• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cloud-Verhulst hybrid prediction model for dam deformation under uncertain conditions

    2018-05-11 11:48:42JinpingHeZhenxingJingChengZhoZhengqunPengYuqunShi
    Water Science and Engineering 2018年1期

    Jin-ping He*,Zhen-xing Jing,Cheng Zho,Zheng-qun Peng,Yu-qun Shi

    aSchool of Water Resources and Hydropower Engineering,Wuhan University,Wuhan 430072,China

    bState Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University,Wuhan 430072,China

    cLarge Dam Safety Supervision Center,National Energy Administration,Hangzhou 311122,China

    1.Introduction

    With the growing number of 300 m-high dams in China,the safety of dams has increasingly become a concern among engineers and the public.However,theoretical studies on the safety of high dams,such as studies on the failure mechanisms,failure modes,safety evaluation,and risk analysis of high dams,remain inadequate.Safety monitoring data have been considered the most important factors for diagnosing dam health and providing warnings.Dam deformation is the most important variable in dam safety monitoring,and the monitoring data intuitively and effectively reflect dam safety.Deformation prediction is an important part of dam safety monitoring and early warning systems.

    At present,the most frequently used methods for dam deformation prediction include prediction models based on time-series theory(Xu,1988),causal relations(Gu and Wu,2006;Jiang and He,2016;Mata et al.,2014),grey system theory(Liu and Xie,2013;Liu et al.,2003;Zheng and Wang,2014),and neural networks(Yang et al.,2001;Abbaspour et al.,2013).The time-series prediction model forecasts the future variation tendency based on the internal variation regularity in historical monitoring data.In the prediction model based on causal relations,environmental variables are considered independent variables,effective variables to be monitored are considered dependent variables,and a deterministic causal relation is considered to exist between both types of variables.The grey system prediction model addresses the issue of incomplete information(e.g.,a small sample size and poor information)in dam deformation prediction,that is,predictions are made using the variation regularity mined from limited deformation monitoring data.The neural network prediction model sets dam environmental variables as input node variables and effective variables as output node variables,and it is characterized by nonlinearity with self-learning ability and can be used to predict deformation.

    Both the time-series prediction model and grey system prediction model are essentially considered autocorrelation prediction models,based on the variation regularity in monitoring data.By contrast,the causal relation prediction model and neural network prediction model are causal models,based on the regularity of how independent variables in fluence dependent variables.The time-series prediction model and causal relation prediction model are typical deterministic prediction models.The neural network prediction model emphasizes nonlinearity,rather than uncertainty.The grey system prediction model only considers incompleteness,which is an attribute of uncertainty.Thus,the existing dam deformation prediction models essentially belong to the category of deterministic prediction models,seldom or never considering uncertainty factors.

    A dam can be considered an uncertainty- filled complex system in the operational environment,and those uncertainty factors directly affect dam safety.The uncertainty factors are generally classified according to the following five attributes:randomness, fuzziness, incompleteness,instability,and inconsistency,with the first two factors regarded as the most fundamental attributes of uncertainty(JCSS,2001).Owing to the fact that a classical mathematical theory cannot solve the uncertainty issue,cloud model theory has been applied.It combines probability theory and fuzzy mathematical theory,and describes randomness,fuzziness,and the correlation between these two attributes in an integrated manner by endowing sample points with random certainty.However,cloud prediction models exhibit unsatisfactory performance when periodic monitoring data vary significantly(Li et al.,2004;Wang et al.,2012).In this study,the Verhulst model based on grey system theory was combined with a cloud model,and a cloud-Verhulst hybrid prediction model was established.This model takes uncertainty and the change trend in monitoring information into account.

    2.Cloud prediction model

    2.1.Introduction to cloud prediction model

    We assume thatUis a quantitative domain,andCis a qualitative concept corresponding toU.If a quantitative valuex∈Uis a random realization of the qualitative conceptC,a corresponding membership degree μ(x)toCexists,and μ(x)∈[0,1]is a random number with a stable trend,i.e.,

    The distribution ofxin domainUis defined a cloud model,and eachxand its corresponding membership degree μ(x)constitute a cloud drop.

    In a cloud model,the qualitative conceptCis represented by three characteristic parameters,namely,expectation(Ex),entropy(En),and hyper-entropy(He).Exreflects the median value of cloud drops in the domain space and is the most important parameter representing the qualitative concept.Enreflects the distribution of uncertainties,representing the range of values that can be accepted in a domain;it reflects the discrete degree(randomness)of cloud drops and the fuzziness attribute of the qualitative concept.Heis a measure of the uncertainty inEnand is jointly determined by the randomness and fuzziness ofEn,mainly reflecting the cohesion of uncertainties in the qualitative concept.Therefore,cloud model theory has certain advantages over probability theory,fuzzy mathematics,and rough set theory.These advantages include the capabilities of characterizing the randomness and fuzziness of the qualitative concept simultaneously and the conversion between qualitative uncertainty and quantitative uncertainty.

    The conversions between the qualitative concept and quantitative data are performed with cloud generators,namely,the forward cloud generator(FCG)and backward cloud generator(BCG),which are the two most important algorithms in a cloud model.FCG generates quantitative data from digital cloud characteristics,producing cloud drops,drop(x,μ),based on the qualitative characteristicsC(Ex,En,He).BCG transforms a number of quantitative data into qualitative characteristics,C(Ex,En,He),mapping from quantitative data to the qualitative concept.By inputtingx=x0and μ = μ0as the variables at the base of FCG,thex-condition cloud generator andy-condition cloud generator are generated to calculatedrop(x,μ)under thex-condition andy-condition,respectively.

    Considering the characteristics and advantages of a cloud model in the conversions between the qualitative concept and quantitative data,several scholars have proposed cloud prediction models based on cloud model theory(Jiang et al.,2000).The cloud prediction model aims to solve the uncertainty issue in the time-series prediction model with a cloud model.This prediction model mines variation regularity in the time-series data and adopts FCG and BCG as core algorithms to realize a reasoning process considering uncertainties.

    The cloud prediction model is suitable for prediction of timeseries data,especially the approximate periodic time-series data.To an approximate periodic time-series {x0,x1,x2,…,xn},we assume a period lengthTand an integerkthat maken=kT+n′,wheren′is the remainder of the integer period.The approximate periodic time-series data are classified into historical data(HD)and current data(CD).The historical data set is{x0,xT,…,xkT} and the current data set is {xkT+1,xkT+2,…,xkT+n′}.Each of which is represented by a cloud model.The historical cloud model,reflecting the approximate periodic variation regularity,is obtained from HD,whereas the current cloud model,representing the development tendency,is obtained from CD.The maximum membership degree principle is used to determine whether the time-series data belong to the historical data set or the current data set. BCG is used to identify the implicit information in HD and CD. By introducing inertia weight, the characteristic parameters of a synthetic cloud model can be obtained. Subsequently, the uncertainty reasoning duringthe conversion of the qualitative concept (characteristic parameters) into quantitative data can be realized by FCG, and the prediction is finally achieved. As the synthetic cloud is obtained by integrating the approximate periodic variation regularity and development tendency, the prediction results are more valuable.

    Dam deformation monitoring data are generally characterized by annually periodic features.Therefore,the cloud prediction model can be used to forecast dam deformation.Taking a year as a periodic interval,deformation monitoring time-series data can be divided into HD and CD.Furthermore,BCG is used to generate the historical cloud that reflects the deformation regularity quantitatively and cloud characteristic parameters of the current cloud.Considering the historical cloud and characteristic parameters to be inputs,and utilizing the condition FCGs to generate the prediction cloud according to certain prediction rules and conditional algorithms,the prediction from the qualitative concept to quantitative data is achieved.Methods of backward cloud transformation and forward cloud transformation of dam deformation monitoring data are shown in He et al.(2016)and Yu et al.(2007).

    2.2.Limitations of cloud prediction model

    Cloud prediction models enable the conversions between the qualitative concept and quantitative data,thereby better characterizing uncertainties in predicting concrete dam deformation.However,further research shows that the performance of a cloud prediction model is unsatisfactory for periodically changed time-series data with a remarkable trend(Jiang et al.,2000).The cloud characteristic parameterExis mainly obtained with a weighted average method.However,it is difficult to reflect the trend of data with inertia weight.A significant degree of subjectivity introduced in the construction of the HD set and CD set in the cloud prediction model leads to randomness in dividing HD and CD and consequently influences the prediction results.

    Normally,dam concrete shows a rapid change in deformation in the initial stage of water storage and then stabilizes over time in the operational stage.The emergence of significant dam deformation in the operational stage signifies a potentialdanger.Therefore,the variation trend of damdeformation is considered one of the main indicators for assessing dam safety.The variation trend of dam deformation is similar to the variation curve of the Verhulst model,so we can combine the Verhulst model and the cloud prediction model to establish a hybrid prediction model for dam deformation prediction,in which the Verhulst model is used to calculate the cloud characteristic parameterExthat describes the variation trend,and the inertia weigh is introduced to obtain the other two cloud characteristic parameters,EnandHe.This new hybrid model reflects not only the trend in the data series but also the uncertainty in monitoring data,effectively avoiding the subjectivity in differentiating between the HD set and CD set.

    3.Cloud-Verhulst hybrid prediction model

    3.1.Verhulst model

    whereaandbare the model parameters,which can be determined with the increment seriesX(0)using the least square method.X(0)can be obtained by applying a one-time inverse accumulated generation operation toX(1).

    3.2.Steps for establishing hybrid prediction model

    The cloud-Verhulst hybrid prediction model combines the advantages of a cloud prediction model in expressing uncertainty and the Verhulst model in expressing trends.The modeling flow of the cloud-Verhulst hybrid prediction model is shown in Fig.1.

    Based on the periodic variation characteristic and distribution regularity of dam deformation data and the distribution curve of the normal cloud,the distribution of cloud dropsdrop(xi,μi)is determined by the random generator of cloud drops based on the central limit principle(He et al.,2016).The equation for the expected distribution curve of the normal cloud is as follows:

    wherexis the mean value of an effective variable,and σ is the standard deviation of the monitoring data.

    By importing cloud dropsdrop(xi,μi)into BCG,the cloud characteristic parameters of the effective variable for different monitoring periods can be obtained as{Ex1,Ex2, …,Exm},{En1,En2, …,Enm},and {He1,He2, …,Hem},wheremis the number of monitoring periods.

    With the obtained cloud characteristic parameters,the dam deformation monitoring data are input to thex-condition cloud generator to calculate the membership degreeof a monitoring datum to a monitoring period,where the serial number of monitoring time(i=1,2,…,n),andjis the serial number of the monitoring period(j=1,2,…,m).The membership degree matrix is as follows:

    Fig.1.Modeling flow of cloud-Verhulst hybrid prediction model.

    Generally,the variation in time-series data is gradual.Long-term monitoring data can reflect a general trend roughly but cannot represent the current variation trend.Thus,recent monitoring data are of greater importance in prediction and assigned higher weights than those obtained from longterm monitoring. Accordingly, the inertia weights

    With the inertia weights{ω1, ω2, …, ωm}and the cloud characteristic parameters{Ex1,Ex2, …,Exm},{En1,En2, …,Enm},and {He1,He2, …,Hem},using the weighted average algorithm,the cloud characteristic parametersEn,He,and the membership degreeof the hybrid cloud prediction model can be calculated as follows:

    With the obtained cloud characteristic parametersEx,En,andHeof the hybrid cloud model,they-condition cloud generator is established by combining the comprehensive membership degreeThus,the conversion from the qualitative concept to a range of quantitative data,i.e.,[minxn+1,maxxn+1],is achieved,and uncertainty reasoning is realized for prediction.

    In the proposed hybrid prediction model,Exrepresents the central value of deformation prediction at some points in the future.Enrepresents the uncertainty in the deformation monitoring data;the smaller theEnvalue is,the more credible the prediction results are.Herepresents the comprehensive uncertainty in the factors that influence the credibility of deformation monitoring data;the smaller theHevalue is,the less the influence of the external factors on the uncertainty in prediction results is.

    The uncertainty of monitoring data is fully considered in the proposed hybrid prediction model;the cloud drops and outputs are not unique and definite but are random values based on specific reasoning rules.Thus,the prediction results can better reflect the uncertainty in dam deformation.

    4.Application

    4.1.General situation of project

    A key hydroelectric plant on the middle reaches of the Guandu River in Hubei Province in China was considered in this study.This hydroelectric project is mainly composed of a concrete gravity dam and a diversion system.The maximum height of the dam is 67.5 m,the length of the dam crest is 128 m,and the elevation of the dam crest is 399.5 m.The dam consists of eight monoliths: five are over flow monoliths(monoliths 3 through 7)and three are water-retaining monoliths.

    A wire alignment system,with 12 monitoring points(EX1 through EX12),was installed on the crest of the concrete gravity dam to monitor the horizontal displacement.The horizontal displacement values from July 2008 to June 2012 at EX9 were sampled to analyze and model.The wire alignment system was monitored once a month,and the monitoring results are shown in Fig.2.

    The cloud-Verhulst hybrid prediction model was established based on the monitoring values at EX9,and the horizontal displacements from July 2012 to December 2012 were forecasted,and then compared with the monitoring values.

    4.2.Establishment of model

    Because of the periodic variation characteristic of the environmental variables,the horizontal displacement of the dam crest also shows significant periodic variation characteristics.In the modeling process,the monitoring time-series data were divided into four periods,i.e.,July 2008 to June 2009,July 2009 to June 2010,July 2010 to June 2011,and July 2011 to June 2012.The expected distribution curve of the normal cloud is expressed as

    Fig.2.Process line of EX9 from July 2008 to June 2012.

    Based on the monitoring data of horizontal displacements and the expected distribution curve of the normal cloud,drop(xi,μi)was determined with the random generator of clod drops.The cloud characteristic parameters in each monitoring period were calculated with BCG,and the calculated results are as follows:{Ex1,Ex2,Ex3,Ex4} = {3.9928,5.7158,6.9274,7.5785},{En1,En2,En3,En4} ={1.5479,1.6997,1.5905,1.6272},and {He1,He2,He3,He4}= {0.13,0.22,0.48,0.12}.

    Exrepresents the horizontal displacements along the river and their variation trend.The deformation shows a gradually increasing trend.Enrepresents the dispersion of the horizontal displacements and reflects the observational error to a certain degree.Hereflects uncertainties in the factors caused by the observational error.

    According to the cloud characteristic parameters in each monitoring period,the horizontal displacements at EX9 were input to thex-condition cloud generator to calculate the membership degreeof the monitoring data to each monitoring period.The calculated results are as follows:

    The time-series data of horizontal displacements atEX9from July 2008 to June 2012 show an increasing trend,and higher weights were assigned to recent monitoring data in the deformation prediction.Inertia weight was adopted to reflect the influence of the horizontal displacement data on the prediction results in this study. According to monitoring data from July2008 to June 2012,basically consistent in observation accuracy,inertia weights were determined with the linear inertia weight variation model(Li et al.,2016).Taking 0.18 as the benchmark weight,0.04 as a basic interval,and 0.01 as an inertia interval,the weights of the monitoring data in the four years were set as{ω1, ω2, ω3, ω4} = {0.18,0.22,0.27,0.33}.

    Adopting parameterExfrom the above calculation as the original input data for the Verhulst model,the model parametersaandbwere obtained with the least square method by parameter estimation using Matlab software,and the calculated results werea=-1.0289,andb=-2.0390.

    The fitting curve ofExbased on the calculated results of the four periods was obtained by the least square method,as shown in Fig.3,with the correlation coefficientrof 0.99,showing that it is reasonable to use the Verhulst model to calculate the cloud characteristic parameterEx.From the curve,Exof the prediction period from July to December,2012,i.e.,the 5th period in Fig.3,can be obtained as 7.8786.

    Fig.3.Fitting curve of Ex by Verhulst model.

    Furthermore,the parametersEnandHecould be calculated with Eqs.(5)and(6),respectively.Thus,the characteristic parametersEx,En,andHeof the hybrid prediction model were obtained as 7.8786,1.6228,and 0.213,respectively.

    The comprehensive membership degree,calculated with Eq.(7),is= {0.20933,0.97498, …,0.65251}.

    With the comprehensive membership degreeand the obtained model characteristic parametersEx,En,andHe,the cloud generators were established.They-condition cloud generator was employed to realize the conversion from qualitative concepts to quantitative data.As a result,the prediction results of dam deformation in the succeeding six months(July to December,2012)were obtained.Given that the outputs of the algorithm were not unique but random values according to specific reasoning rules,numerous prediction operations were conducted with the proposed model,and more feasible prediction results were obtained.The maximum values,minimum values,and average values of the prediction results were recorded.In this study,we also established a traditional statistical model to verify the results of the cloud-Verhulst hybrid prediction model.The comparisons of the prediction results of the present method with those of the traditional statistical model as well as the monitoring values are presented in Table 1 and Fig.4.

    4.3.Analysis of modeling results

    Fig.4 shows that the prediction results of the cloud-Verhulst hybrid prediction model basically coincide with the monitoring data.Table 1 shows that the absolute values of the relative errors of all the predicted average values from the hybrid prediction model are less than 5%.Generally,the hybrid prediction model has high prediction accuracy.At the same time,as the concept of inertia weight was adopted,the prediction accuracy of the latter horizontal displacement is higher than that of the previous ones.Comparison between the prediction results of the cloud-Verhulst hybrid prediction model and those of the traditional statistical model indicates that the cloud-Verhulst hybrid prediction model demonstrates higher prediction precision than the traditional statistical model.Therefore,the cloud-Verhulst hybrid prediction model is feasible and effective.

    Table 1Prediction results at EX9 obtained by hybrid prediction model and traditional statistical model and comparison with monitoring data.

    Fig.4.Comparison of prediction results at EX9 obtained by different models.

    Because of the deterministic feature of the traditional statistical model,the predicted value is a unique value,so the possibility of false positives increases in practice.Because the uncertainty is considered in the hybrid prediction method,the predicted values are interval values.Interval values are more consistent with the uncertainty characteristics of prediction,and can also reduce the possibility of false positives.

    5.Conclusions

    Focusing on complex uncertainty,cloud model theory provides a new theoretical basis for approaches to predicting dam deformation.

    In view of the limitations of a cloud model when variables are periodically changed with a remarkable trend,a cloud-Verhulst hybrid prediction model was established in this study through combination of the Verhulst model with the cloud prediction model.The hybrid prediction model uses the Verhulst model to calculate the cloud characteristic parameterEx,which reflects the variation trend,and a weighted average algorithm to obtain the other two characteristic parametersEnandHe.The analysis results show that the hybrid prediction model is feasible and effective for prediction of variables through consideration of the uncertainty in the monitoring information.Moreover,the hybrid prediction model is particularly suitable for prediction of the variation trend of periodically changed variables owing to the introduction of the Verhulst model.

    In view of the inherent variation trend and evolution of excavation-induced dam deformation in time-series data,the hybrid prediction model comprehensively considered the in fluence of uncertainty factors in the process of dam deformation,achieving dam deformation prediction under uncertain conditions.However,the effects of environmental variables,such as water pressure and temperature,are not considered in this model,which may affect the prediction accuracy.

    References

    Abbaspour,A.,Farsadizadeh,D.,Ghorbani,M.A.,2013.Estimation of hydraulic jump on corrugated bed using artificial networks and genetic programming.Water Sci.Eng.6(2),189-198.https://doi.org/10.3882/j.issn.1674-2370.2013.02.007.

    Gu,C.S.,Wu,Z.R.,2006.Safety Monitoring of Dams and Dam Foundations:Theories&Methods and Their Application.Hohai University Press,Nanjing(in Chinese).

    He,J.P.,Gao,Q.,Shi,Y.Q.,2016.A multi-hierarchical comprehensive evaluation method of dam safety based on cloud model.Syst.Eng.Theory Pract.36(11),2977-2983.https://doi.org/10.12011/1000-6788(2016)11-2977-07(in Chinese).

    Jiang,R.,Li,D.,Chen,H.,2000.Time-series prediction with cloud models in DMKD.J.PLA Univ.Sci.Technol.1574,55-530(in Chinese).

    Jiang,Z.X.,He,J.P.,2016.Method of fusion diagnosis for dam service status based on joint distribution function of multiple points.Math.Probl.Eng.2016,9049260.https://doi.org/10.1155/2016/9049260.

    Joint Committee on Structural Safety(JCSS),2001.JCSS Probabilistic Model Code.JCSS.

    Li,D.Y.,Liu,C.Y.,Du,Y.,Han,X.,2004.Artificial intelligence with uncertainty.J.Softw.15(11),1583-1594.https://doi.org/10.13328/j.cnki.jos.2004.11.001(in Chinese).

    Li,X.J.,Xu,J.,Zhu,E.Z.,Zhang,Y.W.,2016.A novel computation method for adaptive inertia weight of task scheduling algorithm.J.Comput.Res.Dev.53(9),1990-1999.https://doi.org/10.7544/issn1000-1239.2016.20151175(in Chinese).

    Liu,G.H.,He,Y.B.,Wang,S.Y.,2003.Application of grey multi-variable forecasting model for the settlement of earth dam.J.Hydraul.Eng.6(12),84-88.https://doi.org/10.13243/j.cnki.slxb.2003.12.013(in Chinese).

    Liu,S.F.,Xie,N.M.,2013.Grey System Theory and its Application.Science Press,Beijing(in Chinese).

    Mata,J.,de Castro,A.T.,da Costa,J.S.,2014.Constructing statistical models for arch dam deformation.Struct.Contr.Health Monit.21(3),423-437.https://doi.org/10.1002/stc.1575.

    Wang,G.Y.,Li,D.Y.,Yao,Y.Y.,2012.Cloud Model and Granular Computing.Science Press,Beijing(in Chinese).

    Wang,Z.X.,Dang,Y.G.,Liu,S.F.,2009.Unbiased grey Verhulst model and its application.Syst.Eng Theory Pract.29(10),138-144.

    Xu,P.L.,1988.Application of time series analysis to the prediction of deformation for dams.J.Wuhan Tech.Univ.Surv.Mapp.13(3),23-31.https://doi.org/10.13203/j.whugis1988.03.004(in Chinese).

    Yang,J.,Wu,Z.R.,Gu,C.S.,2001.Dam deformation monitoring model and forecast based on BP algorithm of artificial neural networks.J.Xi'an Univ.Technol.17(1),25-29(in Chinese).

    Yu,S.W.,Cao,K.,Zhao,M.,2007.Traffic information forecast algorithm based on the one-dimension cloud model.J.Shandong Univ.(Eng.Sci.)37(2),121-126.https://doi.org/10.3969/j.issn.1672-3961.2007.02.026(inChinese).

    Zheng,K.H.,Wang,Z.Q.,2014.Application of systematical optimization GM(1,1)model based on lifting wavelet in dam displacement forecast.Appl.Mech.Mater.488-489,759-764.https://doi.org/10.4028/www.scientific.net/AMM.488-489.759.

    日韩中文字幕欧美一区二区| 网址你懂的国产日韩在线| 看黄色毛片网站| 一个人看的www免费观看视频| 村上凉子中文字幕在线| 欧美一区二区国产精品久久精品| 亚洲欧美日韩高清专用| 色尼玛亚洲综合影院| 9191精品国产免费久久| 国产爱豆传媒在线观看| 亚洲av成人av| 别揉我奶头~嗯~啊~动态视频| 级片在线观看| 国产乱人伦免费视频| 亚洲欧美日韩无卡精品| 18禁美女被吸乳视频| 青草久久国产| 90打野战视频偷拍视频| 看片在线看免费视频| 人妻久久中文字幕网| 性色avwww在线观看| 精品久久久久久久末码| 日韩亚洲欧美综合| 五月伊人婷婷丁香| av中文乱码字幕在线| 国产高清视频在线播放一区| 中文字幕精品亚洲无线码一区| 精品国产超薄肉色丝袜足j| 99久久99久久久精品蜜桃| 色综合欧美亚洲国产小说| 亚洲人与动物交配视频| www.www免费av| 久久午夜亚洲精品久久| 亚洲国产精品成人综合色| 国产成年人精品一区二区| 国产高潮美女av| 男人舔奶头视频| 亚洲欧美精品综合久久99| 亚洲熟妇熟女久久| 精品久久久久久,| 欧美+亚洲+日韩+国产| 国产真实伦视频高清在线观看 | xxxwww97欧美| 国产成人欧美在线观看| 久久久久久久久中文| 国产精品综合久久久久久久免费| 欧美性猛交黑人性爽| 亚洲欧美日韩高清专用| 人妻丰满熟妇av一区二区三区| 国产精品久久久久久久电影 | 欧美最黄视频在线播放免费| 日韩免费av在线播放| 色综合亚洲欧美另类图片| 男女午夜视频在线观看| 亚洲黑人精品在线| 国产精品爽爽va在线观看网站| 欧美日韩中文字幕国产精品一区二区三区| 香蕉丝袜av| 国模一区二区三区四区视频| 成人性生交大片免费视频hd| 少妇的逼水好多| 在线观看av片永久免费下载| 久久精品影院6| 一本一本综合久久| 国产探花在线观看一区二区| 亚洲av成人不卡在线观看播放网| 天天添夜夜摸| 人妻久久中文字幕网| 久久久久国产精品人妻aⅴ院| 国产真实伦视频高清在线观看 | 嫁个100分男人电影在线观看| 日本在线视频免费播放| 三级毛片av免费| 日韩有码中文字幕| 99热6这里只有精品| 男插女下体视频免费在线播放| 国产亚洲av嫩草精品影院| 亚洲av免费高清在线观看| 淫秽高清视频在线观看| 欧美黑人欧美精品刺激| 亚洲精品国产精品久久久不卡| 91麻豆精品激情在线观看国产| 午夜免费成人在线视频| 亚洲精品在线美女| 激情在线观看视频在线高清| 99久久九九国产精品国产免费| 欧美日韩瑟瑟在线播放| 精品一区二区三区视频在线观看免费| 成人国产一区最新在线观看| 久久久久久久久久黄片| 中亚洲国语对白在线视频| 亚洲国产精品久久男人天堂| 国产99白浆流出| 长腿黑丝高跟| 亚洲成人久久爱视频| 午夜日韩欧美国产| 欧美日本亚洲视频在线播放| 日本免费a在线| www国产在线视频色| 色老头精品视频在线观看| avwww免费| www.www免费av| 午夜精品一区二区三区免费看| 久久久久久九九精品二区国产| 国产黄a三级三级三级人| 精品熟女少妇八av免费久了| 欧美乱色亚洲激情| 色综合亚洲欧美另类图片| 美女cb高潮喷水在线观看| 欧美最黄视频在线播放免费| 人人妻,人人澡人人爽秒播| 嫩草影院精品99| 国产69精品久久久久777片| 欧美+日韩+精品| 18禁黄网站禁片免费观看直播| 午夜亚洲福利在线播放| 国产高清videossex| 亚洲av二区三区四区| 在线免费观看的www视频| 欧美成狂野欧美在线观看| 夜夜躁狠狠躁天天躁| 成人av一区二区三区在线看| 少妇裸体淫交视频免费看高清| 性欧美人与动物交配| 岛国在线观看网站| 国产精品,欧美在线| 久久午夜亚洲精品久久| 看黄色毛片网站| 悠悠久久av| 最新中文字幕久久久久| 九九热线精品视视频播放| 国产精品久久电影中文字幕| 国产精品 欧美亚洲| 欧美最黄视频在线播放免费| 免费无遮挡裸体视频| 亚洲真实伦在线观看| 中文字幕人妻丝袜一区二区| 一夜夜www| x7x7x7水蜜桃| 免费在线观看日本一区| 国产亚洲精品久久久久久毛片| 午夜a级毛片| 深夜精品福利| 色吧在线观看| 少妇人妻一区二区三区视频| 五月玫瑰六月丁香| 乱人视频在线观看| 久久久久国内视频| 国产视频内射| 亚洲欧美日韩高清在线视频| 日韩欧美精品v在线| 91久久精品国产一区二区成人 | 欧美日韩精品网址| АⅤ资源中文在线天堂| 蜜桃亚洲精品一区二区三区| 亚洲一区二区三区色噜噜| 噜噜噜噜噜久久久久久91| 成年女人毛片免费观看观看9| 欧美日韩精品网址| 最近视频中文字幕2019在线8| 国产精品久久久久久久久免 | 免费人成视频x8x8入口观看| 亚洲欧美日韩无卡精品| 午夜影院日韩av| 宅男免费午夜| 叶爱在线成人免费视频播放| 久久久久国内视频| 午夜精品久久久久久毛片777| 国产 一区 欧美 日韩| 在线a可以看的网站| 少妇丰满av| 欧美一区二区亚洲| 久久久国产成人精品二区| 精品久久久久久久人妻蜜臀av| 亚洲av五月六月丁香网| 国内少妇人妻偷人精品xxx网站| 久久这里只有精品中国| 免费看a级黄色片| 搡女人真爽免费视频火全软件 | 99久久无色码亚洲精品果冻| 欧美成狂野欧美在线观看| 蜜桃久久精品国产亚洲av| 香蕉久久夜色| 日韩精品青青久久久久久| 五月伊人婷婷丁香| 少妇的逼好多水| 母亲3免费完整高清在线观看| 在线看三级毛片| 国产探花在线观看一区二区| 麻豆成人av在线观看| 久久精品夜夜夜夜夜久久蜜豆| 精品久久久久久久毛片微露脸| bbb黄色大片| 麻豆一二三区av精品| 色噜噜av男人的天堂激情| 国产精品嫩草影院av在线观看 | 欧美色欧美亚洲另类二区| 国产精品一区二区三区四区免费观看 | 丰满乱子伦码专区| 内地一区二区视频在线| 免费在线观看影片大全网站| 午夜福利在线观看吧| 免费人成在线观看视频色| 日本五十路高清| 精品久久久久久久末码| 又黄又粗又硬又大视频| 一二三四社区在线视频社区8| 美女高潮的动态| 日韩中文字幕欧美一区二区| 床上黄色一级片| 淫秽高清视频在线观看| 欧美乱码精品一区二区三区| 在线观看免费视频日本深夜| 九九在线视频观看精品| 亚洲乱码一区二区免费版| 国产私拍福利视频在线观看| 听说在线观看完整版免费高清| 一区二区三区免费毛片| 真实男女啪啪啪动态图| 国产精品98久久久久久宅男小说| 在线观看av片永久免费下载| 哪里可以看免费的av片| 精品久久久久久久末码| 午夜福利成人在线免费观看| 亚洲va日本ⅴa欧美va伊人久久| 少妇人妻一区二区三区视频| 两个人视频免费观看高清| 亚洲一区高清亚洲精品| 又黄又粗又硬又大视频| av国产免费在线观看| 啪啪无遮挡十八禁网站| 九色国产91popny在线| 久久国产乱子伦精品免费另类| 亚洲成av人片免费观看| av天堂中文字幕网| 日本免费a在线| 欧美一级a爱片免费观看看| 亚洲成人精品中文字幕电影| 欧美激情在线99| 男女那种视频在线观看| 成人av在线播放网站| 久久天躁狠狠躁夜夜2o2o| 成人性生交大片免费视频hd| 国内精品久久久久精免费| 国内精品美女久久久久久| 一区二区三区国产精品乱码| 在线观看66精品国产| 婷婷六月久久综合丁香| 国产午夜精品久久久久久一区二区三区 | 五月玫瑰六月丁香| 久久久精品欧美日韩精品| 国产精品嫩草影院av在线观看 | 欧美激情久久久久久爽电影| 欧美+亚洲+日韩+国产| 麻豆国产97在线/欧美| 国产精品美女特级片免费视频播放器| 最新美女视频免费是黄的| 国产极品精品免费视频能看的| 91麻豆精品激情在线观看国产| 在线观看午夜福利视频| 欧美日韩亚洲国产一区二区在线观看| 窝窝影院91人妻| 身体一侧抽搐| 中文字幕人妻丝袜一区二区| 欧美成狂野欧美在线观看| 国产激情偷乱视频一区二区| 国产99白浆流出| 国产91精品成人一区二区三区| 国产高清有码在线观看视频| 欧美中文综合在线视频| 黄色成人免费大全| 国产私拍福利视频在线观看| 可以在线观看的亚洲视频| 黄色日韩在线| 免费看美女性在线毛片视频| 少妇的逼水好多| 88av欧美| 99久久成人亚洲精品观看| 国产男靠女视频免费网站| 麻豆国产av国片精品| 亚洲精品一卡2卡三卡4卡5卡| 香蕉丝袜av| 国产伦精品一区二区三区四那| 欧美日本亚洲视频在线播放| 免费人成视频x8x8入口观看| 婷婷六月久久综合丁香| 人人妻,人人澡人人爽秒播| 91麻豆精品激情在线观看国产| 好男人在线观看高清免费视频| 18+在线观看网站| 亚洲精品成人久久久久久| 成人午夜高清在线视频| 国产久久久一区二区三区| 亚洲色图av天堂| 悠悠久久av| 国产av麻豆久久久久久久| 99久久九九国产精品国产免费| 婷婷精品国产亚洲av在线| 99精品欧美一区二区三区四区| 国产精品嫩草影院av在线观看 | 欧美日韩精品网址| 美女高潮喷水抽搐中文字幕| 熟女人妻精品中文字幕| 少妇熟女aⅴ在线视频| 宅男免费午夜| 久久久久性生活片| 国产精品国产高清国产av| 看免费av毛片| 日本黄大片高清| 亚洲无线在线观看| bbb黄色大片| 午夜免费男女啪啪视频观看 | av专区在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 老司机福利观看| 人妻丰满熟妇av一区二区三区| 特级一级黄色大片| 欧美又色又爽又黄视频| 亚洲性夜色夜夜综合| aaaaa片日本免费| 757午夜福利合集在线观看| 国内揄拍国产精品人妻在线| 高清毛片免费观看视频网站| 午夜日韩欧美国产| 岛国视频午夜一区免费看| www.熟女人妻精品国产| 香蕉av资源在线| 亚洲欧美激情综合另类| 小说图片视频综合网站| 亚洲国产欧美人成| 两人在一起打扑克的视频| 伊人久久精品亚洲午夜| 欧美午夜高清在线| 少妇人妻精品综合一区二区 | 一边摸一边抽搐一进一小说| 国产精品98久久久久久宅男小说| 国产一区二区在线av高清观看| 青草久久国产| 超碰av人人做人人爽久久 | 尤物成人国产欧美一区二区三区| 三级男女做爰猛烈吃奶摸视频| 有码 亚洲区| 欧美色视频一区免费| 欧美乱码精品一区二区三区| 97超视频在线观看视频| 高清毛片免费观看视频网站| 一级毛片女人18水好多| 国产真实伦视频高清在线观看 | 成人国产一区最新在线观看| 天天躁日日操中文字幕| 午夜免费男女啪啪视频观看 | 婷婷亚洲欧美| 在线a可以看的网站| 香蕉av资源在线| 久久久色成人| 小蜜桃在线观看免费完整版高清| 18禁黄网站禁片免费观看直播| 成人无遮挡网站| 成年女人永久免费观看视频| 精品日产1卡2卡| 一进一出抽搐gif免费好疼| 麻豆国产av国片精品| 亚洲一区二区三区色噜噜| 欧美乱妇无乱码| 亚洲国产高清在线一区二区三| 俺也久久电影网| 中文亚洲av片在线观看爽| 嫩草影院入口| 小说图片视频综合网站| 国产亚洲精品久久久com| 欧美日韩瑟瑟在线播放| 亚洲精华国产精华精| 黄色成人免费大全| 男人的好看免费观看在线视频| 亚洲成人免费电影在线观看| 国产亚洲av嫩草精品影院| 亚洲电影在线观看av| 成年人黄色毛片网站| 色哟哟哟哟哟哟| av女优亚洲男人天堂| 精品一区二区三区人妻视频| 麻豆成人午夜福利视频| 神马国产精品三级电影在线观看| 在线看三级毛片| 国产野战对白在线观看| 蜜桃亚洲精品一区二区三区| 在线观看一区二区三区| svipshipincom国产片| 久久久成人免费电影| av黄色大香蕉| 一二三四社区在线视频社区8| 精品国内亚洲2022精品成人| 久久久久久国产a免费观看| 美女被艹到高潮喷水动态| 少妇的逼好多水| 麻豆一二三区av精品| 一个人免费在线观看的高清视频| 久久精品国产亚洲av涩爱 | 亚洲精品国产精品久久久不卡| 亚洲精品影视一区二区三区av| 法律面前人人平等表现在哪些方面| 亚洲av二区三区四区| 一二三四社区在线视频社区8| 特大巨黑吊av在线直播| 999久久久精品免费观看国产| 日本免费a在线| 欧美大码av| 国产不卡一卡二| 热99re8久久精品国产| 免费在线观看影片大全网站| 老司机午夜十八禁免费视频| 中文字幕人成人乱码亚洲影| 国产在视频线在精品| 免费电影在线观看免费观看| 欧美一级a爱片免费观看看| 亚洲精品国产精品久久久不卡| 日韩欧美在线乱码| 91在线精品国自产拍蜜月 | 毛片女人毛片| 伊人久久大香线蕉亚洲五| av片东京热男人的天堂| 男女下面进入的视频免费午夜| 亚洲第一电影网av| 长腿黑丝高跟| 搡老熟女国产l中国老女人| а√天堂www在线а√下载| 国内精品一区二区在线观看| 99riav亚洲国产免费| 在线天堂最新版资源| 欧美色视频一区免费| 97碰自拍视频| 欧美中文日本在线观看视频| 午夜福利欧美成人| 中文字幕人妻熟人妻熟丝袜美 | 好看av亚洲va欧美ⅴa在| 69人妻影院| 亚洲专区国产一区二区| 一本久久中文字幕| 大型黄色视频在线免费观看| 国产97色在线日韩免费| 欧美在线黄色| 两个人看的免费小视频| a级毛片a级免费在线| 欧美绝顶高潮抽搐喷水| 青草久久国产| 伊人久久大香线蕉亚洲五| 中文字幕精品亚洲无线码一区| 国产高清视频在线播放一区| 嫩草影院入口| 亚洲精品影视一区二区三区av| 欧美日韩国产亚洲二区| 久久久久久国产a免费观看| 欧美最黄视频在线播放免费| АⅤ资源中文在线天堂| 啦啦啦观看免费观看视频高清| 少妇丰满av| 国产精品久久久久久久久免 | 美女被艹到高潮喷水动态| www.色视频.com| 老司机午夜福利在线观看视频| 日韩精品青青久久久久久| 18美女黄网站色大片免费观看| 在线国产一区二区在线| 欧美黄色片欧美黄色片| 久久久久精品国产欧美久久久| 日韩大尺度精品在线看网址| 国产午夜精品久久久久久一区二区三区 | 少妇熟女aⅴ在线视频| 亚洲国产欧美人成| 欧美一级a爱片免费观看看| 一进一出好大好爽视频| 国产久久久一区二区三区| 啦啦啦免费观看视频1| 亚洲一区高清亚洲精品| av在线蜜桃| 国产午夜精品久久久久久一区二区三区 | 好看av亚洲va欧美ⅴa在| АⅤ资源中文在线天堂| 国产精品久久电影中文字幕| 国产成人系列免费观看| 欧美色欧美亚洲另类二区| 日韩欧美国产一区二区入口| 日韩有码中文字幕| 成人av一区二区三区在线看| 国产淫片久久久久久久久 | 两性午夜刺激爽爽歪歪视频在线观看| 午夜老司机福利剧场| 91字幕亚洲| 又爽又黄无遮挡网站| 91麻豆精品激情在线观看国产| 淫妇啪啪啪对白视频| 老汉色av国产亚洲站长工具| 脱女人内裤的视频| 国产v大片淫在线免费观看| av福利片在线观看| 亚洲av一区综合| 搡老熟女国产l中国老女人| 有码 亚洲区| 精品久久久久久久久久免费视频| 色综合亚洲欧美另类图片| 欧美极品一区二区三区四区| 亚洲美女黄片视频| 欧美黄色淫秽网站| 日韩成人在线观看一区二区三区| 欧美3d第一页| 午夜福利在线在线| 99久久精品国产亚洲精品| 日韩免费av在线播放| 51国产日韩欧美| 国产精品影院久久| 亚洲成a人片在线一区二区| avwww免费| 精品国内亚洲2022精品成人| 最近最新中文字幕大全免费视频| 麻豆久久精品国产亚洲av| av女优亚洲男人天堂| 国产高清视频在线播放一区| 国产成年人精品一区二区| 最新美女视频免费是黄的| 色吧在线观看| 国产高清videossex| 欧美午夜高清在线| 男女那种视频在线观看| 天堂√8在线中文| 怎么达到女性高潮| 欧美黑人欧美精品刺激| 精品久久久久久久久久免费视频| 97超视频在线观看视频| 久久国产精品人妻蜜桃| 在线免费观看的www视频| 99热这里只有是精品50| 色吧在线观看| 亚洲人成网站高清观看| 99热只有精品国产| 啦啦啦观看免费观看视频高清| 免费高清视频大片| 色综合婷婷激情| 精品久久久久久久末码| 99国产极品粉嫩在线观看| 亚洲国产精品久久男人天堂| 色综合站精品国产| 三级男女做爰猛烈吃奶摸视频| 在线免费观看不下载黄p国产 | 黄色成人免费大全| 免费在线观看成人毛片| 宅男免费午夜| 搞女人的毛片| 久久午夜亚洲精品久久| 国产一区二区在线观看日韩 | 久久99热这里只有精品18| 日日摸夜夜添夜夜添小说| 欧美激情在线99| 午夜福利高清视频| 精品久久久久久成人av| 九九热线精品视视频播放| 麻豆成人av在线观看| 夜夜夜夜夜久久久久| 亚洲av免费在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 99在线视频只有这里精品首页| 欧美bdsm另类| 午夜视频国产福利| www.www免费av| 村上凉子中文字幕在线| 人妻丰满熟妇av一区二区三区| 成人午夜高清在线视频| 中文字幕av成人在线电影| 内地一区二区视频在线| 亚洲av电影在线进入| 全区人妻精品视频| 国产精品久久久久久久久免 | 狠狠狠狠99中文字幕| 国产爱豆传媒在线观看| av片东京热男人的天堂| 中文字幕人成人乱码亚洲影| 国产av一区在线观看免费| 亚洲最大成人中文| 老汉色av国产亚洲站长工具| 中文字幕高清在线视频| 亚洲欧美日韩卡通动漫| 国产精品亚洲一级av第二区| 男人的好看免费观看在线视频| 成年女人看的毛片在线观看| 精品欧美国产一区二区三| ponron亚洲| 91麻豆av在线| 97超视频在线观看视频| 香蕉久久夜色| 午夜福利在线观看吧| 国产精品综合久久久久久久免费| 老司机午夜福利在线观看视频| 国产主播在线观看一区二区| www国产在线视频色| 黄片小视频在线播放| 日韩大尺度精品在线看网址| 亚洲精品国产精品久久久不卡| 18+在线观看网站| av视频在线观看入口| 身体一侧抽搐| 久久精品国产99精品国产亚洲性色| 久久婷婷人人爽人人干人人爱| 亚洲在线观看片| 超碰av人人做人人爽久久 | 亚洲欧美日韩无卡精品| 中文字幕人妻熟人妻熟丝袜美 | 99久久成人亚洲精品观看| 亚洲国产欧美人成| 中文资源天堂在线| 国模一区二区三区四区视频| 此物有八面人人有两片| 最新在线观看一区二区三区| 久久中文看片网| 亚洲一区二区三区不卡视频| 欧美性感艳星| 国产老妇女一区|