• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In fluence of Zr,Ce,and La on Co3O4 catalyst for CO2 methanation at low temperature☆

    2018-05-25 11:26:23YuwenZhouYuexiuJiangZuzengQinQinruoXieHongbingJi
    關(guān)鍵詞:運輸量人員傷亡運輸機

    Yuwen Zhou ,Yuexiu Jiang ,Zuzeng Qin ,2,*,Qinruo Xie ,Hongbing Ji,2,*

    1 SchoolofChemistry and ChemicalEngineering,GuangxiKey Laboratory ofPetrochemicalResource Processing and Process Intensi fication Technology,GuangxiUniversity,Nanning 530004,China

    2 School of Chemistry,Sun Yat-sen University,Guangzhou 510275,China

    3 School of Biology and Chemical Engineering,Guangxi University of Science and Technology,Liuzhou 545006,China

    1.Introduction

    Over the past centuries,CO2has become the main carbon resource due to the decreases of limited resources such as coal,oil and natural gas[1,2].However,the CO2concentration in the atmosphere has consequently risen,which arguably contributes to the “greenhouse effect”,and increase the global temperatures and climate change[3,4],and it is high time that effective measures should be taken to decrease the emission of CO2.CO2methanation is a simple reaction and can generate methane under atmospheric pressure,and previous reports showed that the Ni catalysts used in the CO2hydrogenation have preferable activity on the CO2conversion and the CH4selectivity;however,the reaction requiresmuch highertemperatures[5–7],such as CO2methanation on Ni/La2O3at 350 °C and 1.5 MPa[8],Ni/HNaUSY at 400 °C[5],and the Ni/MOF at 320°C[6].Furthermore,carbon deposited could easily find on the Ni-based catalysts in a CO2methanation process[9,10],which would lead the inactivation of catalysts.

    In the other hand,Co-based catalysts were used in Fischer–Tropsch synthesis,which synthesized the syngas to liquid hydrocarbon,accomplished with a small amount CH4[11,12].Therefore,through adjusting the properties of COx/H2to control the products contribution,and using the Co-based catalyst in the CO2methanation reaction would be an effective catalyst,which was different from the conventional Ni-based catalyst[13,14]and exhibited better resistance to inactivation[15–17].However,the reaction temperature of CO2methanation was still higher,and the CO2conversion and CH4selectivity need to be further improved.At present,adding a promoter to the catalysts would efficiently improve the catalytic activity and reduce the reaction temperature,i.e.,the addition of a second metal(e.g.,Zr,Ce,or La)to the catalysts would obviously promote the metal dispersion,increase the reducibility of active metal,and reduce the crystallite size,which improved the activity of the catalysts[18–22].The Ce addition to Ni increased the dissociation and the hydrogenation activity of CO2and strengthened the interaction between Ce and Ni,resulting to highercatalytic activity of Ce-Ni/Al2O3[23].Mg was added by incipient wetness impregnation and ion exchange and improved the performance of the Ni-zeolite catalysts for CO2methanation;the important improvements of the catalytic performance(CO2conversion and CH4selectivity increased around 20%at 350–450 °C)were also found for the Mg-exchanged 5%Ni/zeolite[21].La,Ce,Pr,Eu&Gd were modi fied to Ni/γ-Al2O3by using aqueous incipient impregnation method[24],and 5%Pr-12%Ni/γ-Al2O3showed the highest CO2conversion of 98.2%with 100%CH4selectivity at 300°C for investigated reaction conditions.

    However,the effects of modi fiers on the catalyst properties and the CO2methanation activities on a Co-catalyst were seldom reported.In the present study,based on our previous study of the modi fied Cu-Fe catalysts for CO2hydrogenation to dimethyl ether[18–20],Zr-,Ce-,and La-modi fied Co3O4were prepared via a co-precipitation method and used for the catalytic hydrogenation of CO2to methane at a low temperature of 140–220 °C;the effects of the modi fier type on the catalysts structure and the catalytic activities of CO2methanation were investigated;the stability of the catalysts was also studied.

    2.Experimental

    2.1.Preparation of catalysts

    The Co3O4and Zr-,Ce-,and La-modi fied Co3O4catalysts were prepared via a co-precipitation method.The Co(NO3)2was prepared in the deionized water to a concentration of 0.2 mol·L-1,and based on the ZrO2amount that was 2 wt%of the Co3O4,the Zr(NO3)4was added to the Co(NO3)2aqueous solution to obtain a nitrate aqueous mixed solution.Subsequently,50 ml of Co(NO3)2and Zr(NO3)4mixture aqueous solutions and 0.5 mol·L-1of Na2CO3aqueous solution were added dropwise in the parallel flowing to 100 ml of deionized water at 70 °C until the pH=9,and a 400 r·min-1stiring,and aged for 4.0 h atambienttemperature to obtain the Zr-Co3O4precursor.The precursor was filtered and dried at 110 °C for 12 h,and calcined at 450 °C for 4.0 h.Finally,the 2-wt%Zr modi fied Co3O4powder was grounded to 20–40 meshes for the reaction,which was marked as Zr-Co3O4.The Co3O4,Ce-Co3O4,and La-Co3O4were prepared in the same method.

    2.2.Characterization of the catalysts

    The X-ray diffraction(XRD)was tested by using a Bruker D8 Advance X-ray diffractometer.The isotherm of nitrogen adsorption and desorption was measured by an ASAP 2000 physical adsorption instrument(Micromeritics Instrument Corp.),the catalyst surface area was calculated via Brunauer–Emmett–Teller(BET)method,and the pore size distribution curve was determined using the Barrett–Joyner–Halenda(BJH)model,which was based on the isotherm of desorption side.A Thermo ESCALAB 250X multifunction imaging electron spectrometer(Thermo Fisher Scientific Co.,Ltd.),which equipped with an Al Kαradiation source,was used to obtain the X-ray photoelectron spectrum(XPS)of catalysts,and the XPS analysis was conducted at 150 W with a pass energy of 40 eV.

    Temperature program reduction(H2-TPR)was determined using a DAS-7000 multifunction catalyst analysis system(China Hunan Huasi Technology Co.,Ltd.).The samples(50 mg)were purged with N2(30 ml·min-1)at 300 °C to remove physically adsorbed water followed by cooling to 50°C,and then reduced in a flow of 8%(by volume)H2/Ar(30 ml·min-1)at a heating rate of 10 °C·min-1up to 500 °C.Thermal conductivity detector(TCD)was used to monitor the consumption ofH2.

    The CO2-TPD experiments of catalyst samples were taken in a DAS-7000 multifunction catalyst analysis system(China Hunan Huasi Technology Co.,Ltd.).Atypicalsample mass of100 mg was reduced at400°C with an H2(99.999%) flow of30 ml·min-1for 1 h and then cooled to 50°C with 30 ml·min-1of N2.Subsequently,the CO2was introduced at a flow rate of 30 ml·min-1for 1 h at 50 °C,and then the catalysts were purged with 30 ml·min-1of N2for 1 h to remove the physical adsorption of CO2.Until the TCD signal was stabilized,the reactor temperature was programmed to increase ata rate of10°C·min-1to 700 °C,and the amount of CO2in the effluent was measured via TCD and recorded as a function of temperature.

    The FTIR of adsorbed pyridine was conducted using a Tensor II FTIR spectrometer(Bruker Corporation),the samples were added into a diffuse sample cell,and the samples were evacuated at 150°C for 1 h to record the background spectrum,and subsequently saturated with pyridine and evacuated at 150°C for 1 h,and the Py-IR spectra were recorded at the spectrum resolution of 4 cm-1after subtracting the sample background.

    2.3.CO2 methanation on Co3O4 and Zr-,Ce-,and La-Co3O4

    The CO2methanation was carried outin a fixed-bed reactor,consisting of a stainless-steel reaction tube with an 8-mm inner diameter.A 100 mg catalyst was taken into the reactor and reduced at 400°C for 3 h with 40 ml·min-199.999%H2and cooled to the room temperature.Subsequently,the H2and CO2in a 4:1 molar ratio was fed into the reactor at 30 ml·min-1,a gaseous hourly space velocity(GHSV)of18,000 ml·-h-1,and the catalytic hydrogenation ofCO2to CH4was reacted at80–220°C and 0.5 MPa.The gas product amounts were tested by using an online gas chromatograph(Agilent 4890D)equipped with a thermal conductivity detector(TCD),the products of the reaction included CH4,CO,and C2H4at the reaction temperature in the present study,and the CO2conversion(XCO2)and the CH4selectivity(SCH4)were calculated by using Eqs.(1)and(2)based a peak area normalization method.

    where,XCO2was the CO2conversion(%);SCH4was the CH4selectivity(%),and the ACO2,ACO,ACH4,and AC2H4were the peak areas of CO2,CO,CH4,and C2H4,respectively.

    3.Results and Discussion

    3.1.XRD analysis

    The XRD patterns of Co3O4,Zr-,Ce-,and La-Co3O4were shown in Fig.1(a).The diffraction peaks at 31.4°,36.9°,45.0°,59.5°,and 65.5°were assigned to the cubic phase Co3O4(JCPDS 65-3103),which existed on all catalysts,and the diffraction peak at 2θ=28.5°in the Ce-Co3O4was attributed to the CeO2phase.Much weakerand broadened Co3O4diffraction peaks were observed on the modi fied catalysts compared to the Co3O4,indicating the crystallite size of Co3O4is smaller after being modified by Zr,Ce,or La.The crystallite sizes of the Co3O4(311)plane in the Co3O4,La-Co3O4,Ce-Co3O4,and Zr-Co3O4calculated by using the Sherrer equation[25]was 23.20,20.21,18.53,and 17.55 nm,respectively,indicating the addition Zr,Ce,and La decreased the crystallite size of Co3O4,which would promote the catalytic activity[26].On the other hand,regarding the XRDpatterns ofthe reduced catalysts in Fig.1,no Co3O4crystalline was observed.The diffraction peaks at 41.7°,44.4°,and 47.1°were the metallic Co-hcp(hexagonal close-packed),indicating the active site for CO2methanation was the metallic Co.In addition,a minor diffraction peak at 75.9°,corresponding to the CoO crystalline,was also observed,which was the partialoxidation ofcobaltwhile in the catalystpreparation process and during sample transfer in the XRD chamber.However,no crystalline Zr or La oxide phase was detected in the modi fied catalysts,which might be attributed to these elements presenting in small quantities or existing in an amorphous state[27].

    皮帶運輸機是礦山生產(chǎn)和開采之中的重要設(shè)備,它能節(jié)約人力成本,提高礦山生產(chǎn)的效率。皮帶運輸機以其自身的使用便捷、運輸量巨大等優(yōu)點,在很長一段時間內(nèi),都是礦山的重要設(shè)備。尤其是在煤礦生產(chǎn)之中,離不開皮帶運輸機的使用。但在實際應(yīng)用之中,因為種種因素的影響,皮帶運輸機也總會發(fā)生一些問題影響生產(chǎn)速度,有時還會造成人員傷亡。因此,皮帶運輸機中必須采用PLC控制技術(shù),保證皮帶運輸機安全高效運行。

    3.2.Nitrogen adsorption/desorption of catalysts

    Fig.2 showed the N2adsorption–desorption isotherms and pore size distribution profiles of the Co3O4,Zr-,Ce-,and La-Co3O4,which confirmed all catalysts were mesostructured materials[28].From Table 1,the specific surface areas of Co3O4,Zr-,Ce-,and La-Co3O4was 47,70,65,and 69 m2·g-1,respectively,which indicated the Zr modi fication would increase the dispersion of Co species in the Zr-Co3O4and would provide more activity sites for the CO2catalytic hydrogenation reaction.Furthermore,compared with the Ce-Co3O4and La-Co3O4,a smaller average pore diameter of Zr-Co3O4(16.13 nm)and a narrower pore size distribution[in Fig.2(b)]would provide favorable conditions for the adsorption and activation of CO2molecules[13],which would lead to a high CO2catalytic hydrogenation activity.

    Fig.1.XRD patterns of(a)Co3O4,(b)La-Co3O4,(c)Ce-Co3O4,(d)Zr-Co3O4 calcined at 450 °C(a)and after H2-reduced at 400 °C(b).

    Fig.2.Nitrogen adsorption/desorption isotherms(a)and pore size distribution profiles(b)of(a)Co3O4,(b)La-Co3O4,(c)Ce-Co3O4,(d)Zr-Co3O4 catalysts.

    Table 1 Textural properties of Co3O4,La-Co3O4,Ce-Co3O4,and Zr-Co3O4 catalysts

    3.3.H2-TPR analysis

    The H2-TPR profiles of the mentioned catalysts were shown in Fig.3,and three Gaussian fitting peaks(α,β,and γ)were shown within 200–450°C.The peak positions and their area were summarized in Table 2.Co3O4was reduced by hydrogen to obtain Co via a two-step reduction:Co3O4→CoO→Co0[13,29].In Fig.3,the low-temperature hydrogen consumption peaks α and β attributed to the reduction of the Co3O4to CoO and the CoO to the metallic cobalt on the catalysts surface,respectively;the peak γ occurred in the Zr,Ce,or La modi fied Co3O4would attribute to the reduction of Co3O4which interacted with ZrO2,CeO2,or La2O3[30].

    Fig.3.H2-TPR profiles for(a)Co3O4,(b)La-Co3O4,(c)Ce-Co3O4,(d)Zr-Co3O4 catalysts.The solid curves are experimental curves,and the broken curves are Gaussian multipeak fitting curves.

    Table 2 Temperatures and areas of the reduction peaks of Co3O4,La-,Ce-,and Zr-Co3O4 catalysts①

    From Table 2,the peak α and β of the Zr-,Ce-,and La-Co3O4were centered at 258 and 250 °C,257 and 318 °C,and 324 and 304 °C,respectively,which were slightly lower than that of the Co3O4,261°C and 324°C,respectively,indicating the reducibility ofthe Co3O4(peakα and β)would improve by the addition of Zr,Ce,and La.Furthermore,the peak γ of Zr-Co3O4was wider than that of the Co3O4,Ce-and La-Co3O4,which suggested a stronger interaction between Co3O4and ZrO2was formed[31,32],and the reduction of the Co-Zr species required a much higher temperature at low Zr amount,leading the Zr-Co3O4reduced difficulty.For the Zr-Co3O4,the ratio of α and β peaks was 1.4,which caused by the weak interaction between cobalt and zirconium,and the Co2+was not completely reduced to Co in the β peak accompanied with the beginning of the reduction in the γ peak;more Co would be reduced in the γ peak;furthermore,some of the cobalt ions would enter the zirconia lattice and formed Co-Zr clusters.In the present study,the Zr-Co3O4was reduced at 400°C,which led to a partial reduction of Co,and some Co2+existed in the catalysts,which might serve as the active site for CO2methanation,resulting in the optimal CO2conversion and CH4selectivity,which agree with the higher CH4selectivity thatwas observed in the Fischer–Tropsch synthesis when Co catalysts were not completely reduced[11,33].

    3.4.XPS analysis

    To clarify the oxidation states of the elements on the catalysts surface,the samples were characterized by XPS,and the results were shown in Fig.4.

    From the Co 2p spectrum of the calcined catalysts in Fig.4(a),the binding energy of Co 2p3/2in the Co3O4was 779.6 eV and 780.2 eV,along with the featured satellite peaks of approximately 789.7 eV,and the binding energy of Co 2p1/2was 794.8 eV and 795.3 eV along with the featured satellite peaks of approximately 804.5 eV,suggesting that Co occurred as the form of Co3+and Co2+in Co3O4[34].After being modi fied with Zr,Ce,and La,the Co 2p3/2and Co 2p1/2peaks red shifted by 0.42,0.21,and 0.18 eV,and 0.45,0.15,and 0.13 eV,respectively,which suggested that the Zr,Ce,and La exchanged electrons with the Co3O4,decreasing the outer-shell electron density of Co and slightly affecting the chemical combination state of Co3O4[35,36].A higher binding energy shift on the Zr-Co3O4compared to the La-and Ce-Co3O4which was attributed to a stronger interaction of Co3O4with ZrO2[32,37],which agreed with the H2-TPRresults.Moreover,from the XPS profile in Fig.4(b),(c),and(d),the Zr,Ce,and La existed in the catalysts as Zr4+,Ce3+/Ce4+,and La3+.Furthermore,the XPS spectra of Co 2p for the four mentioned catalysts reduced at 400°C were shown in Fig.5.Anew Co 2p3/2peak appeared at778.0 eV,attributing to the metallic cobalt[38],which agreed with the XRD results.The intensity and area of this peak increased after the addition of Zr,indicating more metallic Co on the catalyst surface.The peak and the satellite peaks for Co2+were detectable even when the catalyst was reduced at 400°C,which might had been caused by the partial oxidation during the preparation of the sample.

    Fig.5.XPS spectra of Co 2p regions for reduced(a)Co3O4,(b)La-Co3O4,(c)Ce-Co3O4,and(d)Zr-Co3O4 catalysts.

    3.5.Surface basicity and acidity analysis

    Fig.4.Co 2p(a),Zr 3d(b),Ce 3d(c)and La 3d(d)XPS spectra of the Co3O4,La-Co3O4,Ce-Co3O4 and Zr-Co3O4 catalysts.

    Fig.6.CO2-TPD profiles(a)and FT-IR spectra of pyridine adsorbed at a desorption temperature of 150°C(b)of the pre-reduced(a)Co3O4,(b)La-Co3O4,(c)Ce-Co3O4,(d)Zr-Co3O4 catalysts.

    The surface basicity of the four catalysts was analyzed by CO2-TPD;the CO2-TPD profiles of the pre-reduced Co3O4before and after being modi fied by Zr,Ce,and La were shown in Fig.6(a).Three peaks at 50–200°C,300–400°C,and 500–700 °C were observed in the fourcatalysts,which were assigned to the weak(α peak),medium(β peak)and strong(γ peak)basic sites,respectively[39].After the addition of Zr,the peak area of weak and medium basic sites for Zr-Co3O4exhibited much greater than that of Co3O4,La-,and Ce-Co3O4,indicating the adsorption amount of CO2was significantly improved by adding Zr,and more CO2molecular were activated at 100–200 °C on the Zr-Co3O4,which would increase the catalytic activity.On the contrary,the addition of Ce and La affected slightly on the surface basicity,and the strength of strong basic site decreased after adding Zr or Ce to Co3O4.Therefore,the enhanced basicity by adding Zr to the Co3O4would probably improve the adsorption and activation of CO2on the catalyst surface,resulting in an improvement on the catalytic activity.

    3.6.Hydrogenation of CO2 on Co3O4,Zr-,Ce-,and La-Co3O4

    After a one-hour reaction at the specified temperature,the catalytic CO2methanation on the Co3O4,and Zr-,Ce-,and La-Co3O4were shown in Fig.7.Obviously,the CO2conversion increased with the increasing reaction temperature from 80 to 220°C on all catalysts.Compared to the Co3O4,the Zr-Co3O4exhibited a higher CO2conversion and CH4selectivity,and the Ce-and La-modi fied Co3O4has insignificant effect on the catalytic activity,suggesting the addition of the Zr can improve the catalytic activity of the Co3O4for CO2methanation.Especially,the Zr-Co3O4exhibited a higher catalytic hydrogenation activity for CO2hydrogenation than the Ce-,and La-Co3O4catalysts,and had higher CH4selectivity under 180–220 °C.For the Co3O4,Ce-,and La-Co3O4,the CO2conversion and CH4selectivity at 200°C were 22.8%,26.1%,and 22.1%and 95.4%,95.3%,and 93.8%,respectively.While the CO2conversion on the Zr-Co3O4increased from 0.84%to 58.2%when the temperature increased from 80 °C to 200 °C,the CH4selectivity was retained at 100%at higher temperatures.Even when the temperature increased to 220°C,the CO2conversion and CH4selectivity was 66.3%and 97.4%,respectively.Therefore,the Zr-Co3O4was the optimal catalysts among the four mentioned catalysts for CO2methanation.In addition,the CO was not detected when reaction temperature was below 200°C;it was detected only when the reaction temperature was higher than 200°C,and the byproducts including small amount of C2H6were detected.

    Fig.7.Effects of temperature on catalytic CO2 hydrogenation to methane for Co3O4,La-Co3O4,Ce-Co3O4,Zr-Co3O4.Reaction conditions:T=80–220 °C,P=0.5 MPa,GHSV=18,000 ml··h-1,and V(H2)/V(CO2)=4.

    The higher catalytic activity of the Zr-Co3O4than that of La-Co3O4and Ce-Co3O4indicated that Zr plays an important role on improving the CH4synthesis.From a combination of N2adsorption/desorption results,the specific surface area was found to increase when the Zr,Ce,and La was added,and the Zr-Co3O4had a greater specific surface area of71 m2·g-1than thatofthe Co3O4,La-Co3O4,and Ce-Co3O4.Therefore,the increase in the specific surface area by the addition of Zr might be partially responsible forthe greatestimproved effecton the catalytic hydrogenation process.Combined with the XPS and H2-TPR results,modifying the Co3O4with Zr decreased the Co outer-shell electron density and changed the reduction degree of Co3O4by an interaction between Co3O4and ZrO2,and it seems more favorable for CO2methanation when Co3O4were not completely reduced,which would probably increase the CO2conversion and CH4selectivity.Furthermore,from the results of CO2-TPD and pyridine FT-IR spectra,the surface basicity of the catalysts were altered after the addition of Zr by increasing the intensity of the weak and medium basic sites,and the amount of Lewis acids along with the occurrence of Br?nsted acid were also enhanced,which would facilitate the activation of CO2under 200°C during the process of CO2hydrogenation,resulting in better catalytic activity.

    Moreover,the stabilities of Co3O4and Zr,Ce,or La modi fied Co3O4were carried out on stream for 20 h via CO2methanation at 200°C and 0.5 MPa,with a GHSV=18,000 ml··h-1and V(H2)/V(CO2)=4,as shown in Fig.8.The results showed that the Co3O4catalyst suffered from a large activity loss in 10 h,CO2conversion decreased from 22.5%to 11.4%.In contrast,the Zr-,Ce-,and La-Co3O4catalysts exhibited good catalytic stability,with CO2conversion decreasing from 57.9%,26.4%,and 23.2%to 52.9%,20.6%,and 15.7%in 20 h,indicating the stability of the Co3O4catalyst was improved by modi fied by Zr,Ce,or La.Among them,the Zr-Co3O4exhibited the superior stability.

    The higher catalytic activity of the Zr-Co3O4than that of La-Co3O4and Ce-Co3O4indicated that Zr plays an important role on the CH4synthesis.From a combination ofN2adsorption/desorption results,the specific surface area was found increasing when the Zr,Ce,and La was added,and the Zr-Co3O4had a higher specific surface area of 71 m2·g-1than that of other samples.Therefore,the increase in the specific surface area by the addition of Zr might be partially responsible for the improved effect on the catalytic hydrogenation.Combined with the XPS and H2-TPR results,Zr-modi fied on Co3O4decreased the Co outer-shell electron density and changed the reducibility of Co3O4by a stronger interaction between Co3O4and ZrO2,which was favorable for CO2methanation when Co3O4were not completely reduced,and would probably increase the CO2conversion and CH4selectivity.Furthermore,from the CO2-TPD results,the intensity of the weak and medium basic sites was increased after the Zr-addition,which would facilitate the CO2activation during the CO2hydrogenation,resulting in better catalytic activity.

    Fig.8.Effects of time on stream on CO2 conversion(A)and CH4 selectivity(B)for the Co3O4,La-Co3O4,Ce-Co3O4,and Zr-Co3O4 catalysts.

    4.Conclusions

    The Zr-,Ce-,and La-Co3O4catalysts were prepared and applied to the CO2methanation.The results indicated that adding Zr,Ce,or La to the Co3O4catalyst decreased the crystallite sizes of Co,the outer-shell electron density of Co3+,and increased the surface area.The H2-TPR results showed that the reducibility of Co3O4catalyst was significantly changed by adding Zr due to the interaction between Co3O4and ZrO2,which probably provided more active sites(Co2+/Co)for CO2methanation when the Co3O4were notreduced completely.Moreover,the introduction of Zr to the Co3O4catalyst increased the basic intensity of the weak and medium basic sites,as well as the amount of Lewis,and Br?nsted acid sites were also found on the Zr-Co3O4catalyst surface,while the Ce and La had little promotion effect on the basic intensity,which predicted that more CO2molecules would activate on the Zr-Co3O4,resulting to higher catalytic activity for CO2methanation.When using the optimalZr-Co3O4with 2.0-wt%ZrO2as the catalyst,and reacted at 200 °C and 0.5 MPa with a GHSV of 18,000 mlh-1,the CO2conversion and CH4selectivity was 58.2%and 100%,respectively.

    References

    [1]W.Wang,S.Wang,X.Ma,J.Gong,Recent advances in catalytic hydrogenation of carbon dioxide,Chem.Soc.Rev.40(2011)3703–3727.

    [2]T.Cantat,L.-N.He,Innovative methods in CO2conversion:a breath of fresh air?Curr.Opin.Green Sustain.Chem.3(2017)iii–iv.

    [3]X.D.Xu,J.A.Moulijn,Mitigation of CO2by chemical conversion:plausible chemical reactions and promising products,Energy Fuel 10(1996)305–325.

    [4]Q.-W.Song,Z.-H.Zhou,L.-N.He,Ef ficient,selective and sustainable catalysis of carbon dioxide,Green Chem.19(2017)3707–3728.

    [5]I.Graca,L.V.Gonzalez,M.C.Bacariza,A.Fernandes,C.Henriques,J.M.Lopes,M.F.Ribeiro,CO2hydrogenation into CH4on NiHNaUSY zeolites,Appl.Catal.B 147(2014)101–110.

    [6]W.Zhen,B.Li,G.Lu,J.Ma,Enhancing catalytic activity and stability for CO2methanation on Ni@MOF-5 via control of active species dispersion,Chem.Commun.51(2015)1728–1731.

    [7]J.Xu,Q.Lin,X.Su,H.Duan,H.Geng,Y.Huang,CO2methanation over TiO2–Al2O3binary oxides supported Ru catalysts,Chin.J.Chem.Eng.24(2016)140–145.

    [8]H.L.Song,J.Yang,J.Zhao,L.J.Chou,Methanation of carbon dioxide over a highly dispersed Ni/La2O3catalyst,Chin.J.Catal.31(2010)21–23.

    [9]F.Ocampo,B.Louis,L.Kiwi-Minsker,A.-C.Roger,Effect of Ce/Zr composition and noble metal promotion on nickel based CexZr1-xO2catalysts for carbon dioxide methanation,Appl.Catal.A 392(2011)36–44.

    [10]H.C.Lee,K.W.Siew,M.R.Khan,S.Y.Chin,J.Gimbun,C.K.Cheng,Catalytic performance of cement clinker supported nickel catalyst in glycerol dry reforming,J.Energy Chem.23(2014)645–656.

    [11]H.Zhu,R.Razzaq,L.Jiang,C.Li,Low-temperature methanation of CO in coke oven gas using single nanosized Co3O4catalysts,Catal.Commun.23(2012)43–47.

    [12]P.Munnik,P.E.de Jongh,K.P.de Jong,Control and impact of the nanoscale distribution of supported cobalt particles used in Fischer-Tropsch catalysis,J.Am.Chem.Soc.136(2014)7333–7340.

    [13]G.Zhou,T.Wu,H.Xie,X.Zheng,Effects ofstructure on the carbon dioxide methanation performance of Co-based catalysts,Int.J.Hydrog.Energy 38(2013)10012–10018.

    [14]G.Zhou,T.Wu,H.Zhang,H.Xie,Y.Feng,Carbon dioxide Methanation on ordered mesoporous Co/KIT-6 catalyst,Chem.Eng.Commun.201(2014)233–240.

    [15]A.Y.Khodakov,W.Chu,P.Fongarland,Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels,Chem.Rev.107(2007)1692–1744.

    [16]S.L.Soled,E.Iglesia,R.A.Fiato,J.E.Baumgartner,H.Vroman,S.Miseo,Control of metal dispersion and structure by changes in the solid-state chemistry of supported cobalt Fischer-Tropsch catalysts,Top.Catal.26(2003)101–109.

    [17]Y.Zhu,S.Zhang,Y.Ye,X.Zhang,L.Wang,W.Zhu,F.Cheng,F.Tao,Catalytic conversion of carbon dioxide to methane on ruthenium–cobalt bimetallic nanocatalysts and correlation between surface chemistry of catalysts under reaction conditions and catalytic performances,ACS Catal.2(2012)2403–2408.

    [18]X.Zhou,T.Su,Y.Jiang,Z.Qin,H.Ji,Z.Guo,CuO-Fe2O3-CeO2/HZSM-5 bifunctional catalyst hydrogenated CO2for enhanced dimethyl ether synthesis,Chem.Eng.Sci.153(2016)10–20.

    [19]Z.Z.Qin,X.H.Zhou,T.M.Su,Y.X.Jiang,H.B.Ji,Hydrogenation of CO2to dimethyl ether on la-,Ce-modi fied Cu-Fe/HZSM-5 catalysts,Catal.Commun.75(2016)78–82.

    [20]R.-w.Liu,Z.-z.Qin,H.-b.Ji,T.-m.Su,Synthesis of dimethyl ether from CO2and H2using a Cu–Fe–Zr/HZSM-5 catalyst system,Ind.Eng.Chem.Res.52(2013)16648–16655.

    [21]M.C.Bacariza,I.Gra?a,S.S.Bebiano,J.M.Lopes,C.Henriques,Magnesiumas promoter of CO2Methanation on Ni-based USY zeolites,Energy Fuel 31(2017)9776–9789.

    [22]K.Ray,G.Deo,A potential descriptor for the CO2hydrogenation to CH4over Al2O3supported Ni and Ni-based alloy catalysts,Appl.Catal.B 218(2017)525–537.

    [23]C.E.Daza,O.A.Gamba,Y.Hernandez,M.A.Centeno,F.Mondragon,S.Moreno,R.Molina,High-stable mesoporous Ni-Ce/clay catalysts for syngas production,Catal.Lett.141(2011)1037–1046.

    [24]W.Ahmad,M.N.Younis,R.Shawabkeh,S.Ahmed,Synthesis of lanthanide series(La,Ce,Pr,Eu&Gd)promoted Ni/γ-Al2O3catalysts for methanation of CO2at low temperature under atmospheric pressure,Catal.Commun.100(2017)121–126.

    [25]S.Modak,M.Ammar,F.Mazaleyrat,S.Das,P.K.Chakrabarti,XRD,HRTEM and magnetic properties of mixed spinel nanocrystalline Ni-Zn-Cu-ferrite,J.Alloys Compd.473(2009)15–19.

    [26]M.Bahmani,B.Vasheghani Farahani,S.Sahebdelfar,Preparation of high performance nano-sized Cu/ZnO/Al2O3methanol synthesis catalyst via aluminum hydrous oxide sol,Appl.Catal.A 520(2016)178–187.

    [27]Y.Wang,R.Wu,Y.Zhao,Effect of ZrO2promoter on structure and catalytic activity of the Ni/SiO2catalyst for CO methanation in hydrogen-rich gases,Catal.Today 158(2010)470–474.

    [28]L.Samiee,F.Shoghi,A.Vinu,Fabrication and electrocatalytic application of functionalized nanoporous carbon material with different transition metal oxides,Appl.Surf.Sci.265(2013)214–221.

    [29]B.A.Sexton,A.E.Hughes,T.W.Turney,An XPS and TPR study of the reduction of promoted cobalt-kieselguhr Fischer-Tropsch catalysts,J.Catal.97(1986)390–406.

    [30]J.Li,N.J.Coville,Effect of boron on the sulfur poisoning of Co/TiO2Fischer–Tropsch catalysts,Appl.Catal.A 208(2001)177–184.

    [31]A.Feller,M.Claeys,E.van Steen,Cobalt cluster effects in zirconium promoted Co/SiO2Fischer-Tropsch catalysts,J.Catal.185(1999)120–130.

    [32]C.I.Ahn,Y.J.Lee,S.H.Um,J.W.Bae,Ordered mesoporous CoMOx(M=Al or Zr)mixed oxides for Fischer-Tropsch synthesis,Chem.Commun.52(2016)4820–4823.

    [33]S.Rojanapipatkul,B.Jongsomjit,Synthesis of cobalt on cobalt-aluminate via solvothermal method and its catalytic properties for carbon monoxide hydrogenation,Catal.Commun.10(2008)232–236.

    [34]J.-Y.Luo,M.Meng,X.Li,X.-G.Li,Y.-Q.Zha,T.-D.Hu,Y.-N.Xie,J.Zhang,Mesoporous Co3O4–CeO2and Pd/Co3O4–CeO2catalysts:synthesis,characterization and mechanistic study of their catalytic properties for low-temperature CO oxidation,J.Catal.254(2008)310–324.

    [35]S.D.Jones,L.M.Neal,M.L.Everett,G.B.Ho flund,H.E.Hagelin-Weaver,Characterization of ZrO2-promoted Cu/ZnO/nano-Al2O3methanol steam reforming catalysts,Appl.Surf.Sci.256(2010)7345–7353.

    [36]P.Gao,F.Li,N.Zhao,F.K.Xiao,W.Wei,L.S.Zhong,Y.H.Sun,In fluence of modi fier(Mn,La,Ce,Zr and Y)on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2hydrogenation to methanol,Appl.Catal.A 468(2013)442–452.

    [37]L.T.Jia,K.G.Fang,J.G.Chen,Y.H.Sun,Cobalt loss from Co-ZrO2catalyst for Fischer-Tropsch synthesis in continuously stirred tank reactor,React.Kinet.Catal.Lett.93(2008)351–358.

    [38]T.Nowitzki,A.F.Carlsson,O.Martyanov,M.Naschitzki,V.Zielasek,T.Risse,M.Schmal,H.J.Freund,M.B?umer,Oxidation of alumina-supported Co and Co-Pd model catalysts for the Fischer-Tropsch reaction,J.Phys.Chem.C 111(2007)8566–8572.

    [39]R.Razzaq,C.Li,M.Usman,K.Suzuki,S.Zhang,A highly active and stable Co4N/γ-Al2O3catalyst for CO and CO2methanation to produce synthetic natural gas(SNG),Chem.Eng.J.262(2015)1090–1098.

    [40]G.Busca,Spectroscopic characterization of the acid properties of metal oxide catalysts,Catal.Today 41(1998)191–206.

    [41]F.Benaliouche,Y.Boucheffa,P.Ayrault,S.Mignard,P.Magnoux,NH3-TPD and FTIR spectroscopy of pyridine adsorption studies for characterization of Ag-and Cu-exchanged X zeolites,Microporous Mesoporous Mater.111(2008)80–88.

    [42]G.R.Johnson,A.T.Bell,Effects of Lewis acidity of metal oxide promoters on the activity and selectivity of Co-based Fischer–Tropsch synthesis catalysts,J.Catal.338(2016)250–264.

    [43]X.Tang,J.Li,L.Sun,J.Hao,Origination of N2O from NO reduction by NH3over β-MnO2and α-Mn2O3,Appl.Catal.B 99(2010)156–162.

    [44]R.W.Stevens Jr.,S.S.C.Chuang,B.H.Davis,In situ infrared study ofpyridine adsorption/desorption dynamics over sulfated zirconia and Pt-promoted sulfated zirconia,Appl.Catal.A 252(2003)57–74.

    猜你喜歡
    運輸量人員傷亡運輸機
    2023年民航共完成旅客運輸量6.2億人次
    祖國(2024年1期)2024-01-23 11:08:08
    國內(nèi)客運恢復(fù)快速 航司第一季度虧損程度收窄
    大飛機(2021年4期)2021-07-19 04:41:16
    約旦大力神運輸機
    軍事文摘(2020年15期)2020-08-15 08:40:02
    40T刮板運輸機尾輥的修復(fù)與應(yīng)用
    C-17運輸機
    9月份中國民航旅客運輸量同比增長7.9%
    人民交通(2018年16期)2018-03-27 01:10:28
    最新中文字幕久久久久| 嘟嘟电影网在线观看| 涩涩av久久男人的天堂| 久久久久久久久久成人| 国产精品偷伦视频观看了| 中文精品一卡2卡3卡4更新| 日韩成人av中文字幕在线观看| 性色avwww在线观看| 亚洲精品成人av观看孕妇| 亚洲国产精品国产精品| 欧美激情国产日韩精品一区| 国产乱人视频| 国产男人的电影天堂91| 亚洲av免费高清在线观看| 久久久久久人妻| 91狼人影院| av网站免费在线观看视频| 精品国产三级普通话版| 久久6这里有精品| 国产中年淑女户外野战色| 精品久久久噜噜| 成人免费观看视频高清| 国产精品一区二区三区四区免费观看| 黄片无遮挡物在线观看| 欧美另类一区| 欧美精品亚洲一区二区| 成人一区二区视频在线观看| 国产免费一级a男人的天堂| 99热网站在线观看| 国产精品久久久久成人av| 内地一区二区视频在线| 成年女人在线观看亚洲视频| 国产精品一区二区性色av| 亚洲av男天堂| 国产av国产精品国产| 最近的中文字幕免费完整| 观看免费一级毛片| 精品国产露脸久久av麻豆| 免费高清在线观看视频在线观看| 国产男人的电影天堂91| 下体分泌物呈黄色| 日韩欧美一区视频在线观看 | 午夜福利网站1000一区二区三区| 精品国产三级普通话版| 久久人人爽av亚洲精品天堂 | 精品酒店卫生间| h日本视频在线播放| 在线看a的网站| 国产精品一及| 亚洲欧美清纯卡通| 九九爱精品视频在线观看| 国产精品99久久久久久久久| 国产精品成人在线| 天堂8中文在线网| 大香蕉97超碰在线| 黄色欧美视频在线观看| 天堂中文最新版在线下载| 亚洲国产av新网站| 日日摸夜夜添夜夜爱| 国产精品国产三级国产专区5o| 中文字幕久久专区| 欧美精品人与动牲交sv欧美| 91久久精品国产一区二区三区| a 毛片基地| 欧美97在线视频| 成人亚洲精品一区在线观看 | 97在线视频观看| 免费看av在线观看网站| 香蕉精品网在线| 内地一区二区视频在线| 男女无遮挡免费网站观看| 免费大片黄手机在线观看| 国产黄色免费在线视频| 日韩伦理黄色片| 一级a做视频免费观看| 91精品伊人久久大香线蕉| 少妇 在线观看| 涩涩av久久男人的天堂| 欧美+日韩+精品| 岛国毛片在线播放| 久久久a久久爽久久v久久| kizo精华| 最近中文字幕2019免费版| 插逼视频在线观看| 亚洲精品aⅴ在线观看| 国产精品福利在线免费观看| 亚洲av成人精品一二三区| 免费不卡的大黄色大毛片视频在线观看| 国产精品欧美亚洲77777| 国产国拍精品亚洲av在线观看| 在线观看免费高清a一片| 国产精品99久久99久久久不卡 | 国产淫语在线视频| www.av在线官网国产| 美女脱内裤让男人舔精品视频| 黄色配什么色好看| 欧美区成人在线视频| 在线看a的网站| 久久99蜜桃精品久久| 成人国产av品久久久| 男女国产视频网站| av国产精品久久久久影院| 欧美一区二区亚洲| 亚洲精品国产av成人精品| 在线免费十八禁| 久久久久精品性色| av在线老鸭窝| 男女无遮挡免费网站观看| 秋霞伦理黄片| 99热这里只有是精品50| 国产精品人妻久久久久久| 日韩,欧美,国产一区二区三区| 亚洲欧美成人精品一区二区| 国产免费福利视频在线观看| av在线观看视频网站免费| 一区在线观看完整版| 精品一区在线观看国产| 国产人妻一区二区三区在| 久久久久久久亚洲中文字幕| 国产成人精品福利久久| 日本免费在线观看一区| 深夜a级毛片| 久久久国产一区二区| 舔av片在线| 一二三四中文在线观看免费高清| 能在线免费看毛片的网站| 秋霞在线观看毛片| 亚洲av综合色区一区| 少妇的逼水好多| 午夜免费观看性视频| 欧美老熟妇乱子伦牲交| 欧美激情国产日韩精品一区| h日本视频在线播放| 亚洲成人av在线免费| 在线观看av片永久免费下载| 日韩人妻高清精品专区| 国产伦精品一区二区三区视频9| 亚州av有码| 伦理电影免费视频| 久久 成人 亚洲| 国产乱来视频区| 亚洲国产毛片av蜜桃av| 国产精品99久久久久久久久| 大陆偷拍与自拍| 国产黄色免费在线视频| 九九久久精品国产亚洲av麻豆| 国国产精品蜜臀av免费| 亚洲精品色激情综合| 久久久久精品久久久久真实原创| 一级片'在线观看视频| 久久精品国产自在天天线| 菩萨蛮人人尽说江南好唐韦庄| 国产精品一及| 欧美zozozo另类| 日本黄色片子视频| 精品一区二区三卡| 国产成人午夜福利电影在线观看| 亚洲欧美日韩东京热| 精品人妻偷拍中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 我要看日韩黄色一级片| 亚洲欧美清纯卡通| 美女视频免费永久观看网站| 国产一区有黄有色的免费视频| 国产精品人妻久久久久久| 亚洲经典国产精华液单| 国产精品国产三级专区第一集| 一级片'在线观看视频| 伦理电影免费视频| 国产在视频线精品| 久久久久久久久久久丰满| 国产在线视频一区二区| 欧美精品一区二区免费开放| 多毛熟女@视频| videossex国产| av在线app专区| 99re6热这里在线精品视频| 成人毛片a级毛片在线播放| 色吧在线观看| 18禁在线无遮挡免费观看视频| 欧美日韩亚洲高清精品| a级一级毛片免费在线观看| 网址你懂的国产日韩在线| 国产一区二区三区av在线| 18禁裸乳无遮挡动漫免费视频| 高清不卡的av网站| 韩国av在线不卡| 久久精品熟女亚洲av麻豆精品| 欧美区成人在线视频| 久久精品国产自在天天线| 多毛熟女@视频| 午夜老司机福利剧场| 国产精品伦人一区二区| 中文字幕久久专区| 色网站视频免费| 成人黄色视频免费在线看| 欧美少妇被猛烈插入视频| 日韩免费高清中文字幕av| 极品教师在线视频| 男女无遮挡免费网站观看| 国产精品一区二区三区四区免费观看| 日本av免费视频播放| 中国国产av一级| 人妻少妇偷人精品九色| 久久婷婷青草| 亚洲精品久久久久久婷婷小说| 伦理电影免费视频| 毛片一级片免费看久久久久| 成年免费大片在线观看| 成人一区二区视频在线观看| 大话2 男鬼变身卡| 爱豆传媒免费全集在线观看| 国产精品久久久久久av不卡| 18禁动态无遮挡网站| 久久亚洲国产成人精品v| 久久精品人妻少妇| 九色成人免费人妻av| 日韩免费高清中文字幕av| 嘟嘟电影网在线观看| 国产成人一区二区在线| 日本午夜av视频| 最近中文字幕高清免费大全6| 久久精品国产亚洲网站| 亚洲av中文字字幕乱码综合| 亚洲av欧美aⅴ国产| 久久精品国产自在天天线| 国产综合精华液| 免费黄色在线免费观看| 亚洲三级黄色毛片| 1000部很黄的大片| 男女边吃奶边做爰视频| 欧美xxxx黑人xx丫x性爽| 国产v大片淫在线免费观看| 不卡视频在线观看欧美| 国产精品一区二区性色av| 亚洲国产精品专区欧美| 欧美日韩国产mv在线观看视频 | 婷婷色麻豆天堂久久| 色哟哟·www| 韩国av在线不卡| 亚洲精华国产精华液的使用体验| 国产黄色免费在线视频| 亚洲一级一片aⅴ在线观看| 免费观看性生交大片5| 老司机影院成人| 久久久久久人妻| 久久精品国产亚洲av涩爱| 一区二区三区免费毛片| 国产无遮挡羞羞视频在线观看| 青春草视频在线免费观看| 亚洲av二区三区四区| 3wmmmm亚洲av在线观看| 亚洲色图综合在线观看| 婷婷色av中文字幕| 亚洲精品一二三| 22中文网久久字幕| 久久久久久伊人网av| 六月丁香七月| 如何舔出高潮| 在线精品无人区一区二区三 | 能在线免费看毛片的网站| 纯流量卡能插随身wifi吗| 精品视频人人做人人爽| 久久久久久久久久成人| 黄片无遮挡物在线观看| 精品午夜福利在线看| 热99国产精品久久久久久7| 新久久久久国产一级毛片| 肉色欧美久久久久久久蜜桃| 精品午夜福利在线看| 最近手机中文字幕大全| 熟妇人妻不卡中文字幕| 国产伦在线观看视频一区| 日本与韩国留学比较| 男女国产视频网站| 下体分泌物呈黄色| 国产淫语在线视频| 日韩人妻高清精品专区| 国产成人精品婷婷| 在线免费十八禁| 日韩一区二区视频免费看| 两个人的视频大全免费| 国产亚洲91精品色在线| 女性被躁到高潮视频| 国产av一区二区精品久久 | 青春草国产在线视频| 身体一侧抽搐| 欧美成人一区二区免费高清观看| 成人高潮视频无遮挡免费网站| 久久久国产一区二区| 狠狠精品人妻久久久久久综合| 男的添女的下面高潮视频| 大片免费播放器 马上看| 亚洲欧美成人精品一区二区| 日韩av免费高清视频| 高清在线视频一区二区三区| 亚洲天堂av无毛| 亚洲国产精品成人久久小说| 成人亚洲欧美一区二区av| 色视频在线一区二区三区| 秋霞伦理黄片| xxx大片免费视频| av线在线观看网站| 精华霜和精华液先用哪个| 简卡轻食公司| 精品熟女少妇av免费看| 最后的刺客免费高清国语| 亚洲久久久国产精品| 国产亚洲午夜精品一区二区久久| 在线观看人妻少妇| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品中文字幕在线视频 | 五月伊人婷婷丁香| 热re99久久精品国产66热6| 大话2 男鬼变身卡| 欧美xxxx黑人xx丫x性爽| 黄色配什么色好看| 久久久久久久精品精品| 国产成人一区二区在线| 狂野欧美激情性xxxx在线观看| 国产 一区 欧美 日韩| 久久精品久久久久久噜噜老黄| 天堂俺去俺来也www色官网| 亚洲电影在线观看av| 卡戴珊不雅视频在线播放| 日日摸夜夜添夜夜添av毛片| 成人特级av手机在线观看| 观看免费一级毛片| 日韩大片免费观看网站| 日日啪夜夜爽| 少妇人妻 视频| 亚洲精品中文字幕在线视频 | 婷婷色麻豆天堂久久| 午夜福利影视在线免费观看| 大陆偷拍与自拍| 国产av国产精品国产| 日日摸夜夜添夜夜添av毛片| 91久久精品国产一区二区三区| 国产一区有黄有色的免费视频| 国产精品av视频在线免费观看| 青春草国产在线视频| 欧美精品一区二区大全| 久久国内精品自在自线图片| 国产av精品麻豆| 观看美女的网站| 另类亚洲欧美激情| 男女边吃奶边做爰视频| av专区在线播放| 中国三级夫妇交换| 中文字幕人妻熟人妻熟丝袜美| 最黄视频免费看| 国产69精品久久久久777片| 国产女主播在线喷水免费视频网站| 18禁裸乳无遮挡免费网站照片| 伊人久久精品亚洲午夜| 久久人人爽av亚洲精品天堂 | 欧美一区二区亚洲| 色5月婷婷丁香| 男女国产视频网站| 亚洲人成网站在线观看播放| av一本久久久久| 亚洲丝袜综合中文字幕| 国产成人精品婷婷| 成人美女网站在线观看视频| 亚洲av福利一区| 尤物成人国产欧美一区二区三区| 99久久精品热视频| 直男gayav资源| 在线观看一区二区三区| 蜜桃久久精品国产亚洲av| 国产 一区精品| 青春草国产在线视频| 日韩av在线免费看完整版不卡| 中文乱码字字幕精品一区二区三区| 美女脱内裤让男人舔精品视频| 欧美zozozo另类| 国产成人freesex在线| 国产精品女同一区二区软件| 91狼人影院| 亚洲国产精品一区三区| 麻豆成人av视频| 成人影院久久| 亚洲性久久影院| 噜噜噜噜噜久久久久久91| 国产在线男女| 国产精品一区二区在线不卡| 亚洲精华国产精华液的使用体验| 成人漫画全彩无遮挡| kizo精华| 超碰av人人做人人爽久久| 中文资源天堂在线| 久久综合国产亚洲精品| 九草在线视频观看| 美女内射精品一级片tv| av.在线天堂| 亚洲av免费高清在线观看| 三级国产精品欧美在线观看| 亚洲欧美一区二区三区国产| 在线观看免费日韩欧美大片 | 亚洲欧美日韩另类电影网站 | 久久久久精品性色| 日产精品乱码卡一卡2卡三| 三级国产精品片| 亚洲美女黄色视频免费看| 亚洲av综合色区一区| 最黄视频免费看| 美女cb高潮喷水在线观看| 久久久久久久久久人人人人人人| 亚洲av免费高清在线观看| 午夜福利网站1000一区二区三区| 99热全是精品| av国产免费在线观看| 亚洲不卡免费看| av免费在线看不卡| 国产色婷婷99| 男女国产视频网站| 国产成人freesex在线| 少妇猛男粗大的猛烈进出视频| av天堂中文字幕网| 我要看黄色一级片免费的| 人妻夜夜爽99麻豆av| 亚洲四区av| 身体一侧抽搐| 免费在线观看成人毛片| 亚洲天堂av无毛| 亚洲不卡免费看| 最近最新中文字幕免费大全7| 成人综合一区亚洲| 久久影院123| 成人高潮视频无遮挡免费网站| 亚洲成人手机| 大话2 男鬼变身卡| a级毛色黄片| 五月伊人婷婷丁香| 精品亚洲成国产av| 多毛熟女@视频| 91精品一卡2卡3卡4卡| 丰满迷人的少妇在线观看| 黄色配什么色好看| 免费观看的影片在线观看| 久久久久久九九精品二区国产| 国产视频内射| 精品国产三级普通话版| 精品久久久噜噜| 伦理电影免费视频| 人人妻人人看人人澡| 亚洲精品国产色婷婷电影| 免费人成在线观看视频色| 看非洲黑人一级黄片| 下体分泌物呈黄色| 亚洲国产日韩一区二区| 成人无遮挡网站| 另类亚洲欧美激情| 男女边吃奶边做爰视频| 日本欧美视频一区| 日韩三级伦理在线观看| 亚洲欧美成人精品一区二区| 国产精品av视频在线免费观看| 蜜桃久久精品国产亚洲av| 婷婷色综合大香蕉| 国产高清三级在线| 丰满人妻一区二区三区视频av| av专区在线播放| 自拍欧美九色日韩亚洲蝌蚪91 | 九草在线视频观看| 校园人妻丝袜中文字幕| 人人妻人人爽人人添夜夜欢视频 | 免费播放大片免费观看视频在线观看| 久久精品国产亚洲网站| 亚洲精品,欧美精品| 九九爱精品视频在线观看| 久久精品国产自在天天线| 丝袜喷水一区| 色婷婷av一区二区三区视频| av专区在线播放| 国产成人精品婷婷| 国产成人一区二区在线| 欧美日韩视频高清一区二区三区二| 三级经典国产精品| 在线观看免费高清a一片| 久久韩国三级中文字幕| 尾随美女入室| 超碰av人人做人人爽久久| 欧美最新免费一区二区三区| 欧美xxxx黑人xx丫x性爽| 国产高潮美女av| 久久久久精品性色| 成人免费观看视频高清| 午夜福利影视在线免费观看| 在线播放无遮挡| 舔av片在线| 中国美白少妇内射xxxbb| 国产精品久久久久久av不卡| 国产黄片美女视频| 久久久精品94久久精品| a级一级毛片免费在线观看| 国产一区亚洲一区在线观看| 国产成人一区二区在线| 丰满迷人的少妇在线观看| 亚洲av二区三区四区| 久久韩国三级中文字幕| 男的添女的下面高潮视频| 国产淫片久久久久久久久| 91aial.com中文字幕在线观看| 亚洲欧美一区二区三区国产| 亚洲一区二区三区欧美精品| av线在线观看网站| 日韩大片免费观看网站| 亚洲无线观看免费| 青青草视频在线视频观看| 黑丝袜美女国产一区| 丰满少妇做爰视频| freevideosex欧美| 性色av一级| 国产成人91sexporn| 香蕉精品网在线| 精品午夜福利在线看| 欧美+日韩+精品| 国精品久久久久久国模美| av在线蜜桃| 99热全是精品| 看非洲黑人一级黄片| 精品一区二区三卡| a级毛片免费高清观看在线播放| 国产精品.久久久| 在线观看免费高清a一片| 欧美精品一区二区大全| 亚洲精品国产av蜜桃| 99久久精品热视频| kizo精华| av国产精品久久久久影院| av在线蜜桃| 一级av片app| 菩萨蛮人人尽说江南好唐韦庄| 赤兔流量卡办理| 国产综合精华液| 欧美xxⅹ黑人| 国产精品一区www在线观看| 最新中文字幕久久久久| 日韩一区二区视频免费看| 激情 狠狠 欧美| 在线天堂最新版资源| 2021少妇久久久久久久久久久| 91aial.com中文字幕在线观看| 国产一区有黄有色的免费视频| 一边亲一边摸免费视频| 亚洲色图av天堂| 午夜老司机福利剧场| 亚洲精品,欧美精品| 一个人免费看片子| 少妇的逼好多水| 性高湖久久久久久久久免费观看| 18禁裸乳无遮挡免费网站照片| 自拍偷自拍亚洲精品老妇| 亚洲精品456在线播放app| 又粗又硬又长又爽又黄的视频| 黄色一级大片看看| 丰满少妇做爰视频| 亚洲美女黄色视频免费看| 免费黄网站久久成人精品| 黑人猛操日本美女一级片| 黑丝袜美女国产一区| 五月天丁香电影| 看非洲黑人一级黄片| 国产亚洲av片在线观看秒播厂| 少妇裸体淫交视频免费看高清| 人体艺术视频欧美日本| 亚洲人与动物交配视频| 亚洲国产av新网站| 成人综合一区亚洲| 天天躁日日操中文字幕| 欧美亚洲 丝袜 人妻 在线| 欧美极品一区二区三区四区| 多毛熟女@视频| 国产精品一区二区在线观看99| 午夜福利影视在线免费观看| 国产爱豆传媒在线观看| 亚洲精品色激情综合| 国产v大片淫在线免费观看| 制服丝袜香蕉在线| 日韩免费高清中文字幕av| 久久鲁丝午夜福利片| 日日啪夜夜撸| 久久久久久人妻| 成人黄色视频免费在线看| 91精品国产九色| 五月玫瑰六月丁香| 久久精品熟女亚洲av麻豆精品| 久久99热这里只频精品6学生| 亚洲性久久影院| 免费观看的影片在线观看| 欧美日韩一区二区视频在线观看视频在线| a 毛片基地| 在线看a的网站| 亚洲婷婷狠狠爱综合网| 亚洲国产高清在线一区二区三| 毛片女人毛片| 日韩av不卡免费在线播放| 国产精品久久久久成人av| 国产欧美亚洲国产| 亚洲成人手机| 国产高潮美女av| 欧美成人一区二区免费高清观看| 伦精品一区二区三区| 国产亚洲91精品色在线| 欧美 日韩 精品 国产| 国产黄频视频在线观看| 国产乱来视频区| 一级毛片黄色毛片免费观看视频| 日本爱情动作片www.在线观看| 国产伦在线观看视频一区| 国产精品三级大全| 精品亚洲成国产av| 91久久精品电影网| 国产成人aa在线观看|