av卡一久久| 哪里可以看免费的av片| 人人妻人人澡欧美一区二区| 婷婷精品国产亚洲av| 久久久精品大字幕| 成人二区视频| 插阴视频在线观看视频| 黑人高潮一二区| 国产精品福利在线免费观看| 人人妻人人澡人人爽人人夜夜 | 日韩 亚洲 欧美在线| 美女xxoo啪啪120秒动态图| 国内少妇人妻偷人精品xxx网站| 免费人成在线观看视频色| 欧美极品一区二区三区四区| 狂野欧美白嫩少妇大欣赏| 卡戴珊不雅视频在线播放| 天堂√8在线中文| av国产免费在线观看| 身体一侧抽搐| 人妻制服诱惑在线中文字幕| 大又大粗又爽又黄少妇毛片口| 婷婷色av中文字幕| 国产亚洲精品久久久com| 我要搜黄色片| 免费不卡的大黄色大毛片视频在线观看 | 中文字幕免费在线视频6| 日本一二三区视频观看| 日韩成人av中文字幕在线观看| 91麻豆精品激情在线观看国产| 欧美又色又爽又黄视频| 全区人妻精品视频| 免费看光身美女| 亚洲丝袜综合中文字幕| 精品99又大又爽又粗少妇毛片| 精品人妻熟女av久视频| 欧美成人a在线观看| or卡值多少钱| 成人午夜高清在线视频| 国产淫片久久久久久久久| 在线观看美女被高潮喷水网站| 国产成人91sexporn| 男人舔奶头视频| 一级黄色大片毛片| 欧美高清成人免费视频www| 色尼玛亚洲综合影院| 少妇人妻精品综合一区二区 | 日韩 亚洲 欧美在线| 免费搜索国产男女视频| 国产一区二区亚洲精品在线观看| 最好的美女福利视频网| 一卡2卡三卡四卡精品乱码亚洲| av又黄又爽大尺度在线免费看 | 亚洲成人精品中文字幕电影| 九九爱精品视频在线观看| 国产一区亚洲一区在线观看| 国产午夜精品一二区理论片| а√天堂www在线а√下载| 你懂的网址亚洲精品在线观看 | avwww免费| 免费人成在线观看视频色| 欧美日韩乱码在线| 插逼视频在线观看| 99热全是精品| 久久精品国产亚洲av香蕉五月| 久久这里有精品视频免费| 岛国在线免费视频观看| 美女黄网站色视频| 亚洲欧美精品专区久久| 成年女人看的毛片在线观看| 欧美激情国产日韩精品一区| 久久久a久久爽久久v久久| 秋霞在线观看毛片| 能在线免费看毛片的网站| 淫秽高清视频在线观看| 久久久成人免费电影| 国产av在哪里看| 亚洲中文字幕一区二区三区有码在线看| 欧美人与善性xxx| 中文字幕久久专区| 九九爱精品视频在线观看| 51国产日韩欧美| 18禁在线无遮挡免费观看视频| 99在线人妻在线中文字幕| 欧美日韩在线观看h| av在线蜜桃| 国产精品1区2区在线观看.| 免费av观看视频| 国产又黄又爽又无遮挡在线| 1024手机看黄色片| 99久久无色码亚洲精品果冻| 综合色av麻豆| 深夜精品福利| 久久亚洲精品不卡| 久久久午夜欧美精品| 精品不卡国产一区二区三区| 特级一级黄色大片| 午夜视频国产福利| 又黄又爽又刺激的免费视频.| 晚上一个人看的免费电影| 日韩 亚洲 欧美在线| 午夜免费激情av| 亚洲aⅴ乱码一区二区在线播放| 淫秽高清视频在线观看| 99热只有精品国产| 黄片wwwwww| 亚洲精品日韩在线中文字幕 | 免费观看人在逋| 国国产精品蜜臀av免费| 久久精品国产亚洲av香蕉五月| 国产午夜精品久久久久久一区二区三区| 麻豆久久精品国产亚洲av| 国产精品一区二区在线观看99 | 亚洲精品日韩av片在线观看| av又黄又爽大尺度在线免费看 | 欧美区成人在线视频| 日本与韩国留学比较| 久久这里只有精品中国| 长腿黑丝高跟| 一区二区三区四区激情视频 | h日本视频在线播放| 两个人的视频大全免费| 国产一级毛片七仙女欲春2| 国产高清不卡午夜福利| 日日啪夜夜撸| 亚洲精品成人久久久久久| 波多野结衣高清无吗| 亚洲国产日韩欧美精品在线观看| 亚洲av成人精品一区久久| 99热这里只有是精品50| 国产成人a区在线观看| 午夜精品一区二区三区免费看| 国产色婷婷99| 国产欧美日韩精品一区二区| 天堂av国产一区二区熟女人妻| 精品国内亚洲2022精品成人| 国产精品野战在线观看| 国产精品.久久久| 亚洲中文字幕日韩| 永久网站在线| 22中文网久久字幕| 美女黄网站色视频| 好男人视频免费观看在线| 亚洲精品影视一区二区三区av| 卡戴珊不雅视频在线播放| 国模一区二区三区四区视频| 最近中文字幕高清免费大全6| 91久久精品国产一区二区成人| 一区二区三区免费毛片| 最后的刺客免费高清国语| 给我免费播放毛片高清在线观看| 99久久人妻综合| 精品熟女少妇av免费看| 97超视频在线观看视频| 午夜福利视频1000在线观看| 精品久久久久久成人av| 久久这里有精品视频免费| 你懂的网址亚洲精品在线观看 | 日韩精品青青久久久久久| 国产私拍福利视频在线观看| 亚洲精品久久久久久婷婷小说 | 毛片一级片免费看久久久久| 亚洲国产色片| 又爽又黄a免费视频| 99久久九九国产精品国产免费| 日韩精品青青久久久久久| 日韩制服骚丝袜av| 菩萨蛮人人尽说江南好唐韦庄 | 免费人成在线观看视频色| 99精品在免费线老司机午夜| 联通29元200g的流量卡| av专区在线播放| 91精品一卡2卡3卡4卡| 久久精品国产亚洲av涩爱 | 久久久久久国产a免费观看| a级毛片免费高清观看在线播放| 中文字幕熟女人妻在线| 综合色丁香网| 色播亚洲综合网| 一本久久精品| 亚洲国产色片| 麻豆乱淫一区二区| 亚洲欧美精品综合久久99| 直男gayav资源| 日本一本二区三区精品| 可以在线观看毛片的网站| 国产精品人妻久久久久久| 亚洲精华国产精华液的使用体验 | 亚洲18禁久久av| 久久精品综合一区二区三区| 欧美一区二区亚洲| 久久韩国三级中文字幕| 一本久久精品| 可以在线观看的亚洲视频| 美女高潮的动态| 亚洲美女搞黄在线观看| 十八禁国产超污无遮挡网站| 国产伦精品一区二区三区四那| av在线亚洲专区| 三级经典国产精品| 亚洲第一区二区三区不卡| 日韩人妻高清精品专区| 国产一区二区三区av在线 | a级毛色黄片| 成年av动漫网址| 国产日韩欧美在线精品| 日韩欧美在线乱码| 黄色一级大片看看| 成年女人看的毛片在线观看| 亚洲精品自拍成人| 日韩中字成人| 高清日韩中文字幕在线| 久久久久久国产a免费观看| 天美传媒精品一区二区| videossex国产| 可以在线观看的亚洲视频| 99久国产av精品| 久久人妻av系列| 欧美高清成人免费视频www| 老熟妇乱子伦视频在线观看| 中文亚洲av片在线观看爽| 国产三级中文精品| 亚洲精品成人久久久久久| 久久久久久久久久黄片| 青春草亚洲视频在线观看| 亚洲国产精品成人综合色| 国内精品宾馆在线| 国产69精品久久久久777片| 精品久久久久久久久久久久久| 免费一级毛片在线播放高清视频| 不卡视频在线观看欧美| 精品熟女少妇av免费看| 2021天堂中文幕一二区在线观| 国产精品精品国产色婷婷| 亚洲av不卡在线观看| 欧美激情久久久久久爽电影| 成人毛片60女人毛片免费| 亚洲精品成人久久久久久| 一级二级三级毛片免费看| 午夜精品国产一区二区电影 | 中文字幕精品亚洲无线码一区| 久久精品国产鲁丝片午夜精品| 欧美日本视频| 身体一侧抽搐| 国产高清激情床上av| 黄色视频,在线免费观看| 美女cb高潮喷水在线观看| 国产精品久久久久久久久免| a级一级毛片免费在线观看| 欧美日韩综合久久久久久| 日韩欧美精品v在线| 亚洲精品粉嫩美女一区| 久久午夜福利片| 国产精品伦人一区二区| 啦啦啦韩国在线观看视频| 国产高清不卡午夜福利| 深夜a级毛片| 成人特级av手机在线观看| 成人性生交大片免费视频hd| 精品人妻一区二区三区麻豆| 日韩国内少妇激情av| 亚洲精品亚洲一区二区| 亚洲综合色惰| 天美传媒精品一区二区| 51国产日韩欧美| 1000部很黄的大片| 99久久精品热视频| 少妇裸体淫交视频免费看高清| 久久久久网色| 精品人妻一区二区三区麻豆| 人妻制服诱惑在线中文字幕| 久久欧美精品欧美久久欧美| 亚洲国产欧美在线一区| 国产精品久久视频播放| 晚上一个人看的免费电影| 免费av观看视频| 99久久久亚洲精品蜜臀av| 亚洲一级一片aⅴ在线观看| 一级二级三级毛片免费看| 蜜桃亚洲精品一区二区三区| 天堂影院成人在线观看| 日韩一区二区视频免费看| av天堂中文字幕网| 2021天堂中文幕一二区在线观| 嫩草影院精品99| 午夜激情福利司机影院| 久久久久久久亚洲中文字幕| 看十八女毛片水多多多| 最好的美女福利视频网| 又粗又硬又长又爽又黄的视频 | 国产麻豆成人av免费视频| 中文在线观看免费www的网站| 搞女人的毛片| 久久久午夜欧美精品| 精品午夜福利在线看| 亚洲精品影视一区二区三区av| 精品无人区乱码1区二区| 亚洲性久久影院| 国产不卡一卡二| 久久久久九九精品影院| 国产在线精品亚洲第一网站| 国产探花极品一区二区| 九色成人免费人妻av| 男插女下体视频免费在线播放| 久久精品国产亚洲av天美| 日本熟妇午夜| 国产真实伦视频高清在线观看| 亚洲最大成人av| 国产黄色视频一区二区在线观看 | 少妇人妻精品综合一区二区 | 大香蕉久久网| 精品人妻视频免费看| 久久综合国产亚洲精品| 麻豆精品久久久久久蜜桃| 联通29元200g的流量卡| 亚洲中文字幕日韩| av国产免费在线观看| 18禁在线播放成人免费| 欧美xxxx性猛交bbbb| 亚洲三级黄色毛片| 边亲边吃奶的免费视频| 精品久久久久久久久av| 免费观看的影片在线观看| 日韩欧美国产在线观看| 亚洲av二区三区四区| 看非洲黑人一级黄片| 日本av手机在线免费观看| 最近的中文字幕免费完整| 美女被艹到高潮喷水动态| 亚洲欧美精品自产自拍| 国产精品国产三级国产av玫瑰| 一级毛片我不卡| av黄色大香蕉| 日本黄色视频三级网站网址| 亚洲av免费在线观看| 99久久精品国产国产毛片| 国产成人a区在线观看| 久久99蜜桃精品久久| 午夜老司机福利剧场| 麻豆一二三区av精品| 3wmmmm亚洲av在线观看| 久久九九热精品免费| 色5月婷婷丁香| 美女国产视频在线观看| 亚洲成人久久爱视频| 少妇熟女aⅴ在线视频| 亚洲熟妇中文字幕五十中出| 国产淫片久久久久久久久| 欧美日韩国产亚洲二区| 亚洲美女视频黄频| 久久午夜亚洲精品久久| 国产成人午夜福利电影在线观看| 哪个播放器可以免费观看大片| 男女视频在线观看网站免费| 十八禁国产超污无遮挡网站| 欧美+亚洲+日韩+国产| 国产黄片视频在线免费观看| 国产乱人偷精品视频| 边亲边吃奶的免费视频| 亚洲av第一区精品v没综合| 国产在视频线在精品| 在线观看av片永久免费下载| 国产精品一及| 可以在线观看的亚洲视频| av福利片在线观看| 成人漫画全彩无遮挡| 蜜桃亚洲精品一区二区三区| 国产高清不卡午夜福利| 99在线人妻在线中文字幕| a级毛色黄片| 女同久久另类99精品国产91| 淫秽高清视频在线观看| 给我免费播放毛片高清在线观看| 大又大粗又爽又黄少妇毛片口| 我的老师免费观看完整版| 国国产精品蜜臀av免费| 国产中年淑女户外野战色| 国产探花极品一区二区| av国产免费在线观看| 国产成人a∨麻豆精品| 国产日韩欧美在线精品| 波多野结衣高清无吗| 听说在线观看完整版免费高清| 免费看日本二区| .国产精品久久| 一边亲一边摸免费视频| 欧美3d第一页| 亚洲精品久久久久久婷婷小说 | 国产成人精品婷婷| 国产久久久一区二区三区| 此物有八面人人有两片| 免费av毛片视频| 久久久国产成人免费| 99热精品在线国产| 国产亚洲5aaaaa淫片| 在线观看美女被高潮喷水网站| 啦啦啦韩国在线观看视频| 最好的美女福利视频网| 日韩成人av中文字幕在线观看| 午夜视频国产福利| 国产 一区精品| 午夜老司机福利剧场| 特级一级黄色大片| 精品久久久久久久久av| 亚洲国产精品久久男人天堂| 久久99蜜桃精品久久| 天天躁日日操中文字幕| 国产精品麻豆人妻色哟哟久久 | 亚洲图色成人| 一级黄色大片毛片| 色综合站精品国产| 在线播放国产精品三级| 在线观看一区二区三区| 欧美成人精品欧美一级黄| 国产精品福利在线免费观看| 国产淫片久久久久久久久| 人人妻人人澡人人爽人人夜夜 | 中文字幕制服av| 亚洲欧美精品专区久久| av女优亚洲男人天堂| 亚洲成人av在线免费| 91久久精品国产一区二区成人| 亚洲无线观看免费| 亚洲无线在线观看| 大又大粗又爽又黄少妇毛片口| 99久久中文字幕三级久久日本| 蜜桃久久精品国产亚洲av| 亚洲成人中文字幕在线播放| 亚洲精品国产av成人精品| 偷拍熟女少妇极品色| 成人午夜精彩视频在线观看| 久久中文看片网| 1024手机看黄色片| 12—13女人毛片做爰片一| 国产淫片久久久久久久久| 国产免费一级a男人的天堂| 午夜福利视频1000在线观看| 国产精品一区二区在线观看99 | 嘟嘟电影网在线观看| 久久99精品国语久久久| 美女高潮的动态| 91aial.com中文字幕在线观看| 性欧美人与动物交配| 日本色播在线视频| 特大巨黑吊av在线直播| avwww免费| 校园春色视频在线观看| av国产免费在线观看| 晚上一个人看的免费电影| 国产真实伦视频高清在线观看| 亚洲一区高清亚洲精品| 黄片无遮挡物在线观看| 国产视频内射| 22中文网久久字幕| 亚洲人与动物交配视频| 国产精品久久久久久亚洲av鲁大| 在线免费观看不下载黄p国产| 波多野结衣高清无吗| 桃色一区二区三区在线观看| 国产 一区精品| 欧美成人免费av一区二区三区| 久久精品久久久久久噜噜老黄 | 精品人妻一区二区三区麻豆| 91麻豆精品激情在线观看国产| 国产色爽女视频免费观看| 亚洲自偷自拍三级| 亚洲丝袜综合中文字幕| 91久久精品国产一区二区三区| 中国美白少妇内射xxxbb| 精品免费久久久久久久清纯| 99久久九九国产精品国产免费| 国产精品久久久久久av不卡| 在线观看免费视频日本深夜| 久久国内精品自在自线图片| 色哟哟哟哟哟哟| 亚洲人与动物交配视频| 久久99精品国语久久久| 国产单亲对白刺激| 一区福利在线观看| 亚洲第一电影网av| 黑人高潮一二区| 日韩一区二区视频免费看| 日韩强制内射视频| 日韩国内少妇激情av| 久久韩国三级中文字幕| 女同久久另类99精品国产91| 男人和女人高潮做爰伦理| 国产爱豆传媒在线观看| 国产精品美女特级片免费视频播放器| 色哟哟哟哟哟哟| 在线免费十八禁| 99国产极品粉嫩在线观看| 婷婷色av中文字幕| 久久精品国产亚洲av香蕉五月| 亚洲在线自拍视频| or卡值多少钱| 亚洲最大成人中文| 日本免费a在线| 日日摸夜夜添夜夜添av毛片| or卡值多少钱| 欧美日韩国产亚洲二区| 日日干狠狠操夜夜爽| 在线a可以看的网站| 美女cb高潮喷水在线观看| 1000部很黄的大片| 亚洲国产精品成人久久小说 | 亚洲婷婷狠狠爱综合网| 成人亚洲欧美一区二区av| 日韩高清综合在线| 黄色一级大片看看| 久久久久久大精品| 中文字幕久久专区| 亚洲国产欧洲综合997久久,| 可以在线观看毛片的网站| 久久久久久大精品| 国产成人一区二区在线| 国产一区亚洲一区在线观看| 欧美成人免费av一区二区三区| 欧美bdsm另类| 国产精品蜜桃在线观看 | 我的女老师完整版在线观看| 男女那种视频在线观看| 99在线人妻在线中文字幕| 亚洲人成网站在线观看播放| 噜噜噜噜噜久久久久久91| 国产伦理片在线播放av一区 | 成年免费大片在线观看| 亚洲精品自拍成人| 91精品国产九色| 99热网站在线观看| 精品国内亚洲2022精品成人| 国产一区二区三区在线臀色熟女| 亚洲在久久综合| 久久午夜亚洲精品久久| 3wmmmm亚洲av在线观看| 午夜视频国产福利| 18禁裸乳无遮挡免费网站照片| 91aial.com中文字幕在线观看| 黄色欧美视频在线观看| av视频在线观看入口| 亚洲激情五月婷婷啪啪| 老师上课跳d突然被开到最大视频| 青青草视频在线视频观看| 两个人的视频大全免费| 亚洲图色成人| 淫秽高清视频在线观看| 免费观看在线日韩| 成熟少妇高潮喷水视频| 淫秽高清视频在线观看|