• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A simplified physically-based breach model for a high concrete-faced rock fill dam:A case study

    2018-05-11 11:48:40QimingZhongShengshuiChenZhoDeng
    Water Science and Engineering 2018年1期

    Qi-ming Zhong*,Sheng-shui ChenZho Deng

    aDepartment of Geotechnical Engineering,Nanjing Hydraulic Research Institute,Nanjing 210024,China

    bKey Laboratory of Failure Mechanism and Safety Control Techniques of Earth-rock Dam of the Ministry of Water Resources,Nanjing 210024,China

    1.Introduction

    The concrete-faced rock fill dam(CFRD)is a type of dam widely used throughout the world for different purposes,with sizes ranging from small irrigation projects to large reservoirs on major rivers.The CFRD design is considered to have a high degree of fundamental safety,especially against strong earthquake shaking,and to be appropriate for high dams(Li and Yang,2012;Cen et al.,2016;Chen et al.,2016).It also has substantial advantages over the clay-core rock fill dam design(Sherard and Cooke,1987),e.g.,lower cost and easily available materials.This has led to the selection of the CFRD design for very large reservoirs,for which low-level release facilities are neither feasible nor necessary(Sherard and Cooke,1987;Modares and Quiroz,2016;Gurbuz and Peker,2016).At present,with the development and utilization of water resources,an array of high CFRDs with heights greater than 200 m are being built or planned in China(Chen,2015;Zhou et al.,2015a;Du et al.,2015).These high dams and large reservoirs will bring tremendous financial benefits,but hidden safety issues should be given more attention(Zhou et al.,2015b;Jia et al.,2016;Yang et al.,2016;Niu et al.,2016).Although the CFRD has many advantages,there have also been some failure cases due to overtopping or seepage erosion(Wahl,1998;Xu and Zhang,2009;Xu,2010).For several decades now,a series of physically-based breach models for earth dams have been put forward(ASCE/EWRI Task Committee on Dam/Levee Breaching,2011;Chen,2012;Xie et al.,2013;Zhong et al.,2016).Unfortunately,there have been few records made of CFRD breach modeling,except for some parametric models.

    Investigation of CFRD failure cases around the world has revealed that only the Gouhou CFRD breach case in China has detailed records.Based on the survey data and model tests,the Gouhou CFRD breach may have begun with a piping failure.The subsequent breaching process can be delineated as follows:At first,a large amount of water leaked at the junction of a concrete slab and the bottom of a wave wall(Fig.1).Then,the drained water scoured the downstream slope and caused sloughing.Under the effects of piping,scouring,and sloughing,the wave wall collapsed,and then overtopping dominated(Liu et al.,1998).Owing to the support of the concrete slab,the water head of overtopping flow increased slowly at the initial stage.With the erosion of dam materials,the breach crest diminished,and the length of the concrete slab suspended in air increased.The concrete slab broke off when it could no longer support the self-weight and water loads,and the discharge increased rapidly after the breaking of the concrete slab(Li,1995;Chen et al.,2012).Then,the breach continued to deepen and widen until the remaining dam was stabilized under various loads.

    In this study,based on the survey data and model tests of the Gouhou CFRD breach case,a simplified physically-based breach model for the Gouhou CFRD was developed.Considering the dam height,the initial scour position on the downstream slope was simulated using a hydraulic method.The broad-crested weir equation was used to simulate the breach flow discharge.The backward erosion was considered the key mechanism of breaching of compacted rock fill materials,which was reflected with a time-averaged headcut migration rate from an empirical formula of the energy method.The moment equilibrium method was adopted to simulate the ultimate length of the concrete slab.

    2.Numerical model for Gouhou CFRD breach

    2.1.Water balance equation

    The water balance equation for the reservoir can be described as

    whereVis the volume of water in the reservoir,tis time,Asis the surface area of the reservoir,zsis the water surface elevation,Qinis the in flow discharge,Qbis the breach flow,Qspillis the flow through spillways,andQsluiceis the flow through sluice gates.

    2.2.Breach flow

    The overt opping flow at the breach can be calculated using the broad-crested weir equation:

    Fig.1.Initial leakage position of Gouhou CFRD.

    whereBbis the breach bottom width;h=zs-zb,wherezbis the elevation of the breach bottom;mis the slope of the breach;c1=1.7;c2=1.3;andksmis the submergence correction for tail water effects on weir out flow.

    2.3.Initial scour position

    Visser(1998)pointed out that,on account of the steepness of the downstream slope of the dam, flow accelerates from pointFat the top of the downstream slope to pointPon the downstream slope,where the normal flow velocity is reached if the slope is long enough(Fig.2).Beyond pointP,breach flow remains uniform with its velocity and water depth being normal values,and it is defined as the initial scour position.The distancelnbetweenFandPcan be approximated with the following expression:

    where β is the inclination angle of the downstream slope,dnis the normal water depth,andFrnis the Froude number at pointP.Frnis calculated as follows:

    whereUnis the cross-sectional averaged normal flow velocity,Btnis the breach width at the dam crest under the normal flow conditions,Bnis the breach width at the downstream slope,andgis the gravitational acceleration.

    Fig.2.Lowering of dam crest and steepening of downstream slope.

    Unanddnbeyond pointPare calculated,respectively,as

    whereRnis the hydraulic radius of breach under the normal flow conditions,andCis the Chezy coefficient.

    2.4.Breach development

    At the initial stage of dam breaching,the breach flow velocity at the dam crest is relatively small compared with that of the downstream slope.Due to the larger erosion rate at pointPthan at the upper part of the downstream slope,the slope becomes steeper as the breach develops,and,accordingly,the slope angle increases from an initial value β att=t0to a critical value φ att=t1,which is assumed to be the internal friction angle of rock fill materials(Fig.2).

    A shear stress equation is used to describe the erosion rate of soil(USDA-NRCS,1997):

    whereEis the erosion rate,kdis the erodibility coefficient,τbis the bed shear stress,and τcis the critical shear stress determined using the Shields diagram.

    The coefficientkdis usually calculated with the empirical formula proposed by Temple and Hanson(1994):

    where ρwis the density of water,ρdis the dry density of soil,andcis the clay ratio.

    The bed shear stress is determined by the Manning equation:

    whereAis the flow area,andRis the hydraulic radius.The Manning's roughness coefficientnis related to sediment median sized50(m)as follows:

    whereMnis an empirical coefficient,andMn=12 for the field cases in this study(Wu,2013).

    Eq.(7)can be used to describe the erosion at the dam crest dzb/dt.With regard to the erosion on the downstream slope,the equation for the increment dβ can be expressed as

    whereE1is the erosion rate at the initial scour position on the downstream slope,andE0is the erosion rate at the top of the downstream slope.

    When the downstream slope angle reaches the internal friction angle φ,it is assumed that the slope angle maintains a constant value.Then,a formula of the time-averaged migration rate is utilized to reflect the backward erosion(Temple,1992):

    where dx/dtis the backward erosion rate,CTis the backward erosion coefficient,qis the discharge per unit width,andHeis the overfall height.

    When a breach occurs along the dam axis(Fig.3),the relationship between horizontal expansion and vertical undercutting is determined by

    whereBtis the breach top width;ΔBtand ΔBbare the horizontal expansion values of breach at the breach top and breach bottom for each time step,respectively;nlocis the indicator of breach location,withnloc=1 for a breach located on a side of the dam,andnloc=2 for a breach located at the middle of dam length(Wu,2013);and Δzbis the vertical undercutting value for each time step.In this study,because the dam was made of rock fill materials,the breach slope angle was assumed to be the same as the internal friction angle.

    2.5.Failure of concrete slab

    Owing to the supporting function,the concrete slabs retain water.The initial breach deepens and widens under the erosion by the over flow water.With the erosion of downstream rock fill materials,the breach crest decreases gradually,and the length of suspended concrete slabs increases.The concrete slabs break off when they cannot sustain the self-weight and water loads.

    Fig.3.Breach development along dam axis.

    In this study,the moment equilibrium method was utilized to analyze the stability of each concrete slab.In order to simplify the analysis,the concrete slab was assumed to be a cantilever slab when the supporting sand gravel vanished.The self weight-induced bending moment can be calculated as follows:

    where ρmis the density of the concrete slab,m1is the upstream slope,δ is the thickness of the concrete slab,wis the width of the concrete slab,andLdis the length of the damaged concrete slab.

    The water load-induced bending moment is

    wherezfis the crest elevation of the concrete slab.

    The total bending moment of the concrete slab is

    The ultimate bending moment of the concrete slab can be calculated according to theDesign Code for Hydraulic Concrete Structures(SL191-2008):

    wherefyis the design value of rebar's tensile strength;Acis the cross-sectional area of rebar in the tensile region;h0is the distance from the barycenter of the tensile rebar to the edge of the compressive zone;andfcis the design value of concrete axial compressive strength.Thus,Ldcan be determined by

    3.Case study

    3.1.Calculated parameters

    The Gouhou CFRD breach case,with detailed measurement data,was chosen as the representative case study.The Gouhou CFRD has a maximum height of 71.0 m and a total storage of3.3 million m3.Because the failure time of the Gouhou CFRD was only 2.33 h,it was assumed that there was no in flow during dam breaching.The crest length(L)and width(B)of the dam were 265.0 m and 7.0 m,respectively.The upstream slope(m1)and downstream slope(m2)were 0.625 and 0.667,respectively.The concrete slab crest elevation was 3277.00 m.The initial water level elevation was set at 3277.30 m.The data used in the present study were selected from Xu and Zhang(2009),as well as several laboratory experiments and field investigations(Li,1995;Liu et al.,1998;Li and Sheng,2000).The initial breach depth and width were both 5.0 m.The median size(d50)of the materials was determined to be 15.0 mm,an average value obtained from the typical grain composition curves of the Gouhou CFRD(Li and Sheng,2000);the Manning's roughness coefficient(n)was calculated as 0.041 using Eq.(10);the cohesion and internal friction angle of soil were determined to be 60 kPa and 40°,respectively,from the results of large-scale tri-axial tests(Li and Sheng,2000);the clay ratio was assumed to be 0;and the erodibility coefficient(kd)was estimated to be 5.66 cm3/(N?s)using Eq.(8).Based on the experimental data and those from Robinson(1996),Bennett et al.(2000),and Mei et al.(2016),the backward erosion coefficient(CT)was assumed to be 0.015 m-1/6?s-2/3.Other parameters related to reservoir characteristics and soil properties of the Gouhou CFRD are listed in Table 1.

    Table 1Parameters of Gouhou CFRD.

    Fig.4 shows the layout of the concrete slabs of the Gouhou CFRD,and the damaged slabs are denoted with numbers.According to the field investigation,the slab failure occurred at the center of the dam.

    3.2.Calculated results

    In this study,the simulation of Gouhou CFRD breaching started at the occurrence of wave wall collapse.The overt opping flow then eroded the downstream slope.The calculated results of peak breach flow(Qp), final breach top width(Btf), final breach bottom width(Bbf),time of the peak breach flow(tp),and failure time(tf),as well as the measured data from Xu and Zhang(2009),are shown in Table 2,wheretfis the time period from the beginning of dam breaching to the moment when 99%of the final breach width is reached.Figs.5 and 6 show the calculated breach flow hy drograph and the breach width development.

    Fig.4.Layout of concrete slabs of Gouhou CFRD.

    Table 2Results of Gouhou CFRD breach case.

    The calculated results show that,with the erosion of dam materials,the concrete slabs broke off,and the length of the first damaged concrete slab was 7.4 m at 0.50 h after dam breaching;then,the breach flow discharge increased immediately,and the peak breach flow,which was 5.0%larger than the measured data,occurred at 0.65 h after dam breaching.Likewise,the final breach top and bottom widths of the calculated results were 4.1%and 10.7%larger than the measured data,respectively;for the failure time,the calculated result was 14.6%longer than the measured one.Overall,the proposed model gives reasonable results,with relative errors less than 15.0%.

    3.3.Sensitivity analysis

    Sensitivity analysis of model parameters was conducted in this study.The erodibility coefficient and the backward erosion coefficient are the key parameters,and they are highly empirical with significant uncertainties.Owing to the wide grading of the CFRD materials,the grain size should be taken into account.Thus,the influences of the three parameters on the calculated breach characteristics were assessed for the proposed model.In the parameter sensitivity analysis,kdandCTwere multiplied by 0.5 and 2.0,respectively,andd50was chosen from the top and bottom boundary lines,which were 3 mm and 500 mm,respectively.In addition,the effects of the geometry of the dam(e.g.,the crest length and the upstream and downstream slopes)and the internal friction angle were also taken into account.Considering the final top breach width in Table 2,the crest length of the dam was assumed to be 100.0 m and 530.0 m,respectively.Using actual CFRDs as references,the upstream and downstream slopes were set as 0.556 and 0.714 for sensitivity analysis,respectively.For the internal friction angle,the values were assumed to be 30°and 50°,respectively.The calculatedQp,Btf,Bbf,andtpregarding the varied parameters are shown in Table 3.The changes of these quantities in percentage as compared with the calculated data in Table 2 are also given.

    Fig.5.Breach flow hydrograph.

    Fig.6.Breach width development.

    Table 3 shows that the peak breach flow is most sensitive to the erodibility coefficient and least sensitive to the internal friction angle,the final breach top and bottom widths are both most sensitive to the soil erodibility coefficient and least sensitive to the upstream and downstream slopes,and the time of peak breach flow is most sensitive to the backward erosion coefficient and least sensitive to the crest length of the dam.

    3.4.Comparison with parametric breach models

    Owing to the lack of relevant physically-based models,the proposed breach model was compared with three parametric breach models with regard to the calculation of the peak breach flow, final average breach width,and failure time of dam breaching:the USBR(1988),Froehlich(1995a,1995b),and Xu and Zhang(2009)models.The USBR(1988)model is as follows:

    whereHwis the depth of water above the breach invert at the failure time,andBaveis the final average breach width.

    The Froehlich(1995a,1995b)model considers the overtopping and piping using a coefficientK0.The formulas are as follows:

    whereVwis the volume of water above the breach invert,Hbis the breach depth,andK0is 1.4 for overtopping and 1.0 for piping.

    The Xu and Zhang(2009)model considers more factors,such as the dam type,erodibility,failure mode,and so on.The formulas are as follows:

    Table 3Sensitivity analysis results for different parameters.

    whereHdis the dam height,Hris a reference dam height set as 15 m,andtris a reference failure time set as 1 h.The coefficientB3=b3+b4+b5,whereb3=-0.041,0.026,and 0.226 for dams with core walls,concrete-faced dams,and homogeneous/zoned- fill dams,respectively;b4=0.389 for piping;andb5=0.291,0.140,and 0.391 for high,medium,and low dam erodibility,respectively.The coefficientB4=b3+b4+b5,whereb3=-0.503,-0.591,and-0.649 for dams with core walls, concrete-faced dams, and homogeneous/zoned- fill dams,respectively;b4=-1.039 for piping;andb5=-0.007,-0.375,and-1.362 for high,medium,and low dam erodibility,respectively.The coefficientB5=b3+b4+b5,whereb3=-0.327,-0.674,and-0.189 ford ams with core walls,concrete-faced dams,and homogeneous/zoned- fill dams,respectively;b4=-0.611 for piping;andb5=-1.205,-0.564,and 0.579 for high,medium,and low dam erodibility,respectively.

    The formulas from USBR(1982,1988),Froehlich(1995a,1995b),and Xu and Zhang(2009)represent three generations of parametric breach models obtained by regressions of single to multiple variables.The Gouhou CFRD was considered to have low erodibility and categorized to be piping failure in the models above because the dam breach initiated with theseepage erosion.Hd,Hb,Hw,andVwwere determined to be 71.0 m,48.0 m,44.0 m,and 3.18×106m3,respectively,according to the conditions of the dam breach case.

    Table 4Results of parametric breach models and proposed physically-based breach model for Gouhou CFRD breach case.

    Table 4 gives the results of the three parametric breach models and the proposed physically-based breach model,as well as their comparison with the measured data.Of the three models,the Xu and Zhang(2009)formulas perform best,followed by the Froehlich(1995a,1995b)formulas and the USBR(1982,1988)formulas.This is understandable because the Xu and Zhang(2009)formulas consider more factors and are based on larger databases.

    Table 4 also shows that the proposed physically-based breach model performs significantly better than the three parametric breach models.In addition,a simplified physically based breach model can give more detailed results,such as the breach hydrograph and breach development process shown in Figs.5 and 6,than a parametric model.

    4.Conclusions

    A simplified physically-based breach model for high CFRDs was developed,and the Gouhou CFRD breach case,with detailed measured data,was chosen to test the proposed model.The calculated results show that the proposed model gives reasonable values for the peak breach flow, final breach width,and failure time,with relative errors less than 15%.Sensitivity studies show that the peak breach flow is most sensitive to soil erodibility and least sensitive to the internal friction angle,the final breach top and bottom widths are both most sensitive to soil erodibility and least sensitive to the upstream and downstream slopes,and the failure time is most sensitive to the backward erosion coefficient and least sensitive to the dam crest length.In addition,the proposed breach model was compared with three typical parametric breach models.The comparison shows that the proposed physically based breach model performs better and provides more detailed results than the parametric models.The proposed model adopts an alternative method to describe the characteristics of widely graded soil materials,and further studies and tests are needed to validate and improve the proposed breach model.

    References

    ASCE/EWRITask Committeeon Dam/Levee Breach,2011.Earthen embankment breaching.J.Hydraul.Eng.137(12),1549-1564.https://doi.org/10.1061/(ASCE)HY.1943-7900.0000498.

    Bennett,S.J.,Alonso,C.V.,Prasad,S.N.,R¨omkens,M.J.M.,2000.Experiments on headcut growth and migration in concentrated flows typical of upland areas.Water Resour.Res.36(7),1911-1922.https://doi.org/10.1029/2000WR900067.

    Cen,W.J.,Zhang,Z.Q.,Zhou,T.,Yang,H.K.,Lu,P.C.,2016.Maximum seismic capacity of a high concrete-face rock fill dam on alluvium deposit.Adv.Sci.Technol.Water Resour.36(2),1-5.https://doi.org/10.3880/j.issn.1006-7647.2016.02.001(in Chinese).

    Chen,S.S.,2012.Breach Mechanism and Simulation of Breach Process for Earth-rock Dams.China Water&Power Press,Beijing(in Chinese).

    Chen,S.S.,Cao,W.,Huo,J.P.,Zhong,Q.M.,2012.Numerical simulation for overtopping-induced break process of concrete-faced sandy gravel dams.Chin.J.Geotech.Eng.34(7),1169-1175(in Chinese).

    Chen,S.S.,2015.Safety Problems of Earth and Rock fill Dams Subjected to Earthquakes.Science Press,Beijing(in Chinese).

    Chen,S.S.,Fu,Z.Z.,Wei,K.M.,Han,H.Q.,2016.Seismic responses of high concrete face rock fill dams:A case study.Water Sci.Eng.9(3),195-204.https://doi.org/10.1016/j.wse.2016.09.002.

    Du,X.H.,Li,B.,Chen,Z.Y.,Wang,Y.J.,Sun,P.,2015.Evaluations on the safety design standards for dams with extra height or cascade impacts,Part II:Slope stability of embankment dams.Chin.J.Hydraul.Eng.46(6),640-649.https://doi.org/10.13243/j.cnki.slxb.20150251(in Chinese).

    Froehlich,D.C.,1995a.Peak out flow from breached embankment dam.J.Water Resour.Plann.Manag.121(1),90-97.https://doi.org/10.1061/(ASCE)0733-9496(1995)121:1(90).

    Froehlich,D.C.,1995b.Embankment dam breach parameters revisited.In:Proceedings of the First International Conference on Water Resources Engineering.ASCE,New York,pp.887-891.

    Gurbuz,A.,Peker,I.,2016.Monitored performance of a concrete-faced sandgravel dam.J.Perform.Constr.Facil.30(5),04016011.https://doi.org/10.1061/(ASCE)CF.1943-5509.0000870.

    Jia,J.S.,Xu,Y.,Hao,J.T.,Zhang,L.M.,2016.Localizing and quantifying leakage through CFRDs.J.Geotech.Geoenviron.Eng.142(9),06016007.https://doi.org/10.1061/(ASCE)CF.1943-5509.000087010.1061/(ASCE)GT.1943-5606.0001501.

    Li,J.C.,1995.A research for break of Gouhou face dam.J.Nanjiang Hydraul.Res.Inst.4,425-434(in Chinese).

    Li,L.,Sheng,J.B.,2000.Engineering behavior of gravel materials of Gouhou Dam.J.Nanjiang Hydraul.Res.Inst.3,27-32(in Chinese).

    Li,N.H.,Yang,Z.Y.,2012.Technical advances in concrete face rock fill dams in China.Chin.J.Geotech.Eng.34(8),1361-1368(in Chinese).

    Liu,J.,Ding,L.Q.,Miao,L.J.,Yang,K.H.,1998.Model test for dam breach of Gouhou concrete face sandy gravel dam.Chin.J.Hydraul.Eng.11,69-75(in Chinese).

    Mei,S.A.,Huo,J.P.,Zhong,Q.M.,2016.Determination of headcut migration parameters for homogeneous earth dam due to overtopping failure.Hydro-Sci.Eng.2,24-31.https://doi.org/10.16198/j.cnki.1009-640X.2016.02.004(in Chinese).

    Modares,M.,Quiroz,J.E.,2016.Structural analysis framework for concretefaced rock fill dams.Int.J.GeoMech.16(1),04015024.https://doi.org/10.1061/(ASCE)GM.1943-5622.0000478.

    Niu,X.Q.,Tan,J.X.,Tian,J.Z.,2016.Analysis on CFRD defect's characteristics and its reinforcement.Yangtze River 47(13),1-5.https://doi.org/10.16232/j.cnki.1001-4179.2016.13.001(in Chinese).

    Robinson,K.M.,1996.Gully Erosion and Headcut Advance.Ph.D.Dissertation.Oklahoma State University,Still water.

    Sherard,J.L.,Cooke,J.B.,1987.Concrete-face rock fill dam,I:Assessment.J.Geotech.Eng.113(10),1096-1112.https://doi.org/10.1061/(ASCE)0733-9410(1984)110:10(1381).

    Temple,D.M.,1992.Estimating flood damage to vegetated deep soil spillways.Appl.Eng.Agric.8(2),237-242.https://doi.org/10.13031/2013.26059.

    Temple,D.M.,Hanson,G.J.,1994.Headcut development in vegetated earth spillways.Appl.Eng.Agric.10(5),677-682.https://doi.org/10.13031/2013.25898.

    U.S.Bureau of Reclamation(USBR),1982.Guidelines for De fining Inundated Areas Downstream from Bureau of Reclamation Dams,Reclamation Planning Instruction No.82-11.U.S.Bureau of Reclamation,U.S.Department of the Interior,Denver.

    U.S.Bureau of Reclamation(USBR),1988.Downstream Hazard Classification Guidelines,ACER Technical Memorandum No.11.U.S.Bureau of Reclamation,U.S.Department of the Interior,Denver.

    U.S.Department of Agriculture,Natural Resources Conservation Service(USDANRCS),1997.Earth Spillway Erosion Model,Chapter 51,Part 628 Dams,National Engineering Handbook.U.S.Department of Agriculture,Natural Resources Conservation Service of the United States,Washington,D.C.

    Visser,P.J.,1998.Breach Growth in Sand-dikes.Ph.D.Dissertation.Delft University of Technology,Delft.

    Wahl,T.L.,1998.Prediction of embankment dam breach parameters:A literature reviewand needs assessment. In:DamSafety ReportNo.DSO-98-9004.U.S.Bureau of Reclamation. U.S. Department of the Interior, Denver.

    Wu,W.,2013.Simplified physically based model of earthen embankment breaching.J.Hydraul.Eng.139(8),837-851.https://doi.org/10.1061/(ASCE)HY.1943-7900.0000741.

    Xie,Y.L.,Zhu,Y.H.,Guo,X.L.,2013.Advances and problems in earth-dam failure research.J.Yangtze River Sci.Res.Inst.30(4),29-33.https://doi.org/10.3969/j.issn.1001-5485.2013.04.007(in Chinese).

    Xu,Y.,Zhang,L.M.,2009.Breaching parameters for earth and rock fill dams.J.Geotech.Geoenviron.Eng.135(12),1957-1969.https://doi.org/10.1061/(ASCE)GT.1943-5606.0000162.

    Xu,Y.,2010.Analysis of Dam Failures and Diagnosis of Distresses for Dam Rehabilitation.Ph.D.Dissertation.The Hong Kong University of Science and Technology,Hong Kong.

    Yang,Q.G.,Tan,J.X.,Zhou,X.M.,Gao,D.X.,2016.Discussion on several issues of concrete face rock- fill dam.Yangtze River 47(2),62-66.https://doi.org/10.16232/j.cnki.1001-4179.2016.14.013(in Chinese).

    Zhong,Q.M.,Wu,W.M.,Chen,S.S.,Wang,M.,2016.Comparison of simplified physically based dam breach models.Nat.Hazards 84(2),1385-1418.https://doi.org/10.1007/s11069-016-2492-9.

    Zhou,J.P.,Wang,H.,Chen,Z.Y.,Zhou,X.B.,Li,B.,2015a.Evaluations on the safety design standards for dams with extra height or cascade impacts,Part I:Fundamentals and criteria.Chin.J.Hydraul.Eng.46(5),505-514.https://doi.org/10.13243/j.cnki.slxb.20150249(in Chinese).

    Zhou,X.B.,Chen,Z.Y.,Huang,Y.F.,Wang,L.,Li,X.N.,2015b.Evaluations on safety design standards for dams with extra height or cascade impacts,Part III:Risk analysis of embankment break in cascade.Chin.J.Hydraul.Eng.46(7),765-772.https://doi.org/10.13243/j.cnki.slxb.20150252(in Chinese).

    国产亚洲av高清不卡| 人妻一区二区av| 人人妻人人澡人人爽人人夜夜| 青草久久国产| 亚洲欧洲日产国产| 亚洲一区中文字幕在线| 亚洲精品一区蜜桃| 欧美日本中文国产一区发布| 成人手机av| √禁漫天堂资源中文www| 一区二区三区乱码不卡18| 91国产中文字幕| 国产精品人妻久久久影院| 国产99久久九九免费精品| 9热在线视频观看99| 日本欧美国产在线视频| 香蕉丝袜av| 亚洲精品美女久久av网站| 亚洲精品美女久久久久99蜜臀 | 天天操日日干夜夜撸| 亚洲av国产av综合av卡| 欧美日韩一级在线毛片| 亚洲欧洲国产日韩| 七月丁香在线播放| 2018国产大陆天天弄谢| 国产日韩一区二区三区精品不卡| 久久精品久久精品一区二区三区| 国产成人精品久久二区二区免费| 在现免费观看毛片| 97精品久久久久久久久久精品| 亚洲精品中文字幕在线视频| 一个人免费看片子| 欧美日本中文国产一区发布| 精品福利永久在线观看| 亚洲一码二码三码区别大吗| 亚洲五月婷婷丁香| 免费不卡黄色视频| 一边亲一边摸免费视频| 丰满迷人的少妇在线观看| 欧美乱码精品一区二区三区| 午夜激情av网站| 丝袜在线中文字幕| 波多野结衣av一区二区av| 天天影视国产精品| 赤兔流量卡办理| 宅男免费午夜| 亚洲中文av在线| 国产成人精品久久久久久| 纵有疾风起免费观看全集完整版| 亚洲精品日韩在线中文字幕| 黄色片一级片一级黄色片| 成年女人毛片免费观看观看9 | 欧美另类一区| 天堂8中文在线网| 50天的宝宝边吃奶边哭怎么回事| av国产精品久久久久影院| 午夜日韩欧美国产| 好男人视频免费观看在线| 精品卡一卡二卡四卡免费| 精品少妇内射三级| 国产片特级美女逼逼视频| 老汉色∧v一级毛片| 亚洲国产看品久久| 2021少妇久久久久久久久久久| 欧美日韩一级在线毛片| 黄色片一级片一级黄色片| 国产视频首页在线观看| 久久国产亚洲av麻豆专区| 亚洲国产精品成人久久小说| 老司机影院成人| 99久久人妻综合| 99国产精品免费福利视频| 国产免费现黄频在线看| 久久女婷五月综合色啪小说| 国产有黄有色有爽视频| 亚洲av国产av综合av卡| 一区二区av电影网| www.精华液| 国产免费视频播放在线视频| 丝袜脚勾引网站| 久久久久久久大尺度免费视频| 午夜影院在线不卡| 国产成人一区二区在线| 免费女性裸体啪啪无遮挡网站| 只有这里有精品99| 成年女人毛片免费观看观看9 | 久久精品国产a三级三级三级| 午夜福利在线免费观看网站| 两人在一起打扑克的视频| 午夜91福利影院| 女人高潮潮喷娇喘18禁视频| 美女大奶头黄色视频| 亚洲欧洲日产国产| 丰满饥渴人妻一区二区三| 中文字幕人妻丝袜一区二区| 日本wwww免费看| 久久精品国产综合久久久| 涩涩av久久男人的天堂| 免费观看av网站的网址| 亚洲欧洲精品一区二区精品久久久| 又紧又爽又黄一区二区| 亚洲成av片中文字幕在线观看| 日本色播在线视频| 99久久综合免费| 欧美av亚洲av综合av国产av| 十八禁人妻一区二区| 亚洲情色 制服丝袜| 久久久久久久大尺度免费视频| 精品久久久久久久毛片微露脸 | 国产高清videossex| 精品国产超薄肉色丝袜足j| 亚洲精品美女久久久久99蜜臀 | 在线观看免费视频网站a站| 亚洲国产欧美一区二区综合| 国产免费视频播放在线视频| 一个人免费看片子| 久久性视频一级片| 黄色毛片三级朝国网站| 91字幕亚洲| 男人添女人高潮全过程视频| 两个人免费观看高清视频| 午夜福利一区二区在线看| 老司机影院毛片| 成年人黄色毛片网站| 欧美日韩亚洲国产一区二区在线观看 | 十八禁网站网址无遮挡| 亚洲激情五月婷婷啪啪| 别揉我奶头~嗯~啊~动态视频 | 成人手机av| 大码成人一级视频| 亚洲国产欧美网| 999久久久国产精品视频| 五月开心婷婷网| 国产国语露脸激情在线看| 免费一级毛片在线播放高清视频 | 欧美日韩综合久久久久久| 亚洲国产av新网站| 夜夜骑夜夜射夜夜干| 99久久人妻综合| 久久国产精品大桥未久av| 色婷婷av一区二区三区视频| 欧美性长视频在线观看| 热99久久久久精品小说推荐| 国产精品成人在线| 人人妻人人添人人爽欧美一区卜| 乱人伦中国视频| 99国产综合亚洲精品| 少妇人妻 视频| 国语对白做爰xxxⅹ性视频网站| 欧美+亚洲+日韩+国产| 最近中文字幕2019免费版| 在线av久久热| 国产亚洲av高清不卡| 亚洲,欧美,日韩| 麻豆国产av国片精品| 久久青草综合色| 亚洲精品一卡2卡三卡4卡5卡 | 91精品伊人久久大香线蕉| 精品第一国产精品| 男男h啪啪无遮挡| 无限看片的www在线观看| 超碰成人久久| 午夜福利影视在线免费观看| a级毛片黄视频| 日韩制服丝袜自拍偷拍| 国产伦理片在线播放av一区| 高清黄色对白视频在线免费看| 操美女的视频在线观看| svipshipincom国产片| 美国免费a级毛片| 久久久久久久国产电影| 亚洲久久久国产精品| 免费高清在线观看视频在线观看| svipshipincom国产片| 亚洲精品第二区| 在线观看免费视频网站a站| 日韩熟女老妇一区二区性免费视频| 欧美精品啪啪一区二区三区 | 亚洲欧洲国产日韩| 欧美大码av| 成年人午夜在线观看视频| 精品亚洲成a人片在线观看| 国产一区二区激情短视频 | 日本wwww免费看| 免费一级毛片在线播放高清视频 | 亚洲美女黄色视频免费看| 国产高清videossex| 色婷婷久久久亚洲欧美| 涩涩av久久男人的天堂| 亚洲九九香蕉| 亚洲,一卡二卡三卡| 美女午夜性视频免费| 国产一区二区三区av在线| 国产免费一区二区三区四区乱码| 亚洲久久久国产精品| 中文欧美无线码| 久久国产精品人妻蜜桃| 久久午夜综合久久蜜桃| 精品高清国产在线一区| 欧美成人午夜精品| 国产一区有黄有色的免费视频| 99精国产麻豆久久婷婷| 日韩制服骚丝袜av| 久久影院123| 日韩中文字幕欧美一区二区 | 男女高潮啪啪啪动态图| 九色亚洲精品在线播放| 成年动漫av网址| 老鸭窝网址在线观看| 777米奇影视久久| 国产精品熟女久久久久浪| 日韩 欧美 亚洲 中文字幕| 伊人亚洲综合成人网| 免费av中文字幕在线| 久久国产精品影院| 久久精品aⅴ一区二区三区四区| 国产成人精品久久久久久| 精品国产一区二区久久| 欧美大码av| 婷婷色综合www| 精品亚洲成国产av| 国产精品一区二区在线观看99| 久久久精品国产亚洲av高清涩受| 国产免费视频播放在线视频| 国产欧美日韩一区二区三区在线| 黄色一级大片看看| 国产又色又爽无遮挡免| cao死你这个sao货| 国产精品三级大全| 国产精品免费视频内射| 欧美黄色片欧美黄色片| 亚洲色图 男人天堂 中文字幕| 丁香六月欧美| 亚洲伊人色综图| 亚洲av电影在线进入| 99香蕉大伊视频| 深夜精品福利| 亚洲国产精品一区二区三区在线| 日本午夜av视频| 热re99久久国产66热| 精品人妻一区二区三区麻豆| 亚洲九九香蕉| 大码成人一级视频| 午夜激情av网站| 国产精品国产av在线观看| 中国美女看黄片| 中文字幕最新亚洲高清| 黄网站色视频无遮挡免费观看| 老汉色av国产亚洲站长工具| 日本色播在线视频| 啦啦啦视频在线资源免费观看| 久久人人97超碰香蕉20202| 美女脱内裤让男人舔精品视频| 日韩大片免费观看网站| 一本大道久久a久久精品| 国产欧美日韩一区二区三 | 国产成人av教育| 国产亚洲av高清不卡| 免费观看av网站的网址| 一级毛片我不卡| 日本黄色日本黄色录像| 成人18禁高潮啪啪吃奶动态图| 久久久国产欧美日韩av| 18禁黄网站禁片午夜丰满| 亚洲欧美中文字幕日韩二区| 国产高清不卡午夜福利| 中文字幕高清在线视频| 亚洲男人天堂网一区| 又粗又硬又长又爽又黄的视频| 三上悠亚av全集在线观看| 亚洲av国产av综合av卡| 国产精品免费视频内射| 亚洲av欧美aⅴ国产| netflix在线观看网站| 亚洲av美国av| 成人18禁高潮啪啪吃奶动态图| 精品一区二区三卡| 国产成人91sexporn| 国产精品久久久久久精品古装| 纵有疾风起免费观看全集完整版| 日本欧美国产在线视频| 国产伦人伦偷精品视频| 亚洲欧美清纯卡通| 久久中文字幕一级| 91九色精品人成在线观看| 久久精品国产亚洲av涩爱| 久久久久国产一级毛片高清牌| 黄色视频在线播放观看不卡| 黄色视频在线播放观看不卡| 中文字幕精品免费在线观看视频| 少妇粗大呻吟视频| 久久av网站| 国产一区二区在线观看av| 久久精品亚洲熟妇少妇任你| av在线app专区| 大陆偷拍与自拍| 成人三级做爰电影| 国产精品免费视频内射| 老汉色av国产亚洲站长工具| 99久久精品国产亚洲精品| 亚洲一区中文字幕在线| 少妇被粗大的猛进出69影院| 国产一区二区三区av在线| 男男h啪啪无遮挡| 精品国产一区二区三区四区第35| 一区二区三区精品91| 一区二区三区四区激情视频| 亚洲第一av免费看| 汤姆久久久久久久影院中文字幕| 99国产精品99久久久久| 欧美97在线视频| 日本午夜av视频| 老司机影院成人| 人人妻人人爽人人添夜夜欢视频| 最新在线观看一区二区三区 | 国产亚洲午夜精品一区二区久久| 久久九九热精品免费| 亚洲自偷自拍图片 自拍| 国产精品二区激情视频| xxx大片免费视频| 国产一级毛片在线| 大型av网站在线播放| 亚洲精品国产色婷婷电影| 人人妻,人人澡人人爽秒播 | 丰满人妻熟妇乱又伦精品不卡| 日本五十路高清| 这个男人来自地球电影免费观看| 久久久久精品国产欧美久久久 | 午夜福利影视在线免费观看| 久久久精品免费免费高清| 操出白浆在线播放| 在线 av 中文字幕| a级片在线免费高清观看视频| 精品一区二区三区四区五区乱码 | 巨乳人妻的诱惑在线观看| 国产精品 国内视频| 国产成人av激情在线播放| 国产亚洲av片在线观看秒播厂| 久久久亚洲精品成人影院| 中文字幕av电影在线播放| 国产日韩欧美在线精品| 国产色视频综合| 夜夜骑夜夜射夜夜干| 久久av网站| 首页视频小说图片口味搜索 | 亚洲五月婷婷丁香| 夜夜骑夜夜射夜夜干| 人妻一区二区av| 少妇的丰满在线观看| 欧美日韩精品网址| 久久女婷五月综合色啪小说| 亚洲,一卡二卡三卡| 欧美日本中文国产一区发布| 在线观看免费高清a一片| 欧美日本中文国产一区发布| 91精品伊人久久大香线蕉| 女人久久www免费人成看片| 黄色a级毛片大全视频| 亚洲男人天堂网一区| 精品第一国产精品| 捣出白浆h1v1| 日日摸夜夜添夜夜爱| 欧美日本中文国产一区发布| 美女福利国产在线| 精品国产一区二区三区久久久樱花| netflix在线观看网站| 久久国产精品大桥未久av| 国产免费一区二区三区四区乱码| 中文字幕另类日韩欧美亚洲嫩草| 欧美人与性动交α欧美软件| 天天操日日干夜夜撸| 亚洲国产精品成人久久小说| 亚洲人成77777在线视频| 国产极品粉嫩免费观看在线| 欧美日本中文国产一区发布| 观看av在线不卡| 亚洲欧美一区二区三区久久| 国产不卡av网站在线观看| 日本vs欧美在线观看视频| 99热全是精品| 少妇裸体淫交视频免费看高清 | 国产亚洲一区二区精品| 中文字幕人妻丝袜制服| 久久影院123| 国产真人三级小视频在线观看| 日韩伦理黄色片| 国产视频一区二区在线看| 国产成人精品久久二区二区91| 久久久久久久精品精品| 欧美黑人欧美精品刺激| xxxhd国产人妻xxx| 午夜福利在线免费观看网站| 欧美 亚洲 国产 日韩一| 在线看a的网站| 女性被躁到高潮视频| 满18在线观看网站| 久久人人爽人人片av| 国产色视频综合| 国产一级毛片在线| 菩萨蛮人人尽说江南好唐韦庄| 精品亚洲成a人片在线观看| 爱豆传媒免费全集在线观看| 一区二区日韩欧美中文字幕| 久久综合国产亚洲精品| 国产精品九九99| 99久久综合免费| 国产熟女欧美一区二区| a 毛片基地| 国产黄色免费在线视频| 国产成人欧美| 亚洲av成人精品一二三区| 女人高潮潮喷娇喘18禁视频| 国产亚洲欧美精品永久| 另类亚洲欧美激情| 脱女人内裤的视频| 美女脱内裤让男人舔精品视频| 2021少妇久久久久久久久久久| 欧美在线一区亚洲| 激情视频va一区二区三区| 69精品国产乱码久久久| 久久精品国产a三级三级三级| 在线av久久热| 久久久精品免费免费高清| 国产片内射在线| 亚洲成人免费av在线播放| 成年动漫av网址| 欧美激情高清一区二区三区| 一级毛片女人18水好多 | 国产精品 国内视频| av国产久精品久网站免费入址| 欧美激情 高清一区二区三区| 在线av久久热| 欧美亚洲日本最大视频资源| 美女大奶头黄色视频| 精品久久久精品久久久| 欧美黑人欧美精品刺激| 黑人猛操日本美女一级片| 国产成人系列免费观看| 视频区图区小说| 国产成人欧美| 久久99精品国语久久久| 亚洲欧美中文字幕日韩二区| 叶爱在线成人免费视频播放| 免费一级毛片在线播放高清视频 | 欧美日韩亚洲国产一区二区在线观看 | 久久人人爽av亚洲精品天堂| 91成人精品电影| 亚洲国产av新网站| 久久久久久久大尺度免费视频| 久久久亚洲精品成人影院| av不卡在线播放| 性高湖久久久久久久久免费观看| 精品一区二区三区av网在线观看 | 亚洲国产av影院在线观看| av网站免费在线观看视频| 最近最新中文字幕大全免费视频 | 巨乳人妻的诱惑在线观看| 日本一区二区免费在线视频| 蜜桃国产av成人99| 亚洲国产欧美一区二区综合| 五月天丁香电影| 国产精品av久久久久免费| 美女福利国产在线| 欧美激情极品国产一区二区三区| 国产成人av激情在线播放| kizo精华| 日韩av免费高清视频| 日本欧美视频一区| 午夜老司机福利片| 午夜精品国产一区二区电影| 欧美日韩综合久久久久久| 色综合欧美亚洲国产小说| 久久久国产欧美日韩av| 免费人妻精品一区二区三区视频| 美女福利国产在线| 黄色一级大片看看| 亚洲欧美日韩高清在线视频 | 在线精品无人区一区二区三| 国产免费视频播放在线视频| 国产女主播在线喷水免费视频网站| 一区二区三区激情视频| 99热网站在线观看| 国产精品国产av在线观看| 久久久国产一区二区| 日韩 欧美 亚洲 中文字幕| 午夜福利在线免费观看网站| 免费人妻精品一区二区三区视频| 午夜免费鲁丝| 1024香蕉在线观看| 亚洲av成人精品一二三区| 亚洲三区欧美一区| 男女下面插进去视频免费观看| 精品卡一卡二卡四卡免费| 女性生殖器流出的白浆| 免费一级毛片在线播放高清视频 | 久久九九热精品免费| 国产精品国产三级国产专区5o| 18在线观看网站| 99热全是精品| 18在线观看网站| 国产视频一区二区在线看| 亚洲一区二区三区欧美精品| 久久国产精品影院| 日韩一本色道免费dvd| 亚洲欧美一区二区三区国产| 日韩人妻精品一区2区三区| 水蜜桃什么品种好| 男的添女的下面高潮视频| 九色亚洲精品在线播放| 色精品久久人妻99蜜桃| 久久国产精品影院| 精品久久久久久电影网| 国产不卡av网站在线观看| 精品少妇内射三级| 美女大奶头黄色视频| 在线亚洲精品国产二区图片欧美| 久久久国产一区二区| 国产一区二区三区综合在线观看| 老司机亚洲免费影院| 国产一区二区三区av在线| 国产精品久久久久久精品古装| 满18在线观看网站| 亚洲精品在线美女| 中文字幕人妻丝袜制服| 无限看片的www在线观看| 中文字幕另类日韩欧美亚洲嫩草| 午夜福利影视在线免费观看| 少妇裸体淫交视频免费看高清 | 精品人妻一区二区三区麻豆| av片东京热男人的天堂| 天天影视国产精品| 国产男女内射视频| 日韩欧美一区视频在线观看| 伦理电影免费视频| 久久av网站| 久久青草综合色| 亚洲av日韩精品久久久久久密 | 一个人免费看片子| 熟女少妇亚洲综合色aaa.| 亚洲国产日韩一区二区| 丝袜脚勾引网站| 亚洲欧美成人综合另类久久久| 成年动漫av网址| 日日爽夜夜爽网站| 在线看a的网站| 久久久久久人人人人人| 一级片'在线观看视频| 国产精品九九99| 国产精品一区二区精品视频观看| 精品一区二区三区四区五区乱码 | 欧美日韩亚洲国产一区二区在线观看 | 亚洲熟女精品中文字幕| 青春草视频在线免费观看| 黄色毛片三级朝国网站| 男女边摸边吃奶| av在线app专区| 国产精品一区二区免费欧美 | 国产精品免费大片| av有码第一页| 秋霞在线观看毛片| 十分钟在线观看高清视频www| 午夜福利影视在线免费观看| 国产主播在线观看一区二区 | 好男人电影高清在线观看| 亚洲精品在线美女| 免费女性裸体啪啪无遮挡网站| 一区二区三区四区激情视频| 国产欧美日韩精品亚洲av| 欧美另类一区| 日韩 欧美 亚洲 中文字幕| 亚洲免费av在线视频| 999久久久国产精品视频| 久久九九热精品免费| 亚洲精品在线美女| 精品熟女少妇八av免费久了| 中文字幕亚洲精品专区| 成年人黄色毛片网站| 啦啦啦啦在线视频资源| 亚洲五月婷婷丁香| 下体分泌物呈黄色| 少妇裸体淫交视频免费看高清 | 在线观看国产h片| 免费看不卡的av| 大片电影免费在线观看免费| 久久国产精品男人的天堂亚洲| 一本—道久久a久久精品蜜桃钙片| 亚洲精品国产av蜜桃| 在线观看免费午夜福利视频| 欧美 日韩 精品 国产| 国产精品偷伦视频观看了| 一级黄片播放器| 两性夫妻黄色片| 婷婷色av中文字幕| 国产一区二区三区av在线| 精品久久蜜臀av无| 丝瓜视频免费看黄片| 99热网站在线观看| 国产日韩欧美亚洲二区| 七月丁香在线播放| 亚洲欧美色中文字幕在线| 可以免费在线观看a视频的电影网站| 少妇精品久久久久久久| 一级片'在线观看视频| 亚洲精品久久成人aⅴ小说| 精品欧美一区二区三区在线| 美女午夜性视频免费| 国产精品人妻久久久影院| 在线观看免费视频网站a站| www.熟女人妻精品国产| 久久亚洲国产成人精品v| 久久人人爽av亚洲精品天堂| www.999成人在线观看| 国产99久久九九免费精品| 视频区欧美日本亚洲| 我要看黄色一级片免费的|