• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental and numerical analysis of flow over a rectangular full-width sharp-crested weir

    2018-05-11 11:48:46GhoranMahtaiHadiArvanaghi
    Water Science and Engineering 2018年1期

    Ghoran Mahtai*,Hadi Arvanaghi

    aDepartment of Water Engineering,Faculty of Agriculture,University of Zanjan,Zanjan 4537138791,Iran

    bDepartment of Water Engineering,Faculty of Agriculture,University of Tabriz,Tabriz 5166616471,Iran

    1.Introduction

    Weirs are common structures used for water surface regulation and flow measurement in irrigation networks and environmental projects.They serve as the simple,accurate,and classical devices used both in the field and in the laboratory for flow measurement in open channels(Kumar et al.,2011).They come in a variety of shapes,including fully contracted,partially contracted,and full-width weirs.They can also be either broador sharp-crested,with sharp-crested weirs including rectangular,triangular,and trapezoidal weirs(Bos,1989).The sharp-crested weirs are vertical obstructions placed normal to the flow direction.The simplest form of sharp-crested weirs consists of a plate set perpendicular to the flow in a rectangular channel.The horizontal crest of the weir crosses the full channel width.This feature means that the flow is essentially two-dimensional,without lateral contraction effects(Henderson,1966).While the flow passes over the weir,there is a relationship between the head and discharge in the section upstream of the structure,turning the section into a control section.

    Many researchers have developed relationships between the discharge and head for weirs.Commonly,the discharge over a sharp-crested weir(Q)under free- flow conditions in an open channel is expressed in terms of the following well-known equation(Henderson,1966):

    wherebis the weir opening width,Cdis the discharge coefficient,his the head over the weir crest,andgis the acceleration due to gravity.Cddepends on the flow characteristics and geometry of the channel and the weir.The discharge is a function of several parameters and is mathematically expressed by the following equation:

    wherePis the weir height,ρ is the density of fluid,σ is the surface tension,and μ is the dynamic viscosity of fluid.Dimensional analysis demonstrates that the discharge coefficient is a function of the following parameters:

    whereReis the Reynolds number,andWeis the Weber number.Rehbock(1929)conducted one of the earliest experimental studies onCd.He conducted experiments on full width weirs and proposed the following equation forh/P≤5,which does not reflect the viscous and surface tension effects:

    Also,Kandaswamy and Rouse(1957),through combination of the experimental measurements,derived a discharge coefficient similar to the Rehbock equation as follows:

    An intermediate zone is a continuous transition between two equations.Swamee(1988)proposed a generalized weir equation for sharp-crested,narrow-crested,broad-crested,and long-crested weirs by combining the equations obtained from previous works as follows:

    whereLis the weir length in the direction of flow.ISO standard 1438(Oshima et al.,2013)adopted the Rehbock equation for flow calculation of full-width weirs with the limitation on weir plate height set to 1 m,and the discharge coefficient modified slightly as follows:

    Recently,Kumar et al.(2011)carried out an experimental study on a sharp-crested weir under free- flow conditions and proposed a discharge coefficient equation that is the same as the Kindsvater and Carter(1957)equation.Review of most of the proposed equations have shown thatCdmainly depends on the ratioh/P,and other flow characteristics may have an effect on the discharge coefficient.

    Nowadays,advanced numerical methods as well as experimental studies are used to investigate hydraulic phenomena.Numerical solution methods are powerful and useful to determining flow characteristics such as velocity distribution,water surface pro file,discharge,and some other variables.Fluent software is an applicable and useful tool for simulating hydraulic phenomena.Sarker and Rhodes(1999)experimentally studied the free surface pro file over a rectangular broad-crested weir and numerically simulated the free surface flow using Fluent software in several stages.The numerical results showed agreement with the experimental data.Liu et al.(2002)simulated the water surface pro file on semi-circular weirs using thek-ε turbulence model.The numerical results agreed with the experimental data.Haun et al.(2011)calculated discharge over a trapezoidal broad-crested weir using both Flow-3D and SSIIM softwares,compared with a physical model.Results showed that the deviation between the computed and measured upstream water levels was between 1.0%and 3.5%.Akoz et al.(2014)conducted laboratory experiments to measure the flow characteristics over a semi-cylindrical weir and compared them with those obtained from numerical modeling.Zachoval and Rouˇsar(2015)simulated the flow characteristics over a broadcrested weirusing numericalmodels and found that Reynolds-averaged Navier-Stokes(RANS)equations and the two-layer shear stress transport(SST)turbulence model were the suitable models.Comparisons of experimental and numerical results have shown that numerical simulation using the Reynolds stress turbulence model provides better predictions for horizontal velocities than simulations with other turbulence models.

    In this study,we experimentally examined the effect ofh/PandReon theCdvalue of a rectangular sharp-crested weir.A new discharge coefficient equation was developed using the optimization method.Also,numerical simulation was conducted to evaluate ability of the numerical model and analyze the flow characteristics of the weir.

    2.Materials and methods

    Experiments were carried out in a laboratory flume with walls made of glass.The rectangular flume was 10 m long,0.25 m wide,and 0.50 m deep.Circulated flow was supplied from a constant head tank and discharge was measured using a calibrated V-notch thin-plate weir.The discharge ranged from 1.4 to 52.12 L/s in the experiments,with a range of water temperature from 18°C to 22°C.Water surface profiles were measured with a point gage with an accuracy of 0.1 mm.Sharp-crested weirs were made of PVC plates,with three different weir heights(P)of 0.10,0.15,and 0.20 m.The weir opening widthbwas the same as the flume widthB(b=B=0.25 m).The weirs were mounted 6 m downstream of the flume entrance.All the experiments were conducted under free- flow conditions.An optimization method was used to determine the best discharge coefficient equation.Optimization was performed in Microsoft EXCEL,using the solver command.Various forms of mathematical equations were evaluated.The sum of square error(SSE)was selected as the objective parameter and coefficients of the equations were selected as variable parameters.The best equation was selected based on the high coefficient of determination(R2)and the minimum of root mean square error(RMSE)parameters.

    In this study,numerical simulation was carried out with Fluent v.6.2(FLUENT Inc,2006),a kind of powerful and common computational fluid dynamics(CFD)commercial software.Fluent solves two-dimensional(2D)and threedimensional(3D)problems of open channel flow,con fined conduit flow,and sediment transport with advanced turbulence models.It is also possible to solve for flow over sharp-crested weirs.The governing equations are unsteady 2D continuity and RANS equations for liquid and air(Liu et al.,2002),as follows:

    whereuis the average velocity component,tis time,xis the space dimension,the subscriptsiandjare the directions of the coordinate axes,pis the average pressure,-is the Reynolds stress tensor,and δijis the Kronecker delta.

    Gambit software was used to create the geometry model and to generate the mesh model(FLUENT Inc,2007).Gambit is a software package designed to help analysts and designers build and mesh models for CFD and other scientific applications.Gambit receives user input by means of its graphical user interface(GUI).The Gambit GUI makes the basic steps of building,meshing,and assigning zone types to a model simple and intuitive,yet it is versatile enough to accommodate a wide range of modeling applications(FLUENT Inc,2007).

    In this study,more than 40 configurations(2D)were generated by Gambit.For each model,the best mesh generated(Fig.1,for example)was selected through calculation of the error values of velocity in various con figurations.The best mesh was then used in the simulation process.The space of the computational region was 4 m long,0.25 m wide,and 0.50 m deep.The mesh was structured with rectangular elements.The results were found to be independent of grid size,when there were at least 3148 nodes.Appropriate conditions had to be specified at domain boundaries depending on the nature of the flow.In the simulation performed in this study,pressure inlet and outlet boundary conditions were specified.The no-slip boundary condition was specified to set the velocity to zero at the solid boundaries,and the walls and bed were assumed to be smooth.At the top surface,a pressure outlet boundary condition was applied.The standard wall function was used to simulate the flow close to the wall.There are different methods of solving RANS equations.In this study,the control volume method was used for simulating multi-phase flow,and the renormalized group(RNG)k-ε turbulence model was selected to model turbulence flow(Papageorgakis and Assanis,1999).

    3.Results and discussion

    Fig.2 compares numerical and experimental water surface profiles through the weir ath=0.20 m andP=0.20 m.The results showed agreement between the numerical and experimental results.Percent error of the numerical results with respect to the experimental data was acceptable,within the±5%error limit.In addition,numerical models predicted the discharge well.Velocity vectors passing through the weir and contours of velocity magnitude are shown in Fig.3 and Fig.4,respectively.The vortex zone with returning velocity vectors was found downstream from the weir.The returning velocity vectors increased near the bed.Approaching velocity vectors began increasing almost over the weir and reached uniform distribution at the end of the vortex zone(Fig.3).At the center of the vortex zone,the velocity magnitude reached a value of approximately zero(Fig.4).Also,a stagnation zone was seen upstream of the weir,with smaller dimensions than the vortex zone.

    Fig.1.Best mesh generated by Gambit.

    Fig.2.Experimental and numerical water surface profiles at h=0.20 m and P=0.20 m.

    Fig.3.Velocity vectors passing over weir at h=0.20 m and P=0.20 m.

    Fig.5 shows results of experimental and numericalCdversush/Pfor different weir heights.Cddecreased nonlinearly with increasingh/P.For values ofh/Pgreater than 0.6,Cdapproximately reached the fixed value of 0.7 for different weir heights.In other words,the variation ofh/Phad no effects on the discharge coefficient whenh/P>0.6.In Fig.5,the numerical results were very close to experimental ones whenh/P>0.4.There were only a few differences between experimental and numerical results whenh/P>0.4 forP=0.10 m.With increasingP,the experimental and numerical results were almost the same whenh/P>0.2.These results indicate that Fluent software can simulate the flow over the weir very well.

    Various forms of mathematical equations were evaluated using the optimization method to determine the best discharge coefficient equation.The best equation was selected based on the maximumR2and minimumRMSEparameters.The best equation was

    Fig.4.Contour of velocity magnitude with h=0.20 m and P=0.20 m.

    Fig.5.Numerical and experimental Cdvs.h/P for different weir heights.

    Fig.6 shows results of the experimental discharge coefficients and the discharge coefficients calculated using Eq.(10).R2andRMSEof the proposed equation were 0.945 and 0.0246,respectively,indicating that the proposed equation predicts the discharge coefficient well.In the equation,a constant value of 0.653 is a basic parameter and some researchers have reported a similar parameter.Johnson(2000),Rady(2011),and Kumar et al.(2011)showed that,with increasingh/P,theCdvalue of sharp-crested weirs reaches a constant value of 0.64.

    Results of experimental and numerical discharge coefficients are shown in Fig.5.TheR2andRMSEvalues of the numerical results were 0.921 and 0.0675,respectively.It can be concluded that the numerical model predictsCdas well as the proposed equation.

    Fig.7 compares the experimental dischargesQEXPand calculated dischargesQCALfrom Eq.(10).There was agreement between calculated discharges and measured ones.Percent errors ofQCALvs.QEXPare shown in Fig.8.Error values of the calculated discharges were within the±5%error limit and were acceptable.It seems that the proposed equation predicts the discharge coefficient and discharge with a high accuracy.

    Comparison of the experimental discharge and numerical dischargeQCFDshows agreement(Fig.9).The percent error of the numerical vs.the experimentalQEXP(Fig.10)shows that the error limit is acceptable except with low values of discharge.It is concluded that Fluent software can simulate the flow over the weir well at high discharges.

    Fig.6.Experimental Cdand calculated Cdfrom Eq.(10)vs.h/P.

    Fig.7.Calculated QCALvs.experimental QEXP.

    Variation ofCdwithReis shown in Fig.11.With increasingRe,Cddecreased nonlinearly and reached a value of 0.7 atRe>20000.It is concluded thatCdbecomes constant whenh/P>0.6 andRe>20000.

    Fig.8.Percent error of QCALvs.QEXP.

    Fig.9.Numerical QCFDvs.experimental QEXP.

    Fig.10.Percent error of QCFDvs.QEXP.

    Fig.11.Experimental Cdvs.Re.

    Fig.12.Experimental Cdand calculated Cdfrom Eq.(4)vs.h/P.

    Fig.12 compares the experimental values ofCdwith the results of Eq.(4).The comparison shows that,with increasingh/P,the experimental values andCdcalculated using Eq.(4)almost converge,especially whenh/P>0.6.Johnson(2000)analyzed the discharge coefficient of flat-topped and sharpcrested weirs and reported thatCddecreased with increasingh/P.Some other researchers,such as Sisman(2009)and Gharahjeh(2012),have reported the same results.It seems that,by increasingRe, flow turbulence was increased and,consequently,the discharge coefficient was decreased.WhenRe>20000,the flow was fully developed and the discharge coefficient reached a constant value equal to 0.7.

    4.Conclusions

    (1)With increasingh/P,Cddecreased nonlinearly and reached the approximately fixed value of 0.7 forh/P>0.6 andRe>20000.

    (2)The most essential parameter of the discharge coefficient equation of the weirs wash/P,and a new mathematical equation for predicting the discharge coefficient was obtained using an optimization method.

    (3)There was agreement between measured discharges and those computed using the optimal equation,with percent errors within the±5%error limit.

    (4)Comparison of the measured and numerical results of water surface and discharge showed that Fluent software can simulate the flow over the weir well.

    References

    Akoz,M.S.,Gumus,V.,Kirkgoz,M.S.,2014.Numerical simulation of flow over a semi cylinder weir.J.Irrigat.Drain.Eng.140(6),04014016.https://doi.org/10.1061/(ASCE)IR.1943-4774.0000717.

    Bos,M.G.,1989.Discharge Measurement Structures,third ed.International Institute for Land Reclamation and Improvement,Wageningen.

    FLUENT Inc,2006.FLUENT User's Manual Version 6.2.16.FLUENT Incorporated,Lebanon.

    FLUENT Inc,2007.GAMBIT User's Guide Version 2.4.FLUENT Incorporated,Lebanon.

    Gharahjeh,S.,2012.Experimental Investigation on Sharp Crested Rectangular Weirs.M.S.Dissertation.Middle East Technical University,Ankara.

    Haun,S.,Olsen,N.R.B.,Feurich,R.,2011.Numerical modeling of flow over trapezoidal broad-crested weir.Engineering Applications of Computational Fluid Mechanics 5(3),397-405.https://doi.org/10.1080/19942060.2011.11015381.

    Henderson,F.M.,1966.Open Channel Flow.MacMillan Publishing Company,New York.

    Johnson,M.C.,2000.Discharge coefficient analysis for flat-topped and sharpcrested weirs.Irrigat.Sci.19(3),133-137.https://doi.org/10.1007/s002719900009.

    Kandaswamy,P.K.,Rouse,H.,1957.Characteristics of flow over terminal weirs and sills.J.Hydraul.Div.83(4),1-13.

    Kindsvater,C.E.,Carter,R.W.,1957.Discharge characteristics of rectangular thin-plate weirs.J.Hydraul.Div.83(6),1-36.

    Kumar,S.,Ahmad,Z.,Mansoor,T.,2011.A new approach to improve the discharging capacity of sharp-crested triangular plan form weirs.Flow Meas.Instrum.22(3),175-180.https://doi.org/10.1016/j. flowmeasinst.2011.01.006.

    Liu,C.R.,Huhe,A.,Ma,W.J.,2002.Numerical and experimental investigation of flow over a semicircular weir.Acta Mech.Sin.18(6),594-602.https://doi.org/10.1007/BF02487961.

    Oshima,M.,Ishido,T.,Boiten,W.,2013.Discharge coefficient for full-width sharp-crested high weirs.J.Jpn.Soc.Civ.Eng.1,360-365.https://doi.org/10.2208/journalofjsce.1.1-360.

    Papageorgakis,G.C.,Assanis,D.N.,1999.Comparison of linear and nonlinear RNG-based k-epsilon models for incompressible turbulent flows.J.Numer.Heat Transf.35(1),1-22.https://doi.org/10.1080/104077999275983.

    Rady,R.M.A.E.H.,2011.2D-3D modeling of flow over sharp-crested weirs.J.Appl.Sci.Res.7(12),2495-2505.

    Rehbock,T.,1929.Discussion of precise weir measurements.Transmission 93,1143-1162.

    Sarker,M.A.,Rhodes,D.G.,1999.3D free surface model of laboratory channel with rectangular broad-crested weir.In:Proceedings of the 28th IAHR Congress.IAHR,Graz,p.7.

    Sisman,H.C.,2009.Experimental Investigation on Sharp-Crested Rectangular Weirs.M.S.Dissertation.Middle East Technical University,Ankara.

    Swamee,P.K.,1988.Generalized rectangular weir equations.J.Hydraul.Eng.114(8),945-949.https://doi.org/10.1061/(ASCE)0733-9429(1988)114:8(945).

    Zachoval,Z.,Rouˇsar,L.,2015.Flow structure in front of the broad-crested weir.EPJ Web Conf.92,1-4.https://doi.org/10.1051/epjconf/20159202117.

    日本 欧美在线| 欧美一区二区亚洲| 亚洲在线自拍视频| 97超视频在线观看视频| xxxwww97欧美| 国产三级黄色录像| 亚洲七黄色美女视频| av福利片在线观看| 桃红色精品国产亚洲av| 午夜福利18| www.熟女人妻精品国产| 亚洲av第一区精品v没综合| 日韩精品青青久久久久久| 国产免费男女视频| 午夜免费激情av| 黄片小视频在线播放| 嫩草影院精品99| 欧美日本视频| 日韩有码中文字幕| 午夜福利免费观看在线| 午夜久久久久精精品| 日韩高清综合在线| 国产精品久久久久久精品电影| 精品福利观看| 人妻久久中文字幕网| 精品久久久久久久毛片微露脸| 日本五十路高清| 香蕉久久夜色| 亚洲不卡免费看| 午夜福利在线观看吧| 色综合婷婷激情| 69av精品久久久久久| 日韩成人在线观看一区二区三区| 国产一级毛片七仙女欲春2| 一本综合久久免费| 国产成人a区在线观看| 97超级碰碰碰精品色视频在线观看| 亚洲中文日韩欧美视频| 久久久久性生活片| 国产精品久久久久久人妻精品电影| 波多野结衣高清无吗| 99久久综合精品五月天人人| 亚洲av日韩精品久久久久久密| 欧美bdsm另类| 伊人久久大香线蕉亚洲五| 国产黄片美女视频| 免费一级毛片在线播放高清视频| av黄色大香蕉| 男插女下体视频免费在线播放| 亚洲av电影在线进入| 日韩欧美一区二区三区在线观看| 精品一区二区三区视频在线观看免费| 欧美色欧美亚洲另类二区| av中文乱码字幕在线| 国产高潮美女av| 国产精品久久久久久久电影 | 最近最新中文字幕大全免费视频| 欧美日韩中文字幕国产精品一区二区三区| 十八禁网站免费在线| 国产成人福利小说| 国产av不卡久久| 久久久久久国产a免费观看| 九九久久精品国产亚洲av麻豆| 大型黄色视频在线免费观看| 1000部很黄的大片| 亚洲av成人不卡在线观看播放网| 久久精品人妻少妇| 国产精品综合久久久久久久免费| 1000部很黄的大片| 久久精品人妻少妇| 久久久久亚洲av毛片大全| 人人妻,人人澡人人爽秒播| 久久久成人免费电影| 国产高清激情床上av| 99精品欧美一区二区三区四区| 91麻豆精品激情在线观看国产| 日韩欧美国产一区二区入口| 午夜福利在线观看免费完整高清在 | 国产激情偷乱视频一区二区| 欧美乱妇无乱码| 国产探花极品一区二区| 国产精品久久久久久久久免 | 国内精品一区二区在线观看| 最近最新免费中文字幕在线| 成人三级黄色视频| 国产精品99久久99久久久不卡| 久久久久性生活片| 久久久久国内视频| 日韩欧美 国产精品| 午夜精品久久久久久毛片777| 伊人久久大香线蕉亚洲五| 免费人成在线观看视频色| 最近在线观看免费完整版| 国产高潮美女av| 精品一区二区三区av网在线观看| 国产真实乱freesex| 高清毛片免费观看视频网站| 一进一出抽搐gif免费好疼| 国产麻豆成人av免费视频| 丰满乱子伦码专区| 国产乱人伦免费视频| 国产 一区 欧美 日韩| 男女视频在线观看网站免费| 女人高潮潮喷娇喘18禁视频| 中文资源天堂在线| 97超级碰碰碰精品色视频在线观看| 精品久久久久久久毛片微露脸| 男人舔奶头视频| 欧美+日韩+精品| 国产视频内射| 欧美乱妇无乱码| 亚洲精品粉嫩美女一区| 成人国产综合亚洲| 国产真实乱freesex| 国产三级黄色录像| 99久久久亚洲精品蜜臀av| 国产免费男女视频| 国产精品一区二区免费欧美| 色视频www国产| 免费人成视频x8x8入口观看| 欧美三级亚洲精品| 九色国产91popny在线| 久久九九热精品免费| 五月玫瑰六月丁香| 亚洲欧美日韩无卡精品| 国产精品98久久久久久宅男小说| 两个人看的免费小视频| 久久性视频一级片| 91麻豆精品激情在线观看国产| 97碰自拍视频| 日本熟妇午夜| 欧洲精品卡2卡3卡4卡5卡区| 中文字幕熟女人妻在线| 五月伊人婷婷丁香| 国产精品久久久久久久久免 | 国产欧美日韩精品亚洲av| 国内精品美女久久久久久| 又黄又粗又硬又大视频| 丁香六月欧美| 狂野欧美白嫩少妇大欣赏| 最近最新中文字幕大全免费视频| 亚洲av电影在线进入| 久久欧美精品欧美久久欧美| 婷婷亚洲欧美| www日本在线高清视频| 美女被艹到高潮喷水动态| 精品99又大又爽又粗少妇毛片 | 亚洲av免费高清在线观看| 午夜福利在线观看吧| 欧美zozozo另类| 91在线精品国自产拍蜜月 | 禁无遮挡网站| 18美女黄网站色大片免费观看| av视频在线观看入口| 舔av片在线| 黄片小视频在线播放| 久久国产乱子伦精品免费另类| 伊人久久大香线蕉亚洲五| 成人永久免费在线观看视频| 怎么达到女性高潮| 在线观看午夜福利视频| 88av欧美| 精品国产三级普通话版| 麻豆久久精品国产亚洲av| 国产在视频线在精品| 美女cb高潮喷水在线观看| 69人妻影院| 国产91精品成人一区二区三区| 国产爱豆传媒在线观看| 国产精品99久久久久久久久| 99热这里只有精品一区| 日韩亚洲欧美综合| 99国产综合亚洲精品| 国产av麻豆久久久久久久| 成人鲁丝片一二三区免费| 国产精品嫩草影院av在线观看 | 久久久精品大字幕| av视频在线观看入口| 免费高清视频大片| 美女大奶头视频| 手机成人av网站| 中文字幕高清在线视频| 看片在线看免费视频| 三级毛片av免费| 日本 欧美在线| 亚洲国产欧美人成| 国产高潮美女av| 岛国在线观看网站| 国产精品野战在线观看| 亚洲av不卡在线观看| 美女cb高潮喷水在线观看| 嫩草影院精品99| 国产精品一区二区三区四区久久| 男女午夜视频在线观看| 欧美大码av| 久久久久国内视频| 嫩草影院精品99| 日本精品一区二区三区蜜桃| 人人妻人人澡欧美一区二区| 国产精品野战在线观看| 黄色丝袜av网址大全| 99精品久久久久人妻精品| 国产高清有码在线观看视频| 国产精品爽爽va在线观看网站| 国产精品久久久人人做人人爽| 精品人妻1区二区| 国产午夜福利久久久久久| 久久国产精品人妻蜜桃| 欧美成人免费av一区二区三区| 国产成人aa在线观看| 成人无遮挡网站| 深爱激情五月婷婷| 一区福利在线观看| 99久久精品热视频| 精品国产美女av久久久久小说| 亚洲片人在线观看| 国产午夜福利久久久久久| 欧美最新免费一区二区三区 | 91在线精品国自产拍蜜月 | 国产老妇女一区| 成年女人看的毛片在线观看| 国产野战对白在线观看| 国产极品精品免费视频能看的| netflix在线观看网站| a级一级毛片免费在线观看| 国产高清videossex| av黄色大香蕉| 国产在线精品亚洲第一网站| 国产精品久久电影中文字幕| 免费看日本二区| 国内精品久久久久久久电影| 最近最新中文字幕大全免费视频| 俄罗斯特黄特色一大片| 黄色视频,在线免费观看| 香蕉丝袜av| 综合色av麻豆| 超碰av人人做人人爽久久 | 老司机福利观看| 免费看日本二区| aaaaa片日本免费| 亚洲avbb在线观看| 欧美色视频一区免费| 日本一二三区视频观看| 亚洲国产色片| 热99re8久久精品国产| 久久午夜亚洲精品久久| 亚洲18禁久久av| 国产欧美日韩一区二区三| 男女做爰动态图高潮gif福利片| 国产av在哪里看| 精品人妻偷拍中文字幕| 国产男靠女视频免费网站| 在线天堂最新版资源| 国产精品一区二区三区四区免费观看 | 一本一本综合久久| 别揉我奶头~嗯~啊~动态视频| 麻豆国产av国片精品| 国产麻豆成人av免费视频| xxxwww97欧美| 免费观看的影片在线观看| 高清毛片免费观看视频网站| 午夜福利视频1000在线观看| 精品久久久久久久末码| 国产一区在线观看成人免费| 亚洲av成人不卡在线观看播放网| 亚洲精品亚洲一区二区| 精华霜和精华液先用哪个| 亚洲av二区三区四区| 欧美日韩精品网址| 亚洲成av人片在线播放无| 欧美一级a爱片免费观看看| 国产探花在线观看一区二区| 国产成人a区在线观看| 99久久精品一区二区三区| 一本精品99久久精品77| 欧美一级a爱片免费观看看| 久久精品国产综合久久久| 欧美日韩瑟瑟在线播放| 91在线观看av| 高潮久久久久久久久久久不卡| 亚洲国产精品久久男人天堂| 亚洲不卡免费看| 欧美日韩亚洲国产一区二区在线观看| 国产日本99.免费观看| 少妇人妻精品综合一区二区 | 免费av观看视频| 人妻丰满熟妇av一区二区三区| 最新美女视频免费是黄的| 97超级碰碰碰精品色视频在线观看| 很黄的视频免费| www国产在线视频色| 国产视频内射| 少妇的丰满在线观看| 美女高潮的动态| 午夜激情福利司机影院| 久久性视频一级片| 日韩欧美精品免费久久 | 麻豆一二三区av精品| 很黄的视频免费| 狂野欧美白嫩少妇大欣赏| 亚洲欧美日韩卡通动漫| 国产蜜桃级精品一区二区三区| 草草在线视频免费看| 男女做爰动态图高潮gif福利片| 不卡一级毛片| av在线蜜桃| 成人国产一区最新在线观看| 国产男靠女视频免费网站| 午夜福利欧美成人| 色综合亚洲欧美另类图片| 亚洲av美国av| 哪里可以看免费的av片| 有码 亚洲区| 乱人视频在线观看| 国产伦人伦偷精品视频| 免费搜索国产男女视频| 国产淫片久久久久久久久 | 长腿黑丝高跟| 高清毛片免费观看视频网站| 色av中文字幕| 日本熟妇午夜| 日本与韩国留学比较| 久久精品综合一区二区三区| 欧美黄色片欧美黄色片| 欧美又色又爽又黄视频| 国产av在哪里看| 国产av在哪里看| 97人妻精品一区二区三区麻豆| 久久精品国产自在天天线| 色噜噜av男人的天堂激情| 婷婷六月久久综合丁香| 18禁黄网站禁片免费观看直播| 日本 av在线| 香蕉av资源在线| 女同久久另类99精品国产91| 亚洲最大成人中文| 欧美日韩综合久久久久久 | 精品熟女少妇八av免费久了| 可以在线观看的亚洲视频| 精品无人区乱码1区二区| 法律面前人人平等表现在哪些方面| 女人被狂操c到高潮| 精品99又大又爽又粗少妇毛片 | 又紧又爽又黄一区二区| 精品福利观看| 国产高清视频在线播放一区| 在线观看av片永久免费下载| av中文乱码字幕在线| 欧美bdsm另类| 国产国拍精品亚洲av在线观看 | 757午夜福利合集在线观看| 精品福利观看| 身体一侧抽搐| 在线十欧美十亚洲十日本专区| 欧美乱色亚洲激情| 国产精品1区2区在线观看.| 国产高清视频在线播放一区| 国产三级在线视频| 国产免费av片在线观看野外av| АⅤ资源中文在线天堂| а√天堂www在线а√下载| 精品欧美国产一区二区三| 国产成人av教育| 国产真实乱freesex| 亚洲av免费高清在线观看| 免费在线观看成人毛片| 成人亚洲精品av一区二区| 中文在线观看免费www的网站| 淫妇啪啪啪对白视频| bbb黄色大片| 精品午夜福利视频在线观看一区| 老司机午夜十八禁免费视频| 蜜桃亚洲精品一区二区三区| 老司机午夜福利在线观看视频| 亚洲国产中文字幕在线视频| 日本黄色片子视频| 亚洲精品乱码久久久v下载方式 | 亚洲在线自拍视频| 少妇熟女aⅴ在线视频| 久久欧美精品欧美久久欧美| 热99在线观看视频| 深夜精品福利| 精品免费久久久久久久清纯| 一夜夜www| 日本a在线网址| 69人妻影院| 最近在线观看免费完整版| 99久国产av精品| 啦啦啦韩国在线观看视频| 亚洲欧美日韩东京热| 一区二区三区高清视频在线| 精品人妻偷拍中文字幕| 一区福利在线观看| 深爱激情五月婷婷| 午夜精品在线福利| 法律面前人人平等表现在哪些方面| 在线观看舔阴道视频| 国产一区二区三区视频了| 欧美bdsm另类| 成人特级av手机在线观看| 欧美成人一区二区免费高清观看| 欧美乱妇无乱码| 欧美黄色淫秽网站| 国产aⅴ精品一区二区三区波| 午夜日韩欧美国产| 麻豆成人av在线观看| 女同久久另类99精品国产91| 欧美一区二区精品小视频在线| 国产主播在线观看一区二区| 成年女人永久免费观看视频| 欧美黑人巨大hd| 久久精品国产99精品国产亚洲性色| 九色国产91popny在线| 啦啦啦韩国在线观看视频| 亚洲av二区三区四区| 日韩成人在线观看一区二区三区| 欧美日韩乱码在线| 久久香蕉国产精品| 日本黄色片子视频| 亚洲色图av天堂| 丰满人妻一区二区三区视频av | 女人被狂操c到高潮| 亚洲专区国产一区二区| 免费电影在线观看免费观看| 午夜激情福利司机影院| 内射极品少妇av片p| 搡女人真爽免费视频火全软件 | 波多野结衣高清作品| 国产麻豆成人av免费视频| 亚洲国产精品合色在线| 欧美黄色片欧美黄色片| 美女 人体艺术 gogo| 国产探花极品一区二区| 18禁国产床啪视频网站| 成人性生交大片免费视频hd| 久久精品91蜜桃| 麻豆国产97在线/欧美| 99久久综合精品五月天人人| 成年女人看的毛片在线观看| 俄罗斯特黄特色一大片| 成人18禁在线播放| 日韩人妻高清精品专区| 桃红色精品国产亚洲av| 国产成+人综合+亚洲专区| 国产不卡一卡二| 最近在线观看免费完整版| 搡老熟女国产l中国老女人| 国产高清激情床上av| 久久久国产成人免费| 亚洲最大成人中文| 欧美黑人欧美精品刺激| 成人鲁丝片一二三区免费| 一区二区三区激情视频| 90打野战视频偷拍视频| 亚洲久久久久久中文字幕| 91久久精品电影网| 91久久精品国产一区二区成人 | 亚洲精品一卡2卡三卡4卡5卡| 麻豆成人午夜福利视频| 制服人妻中文乱码| 欧美又色又爽又黄视频| 亚洲av熟女| 99热这里只有是精品50| 欧美av亚洲av综合av国产av| 18禁裸乳无遮挡免费网站照片| 少妇的逼水好多| 国产一区二区在线观看日韩 | 亚洲av电影不卡..在线观看| 日韩欧美 国产精品| 日韩av在线大香蕉| 啦啦啦韩国在线观看视频| 日本五十路高清| 国产精品久久久久久人妻精品电影| 午夜日韩欧美国产| 18禁国产床啪视频网站| 国产单亲对白刺激| 精品一区二区三区人妻视频| 欧美黑人巨大hd| 亚洲av中文字字幕乱码综合| 搡女人真爽免费视频火全软件 | 久久久久久久午夜电影| 亚洲国产中文字幕在线视频| 好男人电影高清在线观看| 久久精品91无色码中文字幕| 91在线观看av| 日本精品一区二区三区蜜桃| 欧美3d第一页| 国产午夜福利久久久久久| 一夜夜www| 日日夜夜操网爽| 午夜福利欧美成人| 国产成人av教育| 在线a可以看的网站| 午夜福利免费观看在线| 中文字幕人妻熟人妻熟丝袜美 | 国产成人aa在线观看| 女同久久另类99精品国产91| 男女之事视频高清在线观看| 国产欧美日韩精品一区二区| 久久精品国产清高在天天线| 性欧美人与动物交配| av在线蜜桃| 亚洲五月天丁香| 欧美绝顶高潮抽搐喷水| 久久久久久久久久黄片| 人妻久久中文字幕网| 亚洲真实伦在线观看| 欧美色视频一区免费| 国产黄片美女视频| 丰满乱子伦码专区| 精品久久久久久久久久久久久| 97人妻精品一区二区三区麻豆| e午夜精品久久久久久久| 身体一侧抽搐| 夜夜爽天天搞| 内射极品少妇av片p| 欧美黑人欧美精品刺激| 欧洲精品卡2卡3卡4卡5卡区| 精品人妻1区二区| 狂野欧美白嫩少妇大欣赏| 成年女人看的毛片在线观看| 久久天躁狠狠躁夜夜2o2o| 白带黄色成豆腐渣| 制服丝袜大香蕉在线| 国产亚洲精品av在线| АⅤ资源中文在线天堂| 国产色爽女视频免费观看| 久久精品夜夜夜夜夜久久蜜豆| 欧美黄色淫秽网站| 亚洲精品亚洲一区二区| 久久午夜亚洲精品久久| 欧美日韩综合久久久久久 | e午夜精品久久久久久久| 91久久精品电影网| 午夜精品在线福利| 九九在线视频观看精品| 丝袜美腿在线中文| 国产免费男女视频| 99国产综合亚洲精品| 国产精品野战在线观看| 在线免费观看的www视频| 亚洲av电影不卡..在线观看| 99国产极品粉嫩在线观看| 国产美女午夜福利| 日韩中文字幕欧美一区二区| 91久久精品国产一区二区成人 | 日本黄大片高清| 亚洲av免费高清在线观看| 久久香蕉精品热| 俺也久久电影网| 在线a可以看的网站| 一个人观看的视频www高清免费观看| 亚洲va日本ⅴa欧美va伊人久久| 中文字幕熟女人妻在线| 国产激情偷乱视频一区二区| 国产高清视频在线观看网站| 午夜久久久久精精品| 男女做爰动态图高潮gif福利片| 成人亚洲精品av一区二区| 少妇人妻一区二区三区视频| 99热6这里只有精品| 国产乱人视频| 操出白浆在线播放| 国产亚洲精品久久久久久毛片| 狠狠狠狠99中文字幕| 国产亚洲精品一区二区www| a级毛片a级免费在线| 日韩欧美在线乱码| 欧美一区二区国产精品久久精品| 日本一本二区三区精品| 精品乱码久久久久久99久播| 国产又黄又爽又无遮挡在线| 在线免费观看的www视频| 国内精品久久久久精免费| 国产精品乱码一区二三区的特点| 国产伦人伦偷精品视频| 欧美绝顶高潮抽搐喷水| 成人午夜高清在线视频| 三级男女做爰猛烈吃奶摸视频| 国模一区二区三区四区视频| 久久国产精品影院| 欧美成狂野欧美在线观看| av在线蜜桃| 熟女人妻精品中文字幕| 大型黄色视频在线免费观看| 99精品久久久久人妻精品| 两个人的视频大全免费| 精品熟女少妇八av免费久了| 99久久久亚洲精品蜜臀av| 国产精品美女特级片免费视频播放器| ponron亚洲| 亚洲人成伊人成综合网2020| 人人妻,人人澡人人爽秒播| 少妇人妻精品综合一区二区 | 99久久精品热视频| 99热这里只有是精品50| 午夜a级毛片| 高清在线国产一区| 97超视频在线观看视频| 久久久久精品国产欧美久久久| 99久久精品热视频| 久久久久精品国产欧美久久久| 99久久精品热视频| 天堂影院成人在线观看| 香蕉av资源在线| 亚洲av成人精品一区久久| 变态另类丝袜制服| 一区二区三区国产精品乱码| 色综合站精品国产| 国产熟女xx| 18禁美女被吸乳视频| 国内精品一区二区在线观看| 欧美成人a在线观看| 中文亚洲av片在线观看爽| 给我免费播放毛片高清在线观看|