• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Self-Organized Criticality in an Anisotropic Earthquake Model?

    2018-05-14 01:05:06BinQuanLi李斌全andShengJunWang王圣軍
    Communications in Theoretical Physics 2018年3期
    關(guān)鍵詞:李斌

    Bin-Quan Li(李斌全)and Sheng-Jun Wang(王圣軍)

    School of Physics and Information Technology,Shaanxi Normal University,Xi’an 710119,China

    1 Introduction

    Self-organized criticality(SOC)is a key concept as a possible explanation for the widespread occurrence in many nature systems that long range correlations in space and time.[1?5]Earthquakes are probably the most relevant paradigm of SOC that can be observed by humans on earth.The relevance of SOC to earthquakes was first pointed out by Bak,Tang,and Wiesenfeld,[1]Sornette and Sornette.[6]According to this theory,plate tectonics provides energy input at a slow time scale into a spatially extended,dissipative system that can exhibit breakdown events via a chain reaction process of propagating instabilities in space and time.The empirical Gutenberg-Richter(GR)law[7]arises from the system of driven plates building up to a critical state with avalanches of all sizes.According to the GR law the distribution of earthquake events is scale free over many orders of magnitude in energy.

    Then Olami,Feder and Christensen(OFC)introduced a nonconservative model on a lattice that displayed SOC.[8]The OFC model of earthquakes has played an important role in the context of SOC since 1992.However,the presence of criticality in the nonconservative version of the OFC model has been controversial since its introduction and it is still debated.[9?13]

    OFC models on different topologies have been investigated in the papers,such as,the annealed random neighbor(ARN)graph model,[14?17]the OFC model on a quenched random(QR)graph[18]and the effects of smallworld and scale-free topologies on the criticality of the non-conservative OFC model.[19?24]

    Most work in this area is usually focused on their topological properties[25?29]and homogeneous lattices with or without periodic boundary conditions.But the real systems modeled by these objects are not homogeneous.In a geological fault,for example,the local friction between the moving plates,which in fl uences both the rate of motion and the redistribution on the neighbors in the OFC model,cannot be expected to be a constant value but should fl uctuate according to local variations.Similarly,the local elasticity of the sheets,which determines how the energy is transferred from one point to another,is also expected to be variable.Therefore,a first step is to simply see how the introduction of quenched disorder in the simple coupled-map representation for these systems will affect their dynamical behavior.Some work has already been done along these lines.

    A new earthquake model based on a random network was studied,on which the toppling mechanism of the system is that the force of the unstable site is redistributed to their nearest neighbors randomly.[30?32]It is shown that when the system is conservative,the probability distribution displays power-law behavior.However,it displays no scaling behavior when the system is nonconservative.It is like the results in the ARN OFC model.But it is quite different to the model on quenched random graph[18]and the model on square lattice,both of which display criticality even the system is dissipated.It seems that the toppling mechanism of the system has affected the critical behavior of the system.They also compare the critical behavior of the model with different number of nearest neighbors.It is shown that different spatial topology does not alter the critical behavior of the system.

    Mousseau studied the in fl uence of quenched disorder on a coupled map model of earthquakes.[33]In his work,disorder is introduced in the redistribution fractionαiwhich now varies from site to site asαi=α+δi,whereδiis a random number taken from a linear distribution[?δ,δ].He said that the question of the role of disorder in dynamical systems is fundamental because most biological,neurological,or geological dynamical systems evolve in the presence of one or another type of disorder.

    Janosi and Kertesz studied the effect of randomness in the threshold for the OFC rule.[34]They found that this type of disorder destroys criticality and changes the distribution of avalanche size from power law to exponential.

    Ceva looked at uncorrelated and correlated disorder in the redistribution parameterα.[35]He was interested,however,in the effects of concentration of defects and not their amplitude.He found that SOC is stable under small concentration of defects.

    In this work,we investigate the critical behavior on a modi fied anisotropic OFC model.Two situations are considered in this paper.One situation is that the energy of the unstable site is redistributed to its nearest neighbors randomly not averagely and keeps itself to zero.The other situation is that the energy of the unstable site is redistributed to its nearest neighbors randomly and keeps some energy for itself instead of reset to zero.Different boundary conditions are considered as well.The rest of the paper is organized as follows.In Sec.2,we review the original OFC model and we point out the main reasons that have induced us to study the modify OFC model.In Sec.3,we investigate the modi fied model and make comparison with other models by analyzing the distribution of earthquake sizes.Finally,in Sec.4 we provide brief discussion and conclusion.

    2 Model

    The OFC model is de fined on a two-dimensional square lattice ofL×Lsites.Each site is associated a real continuous energyEi.To mimic that the system is driven continuously and uniformly,the value ofEiincreases at the same rate.In simulations, find the largest value of energyEmaxin the system and increase the energy of all sites by the same amountEth?Emax.Therefore,the sites with the largest energy reaches the threshold value(Ei≥Eth)and becomes unstable.As soon as a site becomes unstable,i.e.,Ei≥Eth,the global driving is stopped and the system evolves according to the following local relaxation rule

    where“nn” stands for the collection of nearest neighbors to nodei.In general,there are 4 of nearest neighbors,and only the isotropic situation is considered.The parameterα∈[0,1/4]controls the level of conservation of the dynamics,whereα=1/4 corresponds to the conservative case,whileα<1/4 implies the model is nonconservative.

    The toppling of one site triggers an avalanche,that is,neighbors of this site may become unstable and toppling propagates in the network.The avalanche is over until all the sites are belowEth.Then the driving to all sites recovers.The number of toppling sites during an earthquake is de fined as the earthquake sizeS.Open boundary condition is used in OFC model.[36]

    Here we modify the OFC model only in the toppling rule:when there is an unstable site toppling,the energy of the site is redistributed to its nearest neighbors randomly not averagely as follows.

    If anyEi≥Eththen redistribute the energy onEito its neighbors randomly according to the following rule

    where“nn” stands for the collection of nearest neighbors to nodei,qis the number of nearest neighbors of every site.The anisotropic situation is considered in this modi fied OFC model.The size of parameterβnnis different for nearest neighbors.The parameterβ∈[0,1]controls the level of conservation of the dynamics that is equivalent to 4αin the OFC model,whereβ=1 corresponds to the conservative case,whileβ<1 implies the model is nonconservative.The parameterβnnat each site is chosen randomly from a uniform distribution between 0 andβ,and the sum is equal toβ.Details as follow,

    The other model that differs from above model only in the toppling rule:when there is an unstable site,the energy of the site is redistributed to its nearest neighbors randomly and keeps some energy for itself instead of reset to zero,that is not Eqs.(2),(3)but Eqs.(4),(5),as follow

    where“nn” stands for the collection of nearest neighbors to nodei,qis the number of nearest neighbors of every site.β00is de fined as follow

    Table 1 The different of the two models.

    To completely de fine the model,we need to consider the boundary conditions.We care about the open and periodic boundary conditions in our models.[36?39]The energyαEof an unstable site at boundary is lost in the case of open boundary conditions.Periodic boundary conditions mean the energy is not lost,it is transferred to the other side,like a ring.In Table 1,we list the different of those models to be clearly understood.

    In a system of SOC,the distribution of earthquake sizes is a power law function.The power-law exponentτis de fined as

    In simulation,we will be interested in the distribution of avalanche sizesP(S).

    3 Simulations and Results

    3.1 The One Case of the Modi fied OFC Model

    Now we study the one case of the modi fied OFC model(Case 1).The energy of the unstable site is redistributed to its nearest neighbors randomly not averagely and keeps itself to zero.In comparison to the original OFC model we plot the distribution of avalanche sizes in Fig.1.The statistics are collected in the critical state for 109non-zero avalanches for each system size.

    Fig.1 (Color online)Avalanche size distribution with open boundary conditions for(a)different the value of the parameter β with the system size N=352.Different curves correspond to β=0.40,0.60,0.80,0.90,0.95,and 1.0,from left to right.For comparison purposes,the original OFC model of α=0.25 is shown in the direction of the arrow.(b)Distribution of earthquake size for the different system size with β=1.0.

    In Fig.1(a),we show that the earthquakes size distributionP(S)for different values of the dissipation parameterβ,in the network withN= 352and with open boundary conditions.Different curves correspond toβ=0.40,0.60,0.80,0.90,0.95,and 1.0,from left to right.We can see that the model transits from non-SOC to SOC behavior with the increase of the parameterβ.Power-law fit is shown as red solid line,the slope of the straight line isτ=1.286 58 forβ=1.0.It is like the critical exponent of the original OFC model.For comparison purposes,the original OFC model ofα=0.25 is shown in the direction of the arrow.

    In OFC model,the SOC states exhibit that the distribution is a power law function with an exponential cuto ff.The largest avalanche size in OFC model is about 7000.In the modi fied OFC model,the distribution of avalanche size depends on the dissipation parameterβ.The largest avalanche size in modi fied OFC model is about 1000,which is close to the system sizeN.

    Fig.2 (Color online)(a)Simulation result for the probability density of having an earthquake of energy E as a function of E for a dissipation parameter β with N=352 and with periodic boundary conditions.Different curves correspond to β=0.40,0.60,0.80,0.90,0.95,and 0.98,from left to right.The fitted curve is shown as red solid line.(b)Distribution of earthquake size for the different system size with β=0.95.Different curves correspond to N=152,252,352,502,and 1002.

    It is not like the result of the original OFC model.The original OFC model exhibits SOC behavior for a wide range ofαvalues and the exponentτdepends onα.However,we find that this modi fied OFC model exhibits power law distribution when the value ofβtends to 1.It is similar with the model on RN[14,16]and small-world networks.[19,23?24]

    In Fig.1(b),we show that the earthquakes size distributionP(S)for different size of the systemN,different curves correspond toN=152,252,352,and 502,from left to right.Size effect is present in Fig.1(b).It is like the result of the original OFC model.The scaling of the cutoffin the energy distribution as a function of the system size forβ=1.0.

    Now we plot the distribution of earthquake size for different values ofβwith periodic boundary conditions.As shown in Fig.2(a),we noticed that the model transits from non-SOC to SOC behavior with the increase of the dissipation parameterβ.Power-law fit is shown as red solid line,the slope of the straight line isτ=1.397 15 forN=352andβ=0.98.The largest avalanche size is about 103in the modi fied OFC model withβ<1.0.Although the system size isN=352,the largest size of avalanche is very large with periodic boundary conditions andβ=1.0.The largest size of avalanche is 108much larger than 103.There is not much difference in the results under different boundary conditions,except inβ=1.0.The result is only a slight difference in the critical exponent.As shown in Fig.2(b),the simulation results of avalanche size distribution in systems with dissipation parameterβ=0.95 and network sizeN=152,252,352,502,and 1002,respectively.Although system sizes range from 152to 1002,the change of the largest size of avalanche is very small.

    3.2 The Other Case of the Modi fied OFC Model

    Fig.3 (Color online)Avalanche size distribution with open boundary conditions for(a)different the value of the parameter β with the system size N=352.Different curves correspond to β=0.40,0.60,0.80,0.90,0.95,and 1.0,from left to right.For comparison purposes,the original OFC model of α=0.25 is shown in the direction of the arrow.(b)Distribution of earthquake size for the different system size with β=1.0.The fitted curve is shown as red solid line.

    Next,we study the other case of the modi fied OFC model(Case 2).The energy of the unstable site is redistributed to its nearest neighbors randomly and keeps some energy for itself instead of reset to zero.

    In Fig.3(a),we show that the earthquakes size distributionP(S)for different values of the dissipation parameterβ,in the network withN=352and with open boundary conditions.Different curves correspond toβ=0.40,0.60,0.80,0.90,0.95,and 1.0,from left to right.It is shown that the distribution of avalanche size depends on the dissipation parameterβ.We can see that there is criticality only in the conservative case.Power-law fit is shown as red solid line,the slope of the straight line isτ=1.319 19 forβ=1.0.It is like the critical exponent of the original OFC model.For comparison purposes,the original OFC model ofα=0.25 is shown in the direction of the arrow.

    The result of this case and the original OFC model tend to the same in the conservative case.The only difference is that the avalanche size in the original model is bigger.This result may be closer to the actual situation,after all,every crust plate size is different.

    In Fig.3(b),we show that the earthquakes size distributionP(S)for different size of the systemN,different curves correspond toN=152,252,352and 502,from left to right.Size effect is strikingly present here in Fig.3(b).AsLorβincreases,the behavior slowly converges to a power law distribution of earthquake sizesP(s)~s?τwith an exponentτ=1.319 19.

    Fig.4 (Color online)(a)Simulation result for the probability density of having an earthquake of energy E as a function of E for a dissipation parameter β with N=352 and with periodic boundary conditions.Different curves correspond to β=0.40,0.60,0.80,0.90,0.95,and 0.98,from left to right.The fitted curve is shown as red solid line.(b)Distribution of earthquake size for the different system size with β=0.95.Different curves correspond to N=152,252,352,and 502.

    Now we plot the distribution of earthquake size for different values ofβwith periodic boundary conditions.As shown in Fig.4(a),we noticed that the model transits from non-SOC to SOC behavior with the increase of the dissipation parameterβ.Power-law fit is shown as red solid line,the slope of the straights line isτ=1.427 78 forN=352andβ=0.98.Similarly,the largest size of avalanche is 108much larger than normal 103forβ=1.0.

    As shown in Fig.4(b),the simulation results of avalanche size distribution in systems with dissipation parameterβ=0.95 and network sizeN=152,252,352,and 502,respectively.Although system sizes range from 152to 502,the change of the largest size of avalanche is very small.Some impact has produced on the distribution of avalanche size for the different system sizeN.We can see that size effect is exhibited but not particularly strong in Fig.4(b).We find that,asLorβincreases,the behavior slowly converges to a power law distribution of earthquake sizesP(s)~s?τwith an exponentτ=1.427 78.

    4 Conclusions

    In summary,we have made an extensive numerical study of a modi fied anisotropic model proposed by Olami,Feder,and Christensen to describe earthquake behavior.The toppling rule is different with that of the OFC model.Two situations were considered in this paper.One case is that the energy of the unstable site is redistributed to its nearest neighbors randomly not averagely and keeps itself to zero.The other case is that the energy of the unstable site is redistributed to its nearest neighbors randomly and keeps some energy for itself instead of reset to zero.Different boundary conditions were considered as well.By analyzing the distribution of earthquake sizes,we found that both above cases can exhibit self-organized criticality only in the conservative case or the approximate conservative case.Some evidence indicated that the critical exponent of both above situations and the original OFC model tend to the same result in the conservative case.The only difference is that the avalanche size in the original model is bigger.It is different from the result of original OFC model.The original OFC model exhibits SOC behavior for a wide range ofαvalues and the exponentτdepend onα.This result may be closer to the real world,after all,every crust plate size is different.

    [1]P.Bak,C.Tang,and K.Wiesenfeld,Phys.Rev.Lett.59(1987)381.

    [2]C.Haldeman and J.M.Beggs,Phys.Rev.Lett.94(2005)058101.

    [3]S.J.Wang and C.Zhou,New J.Phys.14(2012)023005.

    [4]D.Plenz and H.G.Schuster,Criticality in Neural Systems,Wiley,New York(2014).

    [5]S.J.Wang,G.Ouyang,J.Guang,et al.,Phys.Rev.Lett.116(2016)018101.

    [6]A.Sornette and D.Sornette,Europhys.Lett.9(1989)197.

    [7]B.Gutenberg and C.F.Richter,Ann.Geo fis.9(1956)1.

    [8]Z.Olami,H.J.S.Feder,and K.Christensen,Phys.Rev.Lett.68(1992)1244.

    [9]W.Klein and J.Rundle,Phys.Rev.Lett.71(1993)1288.

    [10]K.Christensen,Phys.Rev.Lett.71(1993)1289.

    [11]J.X.Carvalho and C.P.C.Prado,Phys.Rev.Lett.84(2000)4006.

    [12]J.X.Carvalho and C.P.C.Prado,Phys.Rev.Lett.87(2001)039802.

    [13]K.Christensen,D.Hamon,H.J.Jensen,and S.Lise,Phys.Rev.Lett.87(2001)039801.

    [14]S.Lise and H.J.Jensen,Phys.Rev.Lett.76(1996)2326.

    [15]M.L.Chabanol and V.Hakim,Phys.Rev.E 56(1997)R2343.

    [16]H.M.Broker and P.Grassberger,Phys.Rev.E 56(1997)3944.

    [17]O.Kinouchi,S.T.R.Pinho,and C.P.C.Prado,Phys.Rev.E 58(1998)3997.

    [18]S.Lise and M.Paczuski,Phys.Rev.Lett.88(2002)228301.

    [19]F.Caruso,V.Latora,A.Pluchino,et al.,Eur.Phys.J.B 50(2006)243.

    [20]F.Caruso,V.Latora,and A.Rapisarda,Complexity,Metastability and Nonextensivity,World Scienti fic,Singapore(2005)355.

    [21]N.Masuda,H.Miwa,and N.Konno,Phys.Rev.E 71(2005)036108.

    [22]A.F.Rozenfeld,R.Cohen,D.ben Avraham,and S.Havlin,Phys.Rev.Lett.89(2002)218701.

    [23]Min Lin,Xiao-Wei Zhao,and Tian-Lun Chen,Commun.Theor.Phys.41(2004)557.

    [24]Min Lin,Gang Wang,and Tian-Lun Chen,Commun.Theor.Phys.46(2006)1011.

    [25]P.Rattana,L.Berthouze,and I.Z.Kiss,Phys.Rev.E 90(2014)052806.

    [26]R.Dominguez,K.Tiampo,C.A.Serino,and W.Klein,Phys.Rev.E 87(2013)022809.

    [27]D.Markovic and C.Gros,Phys.Rep.536(2014)41.

    [28]L.De Arcangelis,C.Godano,J.R.Grasso,and E.Lippiello,Phys.Rep.628(2016)1.

    [29]A.A.Perkins,J.Galeano,and J.M.Pastor,Phys.Rev.E 94(2016)052304.

    [30]Duan-Ming Zhang,Fan Sun,et al.,Commun.Theor.Phys.45(2006)293.

    [31]Duan-Ming Zhang,Fan Sun,et al.,Commun.Theor.Phys.46(2006)261.

    [32]Fan Sun and Duan-Ming Zhang,Commun.Theor.Phys.50(2008)417.

    [33]N.Mousseau,Phys.Rev.Lett.77(1996)968.

    [34]I.M.Jánosi and J.Kert′esz,Physica(Amsterdam)200A(1993)179.

    [35]H.Ceva,Phys.Rev.E 52(1995)154.

    [36]S.Lise and M.Paczuski,Phys.Rev.E 63(2001)036111.

    [37]J.E.S.Socolar,G.Grinstein,and C.Jayaprakash,Phys.Rev.E 47(1993)2366.

    [38]P.Grassberger,Phys.Rev.E 49(1994)2436.

    [39]A.A.Middleton and C.Tang,Phys.Rev.Lett.74(1995)742.

    猜你喜歡
    李斌
    World Wetlands Day
    The Wizard of Oz
    The Wizard of Ozby L. Frank Baum
    The Wizard of Ozby L. Frank Baum
    History of the Alphabet
    Factory Life in the 1800's
    李斌:換道先跑
    汽車觀察(2019年2期)2019-03-15 06:00:30
    李斌:蔚來為未來而來
    金橋(2018年4期)2018-09-26 02:25:08
    李斌
    爆笑西游
    亚洲欧美精品综合一区二区三区| 国产区一区二久久| aaaaa片日本免费| 成年人黄色毛片网站| 母亲3免费完整高清在线观看| 午夜福利免费观看在线| 丝袜人妻中文字幕| 国产精品久久电影中文字幕| 50天的宝宝边吃奶边哭怎么回事| 麻豆成人av在线观看| 久久人人97超碰香蕉20202| 黄片小视频在线播放| 亚洲欧美一区二区三区黑人| 女人被狂操c到高潮| 真人做人爱边吃奶动态| 国产99白浆流出| 精品一品国产午夜福利视频| 香蕉丝袜av| 国产av又大| 法律面前人人平等表现在哪些方面| 欧美日本视频| 嫩草影视91久久| 十八禁网站免费在线| 国产精品久久视频播放| 亚洲精品国产一区二区精华液| 精品高清国产在线一区| 男人舔女人的私密视频| 亚洲熟妇熟女久久| 亚洲人成电影免费在线| 丁香六月欧美| 国产精品亚洲一级av第二区| 啦啦啦免费观看视频1| 90打野战视频偷拍视频| 国产精品美女特级片免费视频播放器 | 美女 人体艺术 gogo| 亚洲五月婷婷丁香| 伊人久久大香线蕉亚洲五| 人人妻,人人澡人人爽秒播| 欧美亚洲日本最大视频资源| 久久久久久免费高清国产稀缺| 久久精品91蜜桃| 欧美一区二区精品小视频在线| 老汉色∧v一级毛片| 久久精品91蜜桃| 纯流量卡能插随身wifi吗| 久久精品91蜜桃| 精品电影一区二区在线| 亚洲伊人色综图| 午夜精品国产一区二区电影| www.自偷自拍.com| 99re在线观看精品视频| 啦啦啦 在线观看视频| 精品国产乱码久久久久久男人| 亚洲欧美一区二区三区黑人| 国内久久婷婷六月综合欲色啪| 一边摸一边抽搐一进一出视频| 搡老岳熟女国产| 51午夜福利影视在线观看| 亚洲成a人片在线一区二区| 99久久99久久久精品蜜桃| 久久人人97超碰香蕉20202| 亚洲无线在线观看| 在线av久久热| 欧美激情久久久久久爽电影 | 99久久精品国产亚洲精品| 国产1区2区3区精品| ponron亚洲| 19禁男女啪啪无遮挡网站| 欧美成狂野欧美在线观看| 9色porny在线观看| 9191精品国产免费久久| 亚洲中文字幕一区二区三区有码在线看 | 69av精品久久久久久| 男人操女人黄网站| 色av中文字幕| 国内精品久久久久精免费| 侵犯人妻中文字幕一二三四区| 涩涩av久久男人的天堂| 国产精品一区二区三区四区久久 | 在线天堂中文资源库| 亚洲黑人精品在线| 夜夜爽天天搞| 又大又爽又粗| 国产单亲对白刺激| 一卡2卡三卡四卡精品乱码亚洲| 国产人伦9x9x在线观看| 亚洲av成人一区二区三| 亚洲五月色婷婷综合| 国产又爽黄色视频| 露出奶头的视频| 在线观看午夜福利视频| 十分钟在线观看高清视频www| 9色porny在线观看| 国产精品99久久99久久久不卡| 婷婷精品国产亚洲av在线| 88av欧美| 久久久久久亚洲精品国产蜜桃av| 免费无遮挡裸体视频| 国产av一区二区精品久久| 视频在线观看一区二区三区| 精品第一国产精品| 欧美+亚洲+日韩+国产| 亚洲九九香蕉| 高清在线国产一区| 国产午夜福利久久久久久| 一二三四社区在线视频社区8| 一区二区三区精品91| 久久国产精品人妻蜜桃| 亚洲 欧美 日韩 在线 免费| 女生性感内裤真人,穿戴方法视频| 很黄的视频免费| 色综合婷婷激情| 欧美av亚洲av综合av国产av| 久久天躁狠狠躁夜夜2o2o| 国产精品一区二区免费欧美| 亚洲 国产 在线| 免费高清在线观看日韩| 精品日产1卡2卡| 亚洲欧美精品综合一区二区三区| 久久香蕉国产精品| 自拍欧美九色日韩亚洲蝌蚪91| 免费无遮挡裸体视频| 人人妻人人澡人人看| 麻豆一二三区av精品| av天堂在线播放| 亚洲av成人av| 夜夜夜夜夜久久久久| 在线十欧美十亚洲十日本专区| 国产精品影院久久| 日本 欧美在线| 久久人妻av系列| 亚洲国产欧美日韩在线播放| 午夜a级毛片| 露出奶头的视频| 国产成人一区二区三区免费视频网站| 美女国产高潮福利片在线看| 精品乱码久久久久久99久播| 热99re8久久精品国产| 黄色a级毛片大全视频| 999久久久国产精品视频| 黄片小视频在线播放| 国产麻豆成人av免费视频| 国产1区2区3区精品| 免费在线观看影片大全网站| 国产三级黄色录像| 亚洲七黄色美女视频| 欧美中文日本在线观看视频| 少妇熟女aⅴ在线视频| 国产精品久久久久久亚洲av鲁大| 亚洲五月天丁香| 狂野欧美激情性xxxx| 99久久99久久久精品蜜桃| 99久久久亚洲精品蜜臀av| 在线观看一区二区三区| 亚洲人成电影免费在线| 搞女人的毛片| 国产高清激情床上av| 亚洲黑人精品在线| 久久伊人香网站| 老汉色∧v一级毛片| 亚洲av美国av| 欧美日韩一级在线毛片| 一级毛片高清免费大全| 男女下面进入的视频免费午夜 | 此物有八面人人有两片| 一个人免费在线观看的高清视频| 极品人妻少妇av视频| 精品国产国语对白av| 国产精品影院久久| 69av精品久久久久久| 狂野欧美激情性xxxx| 咕卡用的链子| 午夜福利,免费看| 亚洲成av人片免费观看| 可以在线观看毛片的网站| 纯流量卡能插随身wifi吗| 国产欧美日韩精品亚洲av| 夜夜夜夜夜久久久久| 不卡av一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 中亚洲国语对白在线视频| 高清在线国产一区| 老汉色∧v一级毛片| 午夜亚洲福利在线播放| 精品欧美一区二区三区在线| 色老头精品视频在线观看| 亚洲国产看品久久| 精品欧美国产一区二区三| netflix在线观看网站| 涩涩av久久男人的天堂| 少妇裸体淫交视频免费看高清 | www.自偷自拍.com| 一边摸一边抽搐一进一小说| 日韩欧美国产在线观看| 亚洲精品在线美女| 日韩视频一区二区在线观看| 成熟少妇高潮喷水视频| 国产精品影院久久| 久久中文字幕一级| 欧洲精品卡2卡3卡4卡5卡区| 老汉色∧v一级毛片| 在线观看免费午夜福利视频| 久久国产亚洲av麻豆专区| 亚洲 国产 在线| 天天添夜夜摸| 国产在线精品亚洲第一网站| 欧美精品啪啪一区二区三区| 国产一区二区在线av高清观看| 青草久久国产| 怎么达到女性高潮| 免费看a级黄色片| 久久久久九九精品影院| 免费不卡黄色视频| 亚洲国产欧美网| 涩涩av久久男人的天堂| 一区二区三区精品91| 丰满人妻熟妇乱又伦精品不卡| 动漫黄色视频在线观看| 亚洲人成77777在线视频| 午夜精品在线福利| 免费在线观看日本一区| 欧美老熟妇乱子伦牲交| 黄色片一级片一级黄色片| 久久精品亚洲精品国产色婷小说| 一a级毛片在线观看| 搡老妇女老女人老熟妇| 人人澡人人妻人| 国产欧美日韩一区二区三区在线| 俄罗斯特黄特色一大片| 午夜久久久在线观看| 一级黄色大片毛片| 国产成人精品久久二区二区91| 国产片内射在线| 精品国产亚洲在线| 久久久国产精品麻豆| 狂野欧美激情性xxxx| 侵犯人妻中文字幕一二三四区| 国产精品久久久久久精品电影 | 亚洲熟妇熟女久久| xxx96com| 国产欧美日韩一区二区三区在线| 日本a在线网址| 老司机午夜福利在线观看视频| 日韩中文字幕欧美一区二区| 国产一区二区三区在线臀色熟女| √禁漫天堂资源中文www| 精品国产亚洲在线| 中国美女看黄片| 国产日韩一区二区三区精品不卡| 人人妻人人澡欧美一区二区 | 欧美精品啪啪一区二区三区| 一二三四社区在线视频社区8| 久久这里只有精品19| 超碰成人久久| 久久久久久国产a免费观看| 欧美丝袜亚洲另类 | 国产成人系列免费观看| 夜夜爽天天搞| 亚洲国产欧美网| 国产xxxxx性猛交| 亚洲七黄色美女视频| 三级毛片av免费| 国产精品一区二区免费欧美| 超碰成人久久| 黄色 视频免费看| 午夜免费观看网址| 51午夜福利影视在线观看| 精品一区二区三区四区五区乱码| 婷婷丁香在线五月| 91精品国产国语对白视频| 国产精品国产高清国产av| 精品电影一区二区在线| 丰满的人妻完整版| 日韩视频一区二区在线观看| 高清毛片免费观看视频网站| 伦理电影免费视频| 国产精品一区二区精品视频观看| 免费看a级黄色片| 亚洲性夜色夜夜综合| 精品一区二区三区四区五区乱码| 久久久久国产精品人妻aⅴ院| 国产欧美日韩精品亚洲av| 欧美黄色淫秽网站| 日日摸夜夜添夜夜添小说| 97人妻精品一区二区三区麻豆 | 999久久久精品免费观看国产| 免费看a级黄色片| 天堂√8在线中文| 无人区码免费观看不卡| 欧美日韩瑟瑟在线播放| 曰老女人黄片| 天堂动漫精品| 国产熟女午夜一区二区三区| 亚洲天堂国产精品一区在线| 亚洲熟女毛片儿| 波多野结衣av一区二区av| 国产真人三级小视频在线观看| or卡值多少钱| 欧美日韩亚洲综合一区二区三区_| 嫩草影院精品99| 啪啪无遮挡十八禁网站| 十分钟在线观看高清视频www| 日韩大尺度精品在线看网址 | 亚洲精品久久国产高清桃花| 精品卡一卡二卡四卡免费| 一区二区三区高清视频在线| 日本a在线网址| 韩国av一区二区三区四区| 久久精品aⅴ一区二区三区四区| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美不卡视频在线免费观看 | 欧美乱色亚洲激情| 久久人妻福利社区极品人妻图片| 人妻丰满熟妇av一区二区三区| avwww免费| 久久九九热精品免费| 精品第一国产精品| 国产免费av片在线观看野外av| 国产av又大| 黄网站色视频无遮挡免费观看| 成在线人永久免费视频| 欧美乱码精品一区二区三区| 黄色视频不卡| 夜夜躁狠狠躁天天躁| 少妇粗大呻吟视频| 国产熟女午夜一区二区三区| 激情在线观看视频在线高清| 性色av乱码一区二区三区2| 久久国产精品人妻蜜桃| 久久中文看片网| 欧美成人午夜精品| 中文字幕高清在线视频| 亚洲av成人av| 日本撒尿小便嘘嘘汇集6| 又黄又爽又免费观看的视频| 十八禁网站免费在线| 久久久国产成人精品二区| 黄网站色视频无遮挡免费观看| 天天添夜夜摸| 欧美日韩一级在线毛片| 两个人看的免费小视频| av超薄肉色丝袜交足视频| 极品教师在线免费播放| 欧美日韩一级在线毛片| 日日爽夜夜爽网站| 身体一侧抽搐| 一进一出好大好爽视频| 久久久久久久久久久久大奶| 性少妇av在线| 91麻豆av在线| 99精品在免费线老司机午夜| 身体一侧抽搐| 久久久水蜜桃国产精品网| 亚洲成av人片免费观看| 亚洲精品国产一区二区精华液| 黑人巨大精品欧美一区二区mp4| 国产熟女午夜一区二区三区| 国产精品美女特级片免费视频播放器 | 18禁黄网站禁片午夜丰满| 久久精品亚洲精品国产色婷小说| 99热只有精品国产| 国产精品亚洲av一区麻豆| 黄网站色视频无遮挡免费观看| av网站免费在线观看视频| 精品久久久精品久久久| 在线天堂中文资源库| 午夜福利成人在线免费观看| 好男人电影高清在线观看| 久久午夜亚洲精品久久| 国产激情久久老熟女| 香蕉久久夜色| 久久精品人人爽人人爽视色| 9191精品国产免费久久| 亚洲成人国产一区在线观看| 天堂影院成人在线观看| 久久狼人影院| 一进一出抽搐动态| 乱人伦中国视频| 制服诱惑二区| 欧美成人午夜精品| 一夜夜www| 又黄又爽又免费观看的视频| 最近最新中文字幕大全免费视频| 韩国av一区二区三区四区| 99国产综合亚洲精品| 免费在线观看日本一区| 黄片小视频在线播放| 婷婷丁香在线五月| 精品一区二区三区四区五区乱码| 黄色成人免费大全| 桃红色精品国产亚洲av| 亚洲欧美激情在线| 色播亚洲综合网| 欧美不卡视频在线免费观看 | 一级黄色大片毛片| 国产伦人伦偷精品视频| 免费一级毛片在线播放高清视频 | 国产精品久久久久久人妻精品电影| 麻豆一二三区av精品| 一进一出好大好爽视频| 亚洲免费av在线视频| 少妇粗大呻吟视频| 男人的好看免费观看在线视频 | 最新在线观看一区二区三区| 韩国av一区二区三区四区| 女性生殖器流出的白浆| 亚洲精品国产色婷婷电影| 日本 av在线| 女人被狂操c到高潮| 麻豆久久精品国产亚洲av| 制服诱惑二区| 亚洲一区二区三区色噜噜| 久9热在线精品视频| 亚洲人成网站在线播放欧美日韩| 久久久久久久久久久久大奶| 国产视频一区二区在线看| 午夜亚洲福利在线播放| 曰老女人黄片| 欧美成人性av电影在线观看| 国产亚洲精品av在线| 精品国产乱码久久久久久男人| 色综合婷婷激情| 日本免费a在线| 91九色精品人成在线观看| 乱人伦中国视频| 国产成人一区二区三区免费视频网站| 成人三级黄色视频| 国产av一区在线观看免费| 97人妻精品一区二区三区麻豆 | 国产av又大| 成年版毛片免费区| 一夜夜www| 97人妻天天添夜夜摸| а√天堂www在线а√下载| 国产精品乱码一区二三区的特点 | 久久这里只有精品19| 亚洲电影在线观看av| av福利片在线| 每晚都被弄得嗷嗷叫到高潮| 女警被强在线播放| 久久婷婷成人综合色麻豆| 老鸭窝网址在线观看| 国产亚洲av高清不卡| 啪啪无遮挡十八禁网站| 国产精品一区二区在线不卡| 日韩 欧美 亚洲 中文字幕| 精品午夜福利视频在线观看一区| 一区二区日韩欧美中文字幕| 国产精品永久免费网站| 宅男免费午夜| 久久人人爽av亚洲精品天堂| 啦啦啦 在线观看视频| 欧美一级a爱片免费观看看 | 一级黄色大片毛片| 日本免费a在线| 又黄又爽又免费观看的视频| 久久精品影院6| 久久久久久久久免费视频了| 亚洲男人天堂网一区| 国产精品秋霞免费鲁丝片| 999久久久精品免费观看国产| 电影成人av| 岛国在线观看网站| 18禁裸乳无遮挡免费网站照片 | 国产亚洲精品av在线| 亚洲中文av在线| 黑人巨大精品欧美一区二区mp4| 久久久久久国产a免费观看| 久久 成人 亚洲| 视频区欧美日本亚洲| 一级毛片女人18水好多| 免费av毛片视频| 高潮久久久久久久久久久不卡| 岛国视频午夜一区免费看| 中文字幕最新亚洲高清| 日韩欧美一区二区三区在线观看| 欧美一级a爱片免费观看看 | 麻豆成人av在线观看| 亚洲国产欧美一区二区综合| 午夜视频精品福利| 一进一出抽搐动态| 国产男靠女视频免费网站| 午夜福利成人在线免费观看| 日韩欧美一区视频在线观看| 高清在线国产一区| 久久精品aⅴ一区二区三区四区| 亚洲欧美日韩高清在线视频| 亚洲中文av在线| 亚洲av片天天在线观看| 亚洲五月天丁香| 亚洲欧美激情在线| 成年人黄色毛片网站| 大型黄色视频在线免费观看| 好男人在线观看高清免费视频 | 久久亚洲精品不卡| 欧洲精品卡2卡3卡4卡5卡区| 亚洲视频免费观看视频| 日韩大尺度精品在线看网址 | 成熟少妇高潮喷水视频| 日韩 欧美 亚洲 中文字幕| 日本在线视频免费播放| 国产精品免费一区二区三区在线| 黄色丝袜av网址大全| 他把我摸到了高潮在线观看| 国产av一区在线观看免费| 国产三级黄色录像| 99久久99久久久精品蜜桃| 国产av精品麻豆| netflix在线观看网站| 色精品久久人妻99蜜桃| 亚洲中文字幕日韩| 两性夫妻黄色片| 国产男靠女视频免费网站| 欧美黄色淫秽网站| 国产xxxxx性猛交| 大码成人一级视频| 人人妻人人爽人人添夜夜欢视频| 国产在线精品亚洲第一网站| 久久中文看片网| 一卡2卡三卡四卡精品乱码亚洲| 国产欧美日韩精品亚洲av| 可以在线观看毛片的网站| 久久人妻福利社区极品人妻图片| 日韩国内少妇激情av| 亚洲狠狠婷婷综合久久图片| 国产熟女xx| 国内毛片毛片毛片毛片毛片| 日韩中文字幕欧美一区二区| 99在线视频只有这里精品首页| 久久婷婷成人综合色麻豆| 久久草成人影院| 一区二区日韩欧美中文字幕| 最好的美女福利视频网| 自拍欧美九色日韩亚洲蝌蚪91| av欧美777| 99久久综合精品五月天人人| 亚洲片人在线观看| 好男人在线观看高清免费视频 | 亚洲情色 制服丝袜| av在线天堂中文字幕| 欧美 亚洲 国产 日韩一| 亚洲av第一区精品v没综合| 在线十欧美十亚洲十日本专区| 18禁裸乳无遮挡免费网站照片 | 两性夫妻黄色片| 757午夜福利合集在线观看| 露出奶头的视频| 精品国内亚洲2022精品成人| 国产高清激情床上av| 欧美色欧美亚洲另类二区 | 成在线人永久免费视频| 91精品国产国语对白视频| 亚洲性夜色夜夜综合| 一区二区三区激情视频| 在线观看免费日韩欧美大片| 国产精品一区二区精品视频观看| 淫秽高清视频在线观看| 久久久久精品国产欧美久久久| 免费少妇av软件| 在线av久久热| 亚洲 国产 在线| 国产国语露脸激情在线看| 动漫黄色视频在线观看| 制服诱惑二区| 亚洲专区国产一区二区| 免费观看人在逋| 欧美 亚洲 国产 日韩一| 欧美激情极品国产一区二区三区| 成人18禁高潮啪啪吃奶动态图| 欧美黑人欧美精品刺激| av天堂久久9| 好男人电影高清在线观看| 青草久久国产| 一进一出抽搐gif免费好疼| 欧美乱妇无乱码| 精品少妇一区二区三区视频日本电影| 后天国语完整版免费观看| 黑人巨大精品欧美一区二区mp4| 国内毛片毛片毛片毛片毛片| 91精品国产国语对白视频| 丝袜美腿诱惑在线| 777久久人妻少妇嫩草av网站| 亚洲精品中文字幕一二三四区| 日韩精品中文字幕看吧| 欧美日韩福利视频一区二区| 亚洲成人免费电影在线观看| 91麻豆av在线| 久久久国产精品麻豆| 黑人巨大精品欧美一区二区mp4| 在线观看免费午夜福利视频| 久久精品国产亚洲av香蕉五月| 伦理电影免费视频| 久久人妻福利社区极品人妻图片| 国产精品98久久久久久宅男小说| 日韩一卡2卡3卡4卡2021年| 久久亚洲精品不卡| 久久久久精品国产欧美久久久| 美女高潮喷水抽搐中文字幕| 91九色精品人成在线观看| 夜夜爽天天搞| 亚洲美女黄片视频| 亚洲国产中文字幕在线视频| 在线免费观看的www视频| 亚洲av片天天在线观看| 国产一区二区在线av高清观看| 午夜免费鲁丝| 欧美激情 高清一区二区三区| 少妇的丰满在线观看| 色在线成人网| 性少妇av在线| 不卡一级毛片| 亚洲国产欧美一区二区综合| 手机成人av网站| 在线观看午夜福利视频| 老汉色∧v一级毛片|