• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    點缺陷引起中子輻照MgO(110)單晶的鐵磁性

    2018-05-04 01:42:35曹夢雄王興宇馬亞茹馬春林周衛(wèi)平王曉雄王海歐譚偉石
    物理化學學報 2018年4期
    關鍵詞:王曉雄點缺陷湖南

    曹夢雄,王興宇,馬亞茹,馬春林,周衛(wèi)平,*,王曉雄,王海歐,譚偉石,3,*

    1南京理工大學理學院應用物理系,軟化學與功能材料教育部重點實驗室,南京 210094

    2杭州電子科技大學材料物理研究所,杭州 310018 3湖南城市學院信息與電子工程學院,湖南 益陽 413002

    1 Introduction

    In recent years, the ferromagnetism (FM) has been reported in undoped oxides, such as HfO2, TiO2, In2O3, CeO2, Al2O3, SnO2and ZnO1-7. This observed ferromagnetism in materials, containing no intrinsic magnetic elements, is termed d0ferromagnetism8. The d0ferromagnetism can be explained by invoking the formation of point defects but the nature of defects is still debatable. MgO is one of the most attractive materials for investigating d0ferromagnetism because of its wide bandgap, which yields a spin-polarized p band9. Hu et al.10reported that MgO nanocrystalline powders, prepared by sol-gel method, exhibited room temperature ferromagnetism (RTFM). The vacuum annealing of MgO powders reduced FM. They attributed the RTFM in MgO to Mg vacancies at/near the surfaces of nanograins. The X-ray photoelectron spectroscopy (XPS) showed that MgO powders exhibited Mg-deficiency, indicating that the RTFM in MgO powders was related to Mg vacancies11. Li et al.12suggested that the observed RTFM in MgO thin films, which were prepared under various oxygen pressures, depended strongly on Mg vacancies concentration. On the basis of X-ray absorption near-edge fine structure spectroscopy (XANES), it could be contemplated that excitation to the localized bound state at surface state might be responsible for the FM in MgO, which was due to Mg vacancies at surface states13. These results were in accordance with some theoretical predictions14-16. Using ab initio calculations based on density functional theory, Kuang et al.14demonstrated that both neutral and singly charged Mg vacancy could introduce magnetic moment of MgO, and the magnetic moment mainly originated from the spin polarization of partially occupied 2p orbitals of the nearest O atoms surrounding Mg vacancies. By the full potential linearized augmented plane wave L/APW+lomethod, Merabet et al.16predicted that the cation vacancies caused the FM in MgO, with a spin magnetic moment of 0.21 μB·atom-1.

    However, some theoretical calculations indicated that oxygen vacancies played a key role in FM spin-order in MgO17,18. Using ab initio calculations based on density functional theory, Zhang et al.18showed that local magnetic moment in MgO could be induced by the composite defects around the oxygen vacancies, when the exchange split of the oxygen vacancies was enhanced. Experimentally, Kumar et al.19reported the correlation between defects and ferromagnetism in synthesized MgO nanocrystallite. Their study suggested that the oxygen vacancies, namely singly ionized anionic vacancies and dimers, induced the room temperature ferromagnetic spin-order. Maoz et al.20noticed that air annealing reduced magnetic spin-order in MgO nanosheets and suggested that the ferromagnetic spin-order was due to the unpaired electrons trapped at oxygen vacancies.Mishra et al.21reported that Al-doped MgO nanoparticles exhibited weak RTFM. Using XPS, they highlighted the dominant role of oxygen vacancies in the development of RTFM in MgO. The RTFM in Fe-doped MgO could be explained by oxygen vacancies interaction based on the bound magnetic polaron (BMP) model22.

    Although there are many theoretical and experimental studies regarding FM in MgO, the origin of FM in MgO is still controversial. The point defects can account for the FM in MgO, but it is still uncertain whether the defects should be anion defects or cation defects. Thus, a detailed insight into the role of point defects on ferromagnetism in MgO(110) single crystals is obtained in this paper. We study the point defects configuration in neutron irradiated MgO(110) single crystals by the X-ray diffuse scattering and UV-Vis absorption spectra. The magnetic properties in MgO are characterized by a superconducting quantum interference device (SQUID) magnetometer. The relevance between defects and ferromagnetism in MgO single crystals is discussed.

    2 Experimental

    Commercial MgO(110) single crystals with purity > 99.99% were purchased from Hefei Kejing Materials Technology Co., Ltd. (China) and then irradiated by slow neutron with different doses in the range from 1.0 × 1016to 1.0 × 1020cm-2. The neutron energy is continuous but lower than 20 eV. Based on Huang′s scattering theory, the isointensity profiles of cubic and double-force point defects induced X-ray diffuse scattering were calculated using MATLAB software. The measurement of X-ray diffuse scattering intensity distribution curves near the 220 reciprocal-lattice point of MgO single crystals was carried out at Beijing Synchrotron Radiation Facility (BSRF) diffuse scattering station at room temperature. The wave length was 0.15406 nm. The ω-2θ scans and rocking curves close to the symmetric (220) reflection were measured with a step width of 0.005°. The reciprocal space mappings (RSMs) around 220 reciprocal-lattice point were conducted with a step width of 0.01° at room temperature. The UV-Vis absorption spectra were obtained at room temperature using TU-1901 double beam spectrophotometer (Beijing Purkinje General Instrument Co., Ltd., China). The data were recorded in a wavelength range from 200 to 800 nm. The magnetization as a function of an applied magnetic field at different temperature and as a function of temperature (zero field cooled and field cooled) under an applied field of 500 Oe in the temperature range of 2-300 K were measured by a Quantum Design MPMS XL-5 SQUID magnetometer. All samples were cleaned with alcohol and acetone in an ultrasonic bath before measurements.

    3 Results and discussion

    As the Fourier transform of a defect-induced displacement field is given, the isointensity profile of X-ray diffuse scattering near the reciprocal-lattice point can be calculated23. The purpose of such a calculation is to compare calculated profiles with experimental results and, afterwards, to confirm the point defect configurations. To investigate the irradiation induced point defect configurations in MgO, the isointensity profiles of X-ray diffuse scattering caused by the cubic and double-force point defects are calculated based on Huang′s scattering formula23using MATLAB software.

    It is worth noting that the cubic defect along <100> direction induced diffuse scattering isointensity profiles are identical for the cubic crystal23. Therefore, the scattering isointensity profiles near 200, 020 and 002 are uniform for MgO. Thus, we just calculated the Huang′s scattering isointensity profiles near 200 and 220 reciprocal-lattice points for diffuse X-ray scattering induced by the cubic defect in MgO, as shown in Fig.1. Three independent elastic constants for MgO used for calculation are given as follows: C11 = 297.8 GPa, C12 = 95.8 GPa, C44 = 154.7 GPa. The profiles near 200 reciprocal-lattice point are almost of the lemniscate type, as seen in Fig.1a.

    In the same way, the isointensity profiles near 200, 020, 002 and 220 reciprocal-lattice points for a double-force defect in MgO are calculated, shown in Fig.2. The isointensity profiles near different reciprocal-lattice points for a double-force defect show various distribution types. Our results are similar with Flocken et al.′s results in cubic metals23.

    Obviously, the isointensity profiles near different reciprocal- lattice points for the double-force defect are different. Whatever, near the same reciprocal-lattice point, the isointensity profiles for cubic defects and double-force defects are diverse and distinguishable distinctly. Thus, we can confirm the point defects configuration by comparing the experimental RSMs with calculated diffuse scattering intensity curves.

    Fig.3 shows the X-ray diffraction patterns of irradiated MgO(110), which are recorded with 2θ in the range from 30° to 80°. It is worth noting that the patterns cannot reveal the diffuse scattering accurately. Evidently, only diffraction peak of (220) reflection at about 62.2° can be observed in Fig.3. It indicates that the samples are (110)-oriented MgO single crystals without any impurity phase. It is noteworthy that we cannot study the defects in MgO basing the X-ray diffraction patterns in Fig.3. It is necessary to measure the ω-2θ curves and rocking curves for studying the defects in MgO(110) single crystals.

    The radial scattering intensity distribution along [220] reciprocal vectors are measured at room temperature. Fig.4(a, b) represents the ω-2θ curves and rocking curves of (220) reflection for pristine and irradiated MgO(110) single crystals. As shown in Fig.4a, in comparison with the case for pristine MgO, the diffraction intensity of (220) reflection decreases dramatically for irradiated samples. The diffraction intensity is almost inversely proportional to the irradiation dose. Meanwhile, the diffraction peak moves obviously toward to the low angle for the irradiated MgO with higher dose (1.0 × 1019and 1.0 × 1020cm-2), implying the presence of lattice imperfection due to the neutron irradiation. Using Bragg equation, the lattice parameter a in bulk MgO has been calculated. The lattice parameter a in pristine MgO is 0.4211 nm, while the values of lattice parameter a in irradiated MgO with the doses of 1.0 × 1019and 1.0 × 1020cm-2are 0.4217 and 0.4222 nm, respectively. As shown in Fig.4b, the intensity of rocking curve decreases with increasing irradiation dose. It should be mentioned that the split of peak in rocking curve is distinct for the irradiated MgO with higher dose. The results obviously indicate that a number of point defects are introduced and hence result in lattice distortions in MgO(110) single crystals via neutron irradiation. The point defects-induced diffuse scattering was also observed in Au+ion irradiated MgO single crystals24. Using X-ray diffraction methods, Pillukat et al.25demonstrated that the electron irradiation could generate point defects and result in the increase of diffuse scattering intensity close to different reflections in GaAs. Karsten et al.26measured X-ray diffuse scattering close to different Bragg reflections in irradiated InP. They confirmed that electron irradiation generated Frenkel defect pairs in irradiated InP, leading to the diffuse scattering.

    Fig.1 Calculated isointensity profiles of X-ray diffuse scattering near (a) 200 and (b) 220 reciprocal-lattice points for the cubic point defect in MgO.

    Fig.2 Calculated isointensity profiles of X-ray diffuse scattering near reciprocal-lattice points (a) 200, (b) 020, (c) 002, and (d) 220 for the double-force point defect in MgO.

    Fig.3 X-ray diffraction patterns of neutron irradiated MgO(110) single crystals with different doses.

    Fig.4 ω-2θ curves (a) and rocking curves (b) in the vicinity of (220) reflection for MgO(110) single crystals. To adjust position of ω and 2θ axes accurately in our experiment, we fix one of these two axes and scan the other one repeatedly until the maximum of diffraction intensity appears. We do not change the zero point of ω and 2θ axes of goniometer during measurement and therefore, the ratio of 2θ/ω is not strictly twice in the measured results. The reason for this case is due to the angle of inclination between the surface and diffracting plane of MgO single crystals.

    Fig.5 RSMs around the (220) reflection for MgO(110) irradiated with different doses of (a) 1.0 × 1016 cm-2, (b) 1.0 × 1017 cm-2,(c) 1.0 × 1019 cm-2, and (d) 1.0 × 1020 cm-2.

    To further understand point defect configurations, the RSMs around 220 reciprocal-lattice point are measured at room temperature and shown in Fig.5. The RSMs in irradiated MgO are like rhombic and diffuse scattering can be observed clearly. It reveals that a certain number of point defects are introduced in all neutron irradiated MgO(110) single crystals. The RSMs in irradiated MgO with higher dose are more complex, indicating that the defects concentration is higher in irradiated MgO with higher dose. The result is in agreement with that of ω-2θ scans and rocking curves. The RSMs around 220 reciprocal-lattice point of irradiated MgO can be well compared with the calculated diffuse scattering intensity profile near 220 reciprocal-lattice point for double-force point defects, demonstrating that interstitial atoms or divacancies are introduced in irradiated MgO. It is well believed that the interstitial atom is more stable in face-center cubic crystal. It makes clear that lots of interstitial atoms rather than divacancies are introduced in irradiated MgO(110) single crystals. To keep neutral, equal amount of vacancies will be generated if interstitials are presented in materials without impurity. Thus, we conclude that the Frenkel defects are introduced in MgO(110) single crystals by means of neutron irradiation.

    It is still unknown that the introduced defects are cation or anion Frenkel defects. So, the UV-Vis absorption spectra of pristine and irradiated MgO(110) single crystals are recorded and shown in Fig.6. It can be seen that the absorption spectrum of pristine bulk MgO is a smooth curve without any absorption peak, implying that defects and impurities are absent in pristine MgO(110). However, the broad peak, centered at about 250 nm, can be observed for all irradiated samples. But the intensity is much lower for some samples. This absorption peak at about 250 nm is associated with single anion vacancies (F or F+centers)27,28. It indicates that O vacancies are presented in irradiated MgO(110) single crystals. Depending on the charge of anion vacancy, the F-type color centers in MgO are classified as F-centers (O vacancies with two electrons trapped), F+-centers (O vacancies with one electron trapped) or F2+-centers (O vacancies without electrons trapped). Notably, the absorption peak around 570 nm is obviously observed for irradiated samples with higher dose (1.0 × 1019and 1.0 × 1020cm-2). The absorption around 570 nm is due to the aggregation of F centers27. Once samples are irradiated with higher dose, the introduced single vacancies can acquire enough energy, resulting in migrating easily. As a consequence, the single vacancies will be aggregated. Thus, the single vacancies can be aggregated when the irradiation dose exceeds 1.0 × 1019cm-2.

    Fig.6 UV-Vis absorption spectra of neutron irradiated MgO(110) single crystals with different doses.

    The peak intensity is related to the defects concentration. It seems that the defects concentration is dependent on the neutron irradiation dose but not in directly proportion to it. The defects concentration in irradiated MgO with the dose of 1.0 × 1020cm-2is highest. The results of RSMs and UV-Vis spectra indicate clearly that neutron irradiation can introduce O Frenkel defects in MgO(110) single crystals and aggregation is formed in samples with higher dose. It is important to point out that the absorption peak around 350 nm does not appear, which is related to O divacancies28. It is confirmed that the O divacancies are not presented in irradiated bulk MgO, which is in agreement with the result of RSMs.

    Fig.7(a-d) displays the mass magnetization (M) versus magnetic field (H) curves of the neutron irradiated MgO(110) with doses of 1.0 × 1016, 1.0 × 1017, 1.0 × 1019and 1.0 × 1020cm-2. The curves are typical diamagnetic above 20 K, revealing the neutron irradiated MgO is still diamagnetism above 20 K. However, the curves show obvious ferromagnetic signal as the temperature is below 10 K, indicating the irradiated bulk MgO is ferromagnetism as the temperature is below 10 K. The low temperature ferromagnetism in all irradiated MgO(110) single crystals can be observed. Notably, the saturation field of all samples is about 2.5 T at 2 K. The saturation magnetization is different for irradiated MgO, which may be due to the defects concentration. The maximum saturation magnetization is about 0.058observed in irradiated MgO with the dose of 1.0 ×. And the defects concentration in this sample is highest. The low temperature ferromagnetism in irradiated MgO single crystals can be attributed to the neutron irradiation induced oxygen vacancies. The neutron irradiated MgO(110) single crystals exhibit rich population of oxygen defects, subsequently resulting in the low temperature ferromagnetism. The ferromagnetism in undoped MgO nanocrystallites and nanosheets could be also due to O vacancies19,20. Using the X-ray photoelectron spectroscopy (XPS), Mishra et al.21highlighted the dominant role of O vacancies in the development of RTFM in Al-doped MgO nanoparticles. Based on the BMP model, O vacancies could account for the RTFM in Fe-doped MgO22. Glinchuk et al.′s calculations showed that long-range ferromagnetic ordering in MgO films was induced by magnetic O vacancies17. The ab initio calculations also showed that O vacancies might induce local magnetic state, as long as exchange split of O vacancies was enhanced enough18.

    The d0ferromagnetism is closely related to the defects concentration. For the case of long-range ferromagnetic ordering in CaO or MgO, there exists a minimum concentration of vacancies to establish the percolation29,30. The vacancies tend to be presented at/near the surfaces of samples, but our irradiated bulk MgO(110) single crystals do not have high specific surface area. Thus, we conclude that the insufficient defects concentration should account for the unchanged diamagnetism in irradiated MgO(110) single crystals above 20 K. The defects concentration may be less than the threshold value for achieving long-range ferromagnetism at room temperature.

    Fig.7 M-H curves at different temperatures for irradiated MgO(110) of (a) 1.0 × 1016 cm-2, (b) 1.0 × 1017 cm-2, (c) 1.0 × 1019 cm-2, and (d) 1.0 × 1020 cm-2.

    Fig.8 Temperature dependence of ZFC and FC magnetization of irradiated MgO of 1.0 × 1020 cm-2.

    Fig.8 shows the field-cooled (FC) and zero-field-cooled (ZFC) magnetization curves in the temperature range of 2 to 300 K at a magnetic field of 0.05 T for the irradiated MgO with the dose of 1.0 × 1020cm-2. The ZFC and FC processes are consistent and reversible for the irradiated sample, which is similar with the case of previously report on the magnetic properties of pristine MgO31. It indicates that neutron irradiated MgO(110) single crystals are not ferromagnetic at room temperature, which is consistent with the results of M-H curves. It also can be seen that there is no blocking temperature in the temperature range, indicating that the ferromagnetic contamination can be ruled out in irradiated samples5,32,33. The result confirms that low temperature d0ferromagnetism in irradiated MgO single crystals is surely intrinsic rather than from magnetic impurities.

    To account for the connection of O vacancies to the observed ferromagnetism in bulk MgO single crystals, we consider the F-center exchange mechanism. The F-center exchange mechanism, a subcategory of the BMP model, is very useful to explain O vacancies induced ferromagnetism in insulators34,35. The correlation between the origin of ferromagnetism and O vacancies in Al2O3, SnO2, TiO2and CeO2has been described using F-center exchange mechanism5,35-37.

    Previous report indicated that electrons in these singly charged oxygen vacancies (F+) are strongly localized34,37. The electron associated with a particular defect will be confined in a orbital of radius

    where ε is the high-frequency dielectric constant, m is the electron mass, m*is the effective mass of the donor electron and a0is the Bohr radius.

    The F+centers, basically the electrons in the singly occupied oxygen vacancies lying deep in the bandgap, will be able to favor a ferromagnetic state34. As the concentration of F+centers reaches the threshold value for magnetic percolation, the F+centers can overlap each other, leading to the long-range ferromagnetic ordering.

    The neutron irradiation can introduce anion defects in MgO(110) single crystals, as determined by the UV-Vis spectroscopic results. The electrons can be trapped by these vacancies, forming significant density of F+centers. To keep neutral, the trapped electrons can be bound with Mg in irradiated MgO, accordingly leading to the bound magnetic polarons.

    As the temperature is decreased, the lattice thermal vibration effect will be decreased, resulting in increasing the range of interaction of the polarons. The neighbouring polarons will overlap each other easily. Thus, the magnitude of ferromagnetism is larger at low temperature. The magnitude of ferromagnetism should be directly related with the concentration of O vacancies in irradiated bulk MgO. On the contrary, the magnitude of ferromagnetism is decreased or vanished even with increasing temperature. Thus, the neutron irradiated MgO(110) single crystals is ferromagnetic at low temperature, but diamagnetic at room temperature.

    4 Conclusions

    In summary, the defects and magnetic properties in neutron irradiated MgO(110) single crystals have been investigated. The ω-2θ curves and rocking curves demonstrated that neutron irradiation led to a lattice distortion in irradiated MgO. The experimental RSMs showed the significant scattering diffuse in irradiated samples. Both the RSMs and UV-Vis absorption spectra revealed that the O Frenkel defects were introduced in irradiated samples. The defects concentration was higher in irradiated MgO(110) single crystals with higher dose. The magnetic measurements showed that irradiated MgO(110) single crystals exhibited the d0ferromagnetism at low temperature. But, the saturation magnetization was different for irradiated MgO with different dose. The maximum saturation magnetization was about 0.058 emu·g-1, observed in irradiated MgO with the dose of 1.0 × 1020cm-2. The defects concentration determines the saturation magnetization. The neutron irradiated MgO(110) single crystals can obtain the low temperature d0ferromagnetism by introducing the oxygen vacancies through neutron irradiation. The ferromagnetism in oxygen-deficient MgO has been analyzed in terms of F+center exchange mechanism. Our results revealed a close correlation between d0ferromagnetism and oxygen vacancies in neutron irradiated MgO(110) single crystals.

    (1) Venkatesan, M.; Fitzgerald, C. B.; Coey, J. M. D. Nature 2004, 430, 630. doi: 10.1038/430630a

    (2) Wang, S.; Pan, L.; Song, J.; Mi, W.; Zou, J.; Wang, L.; Zhang, X. J. Am. Chem. Soc. 2015, 137, 2975. doi: 10.1021/ja512047k

    (3) Patel, S. K. S.; Dewangan, K.; Srivastav, S. K.; Gajbhiye, N. S. Curr.Appl. Phys. 2014, 14, 905. doi: 10.1016/j.cap.2014.04.007

    (4) Phokha, S.; Swatsitang, E.; Maensiri, S. Electron. Mater. Lett. 2015, 11, 1012. doi: 10.1007/s13391-015-4164-4

    (5) Yang, G.; Gao, D.; Zhang, J.; Zhang, J.; Shi, Z.; Xue, D. J. Phys.Chem. C 2011, 115, 16814. doi: 10.1021/jp2039338

    (6) Bhaumik, S.; Sinha, A. K.; Ray, S. K.; Das, A. K. IEEE Trans. Magn. 2014, 50, 2400206. doi: 10.1109/TMAG.2013.2292575

    (7) Das, A. K.; Srinivasan, A. J. Magn. Magn. Mater. 2016, 404, 190. doi: 10.1016/j.jmmm.2015.12.032

    (8) Coey, J. M. D. Solid State Sci. 2005, 7, 660. doi: 10.1016/j.solidstatesciences.2004.11.012

    (9) Seike, M.; Sato, K.; Katayama-Yoshida, H. Jpn. J. Appl. Phys. 2011, 50, 090204. doi: 10.1143/jjap.50.090204

    (10) Hu, J.; Zhang, Z.; Zhao, M.; Qin, H.; Jiang, M. Appl. Phys. Lett. 2008, 93, 192503. doi: 10.1063/1.3021085

    (11) Khamkongkaeo, A.; Mothaneeyachart, N.; Sriwattana, P.; Boonchuduang, T.; Phetrattanarangsi, T.; Thongchai, C.; Sakkomolsri, B.; Pimsawat, A.; Daengsakul, S.; Phumying, S.; Chanlek, N.; Kidkhunthod, P.; Lohwongwatana, B. J. Alloy. Compd. 2017, 705, 668. doi: 10.1016/j.jallcom.2017.02.170

    (12) Li, J.; Jiang, Y.; Bai, G.; Ma, T.; Yang, D.; Du, Y.; Yan, M. Appl.Phys. A 2014, 115, 997. doi: 10.1007/s00339-013-7922-x

    (13) Singh, J. P.; Chen, C. L.; Dong, C. L.; Prakash, J.; Kabiraj, D.; Kanjilal, D.; Pong, W. F.; Asokan, K.; Superlattices Microstruct. 2015, 77, 313. doi: 10.1016/j.spmi.2014.10.035

    (14) Kuang, F.; Kang, S.; Kuang, X.; Chen, Q.; RSC Adv. 2014, 4, 51366. doi: 10.1039/C4RA06340F

    (15) Uchino, T.; Yoko, T. Phys. Rev. B 2013, 87, 144414. doi: 10.1103/PhysRevB.87.144414

    (16) Merabet, B.; Kacimi, S.; Mir, A.; Azzouz, M.; Zaoui, A. Mod. Phys.Lett. B 2015, 29, 1550147. doi: 10.1142/S021798491550147X

    (17) Glinchuk, M. D.; Eliseev, E. A.; Khist, V. V.; Morozovska, A. N. Thin Solid Films 2013, 534, 685. doi: 10.1016/j.tsf.2013.02.135

    (18) Zhang, Y.; Feng, M.; Shao, B.; Lu, Y.; Liu, H.; Zuo, X. J. Appl. Phys. 2014, 115, 17A926. doi: 10.1063/1.4867228

    (19) Kumar, A.; Kumar, J.; Priya, S. Appl. Phys. Lett. 2012, 100, 192404. doi: 10.1063/1.4712058

    (20) Maoz, B. M.; Tirosh, E.; Sadan, M. B.; Markovich, G. Phys. Rev. B 2011, 83, 161201. doi: 10.1103/PhysRevB.83.161201

    (21) Mishra, D.; Mandal, B. P.; Mukherjee, R.; Naik, R.; Lawes, G.; Nadgorny, B. Appl. Phys. Lett. 2013, 103, 182204. doi: 10.1063/1.4804425

    (22) Phokha, S.; Klinkaewnarong, J.; Hunpratub, S.; Boonserm, K.; Swatsitang, E.; Maensiri, S. J. Mater. Sci.: Mater. Electron. 2016, 27, 33. doi: 10.1007/s10854-015-3713-9

    (23) Flocken, J. W.; Hardy, J. R. Phys. Rev. B 1970, 1, 2472. doi: 10.1103/PhysRevB.1.2472

    (24) Bachiller-Pere, D.; Debelle, A.; Thomé, L.; Crocombette, J. J. Mater.Sci. 2016, 51, 1456. doi: 10.1007/s10853-015-9465-3

    (25) Pillukat, A.; Karsten, K.; Ehrhart, P. Phys. Rev. B 1996, 53, 7823. doi: 10.1103/PhysRevB.53.7823

    (26) Karsten, K.; Ehrhart, P. Phys. Rev. B 1995, 51, 508. doi: 10.1103/PhysRevB.51.10508

    (27) Ruan, Y.; Ma, P.; Liu, J.; Li, W.; Liu, C. J. Rare Earths 2006, 24, 56.

    (28) Monge, M. A.; Popov, A. I.; Ballesteros, C.; González, R.; Chen, Y.; Kotomin, E. A. Phys. Rev. B 2000, 62, 9299. doi: 10.1103/PhysRevB.62.9299

    (29) Gao, F.; Hu, J.; Yang, C.; Zheng, Y.; Qin, H.; Sun, L.; Kong, X.; Jiang, M. Solid State Commun. 2009, 149, 855. doi: 10.1016/j.ssc.2009.03.010

    (30) Osorio-Guillén, J.; Lany, S.; Barabash, S. V.; Zunger, A. Phys. Rev.Lett. 2006, 96, 107203. doi: 10.1103/PhysRevLett.96.107203

    (31) Prucnal, A.; Shalimov, A.; Ozerov, M.; Potzger, K.; Skorupa, W. J. Cryst. Growth 2012, 339, 70. doi: 10.1016/j.jcrysgro.2011.11.067

    (32) Yang, G.; Gao, D.; Shi, Z.; Zhang, Z.; Zhang, J.; Zhang, J.; Xue, D. J. Phys. Chem. C 2010, 114, 21989. doi: 10.1021/jp106818p

    (33) Gao, D.; Li, J. Li, Z.; Zhang, Z.; Zhang, J.; Shi, H.; Xue, D. J. Phys.Chem. C 2010, 114, 11703. doi: 10.1021/jp911957j

    (34) Coey, J. M. D.; Venkatesan, M.; Fitzgerald, C. B. Nature Mater. 2005, 4, 173. doi: 10.1038/nmat1310

    (35) Singhal, R. K.; Kumari, P.; Samariya, A.; Kumar, S.; Sharma, S. C.; Xing, Y. T.; Saitovitch, E. Appl. Phys. Lett. 2010, 97, 172503. doi: 10.1063/1.3507290

    (36) Singhal, R. K.; Kumar, S.; Kumari, P.; Xing, Y. T.; Saitovitch, E. Appl. Phys. Lett. 2011, 98, 092510. doi: 10.1063/1.3562328

    (37) Shah, L. R. Ali, B.; Zhu, H.; Wang, W. G.; Song, Y. Q.; Zhang, H. W.; Shah, S. I.; Xiao, J. Q. J. Phys.: Condens. Matter 2009, 21, 486004. doi: 10.1088/0953-8984/21/48/486004

    猜你喜歡
    王曉雄點缺陷湖南
    Indoor orchids take the spotlight
    金紅石型TiO2中四種點缺陷態(tài)研究
    Fe-Cr-Ni合金中點缺陷形成及相互作用的第一性原理研究
    GaN中質(zhì)子輻照損傷的分子動力學模擬研究
    三線建設在湖南
    湖南是我家
    奧地利男子稱警察“藍精靈”被罰款
    微軟262億美元收購領英
    國際油價跌至11年新低
    歲月
    海峽影藝(2012年1期)2012-11-30 08:16:56
    国内精品一区二区在线观看| 久久99热这里只有精品18| 亚洲精品粉嫩美女一区| 国产淫片久久久久久久久 | 久久久久精品国产欧美久久久| 亚洲中文日韩欧美视频| av在线蜜桃| 最新中文字幕久久久久| 母亲3免费完整高清在线观看| 美女高潮的动态| 国产欧美日韩精品一区二区| 精品电影一区二区在线| 国产精品日韩av在线免费观看| 高清毛片免费观看视频网站| 99热这里只有是精品50| 1000部很黄的大片| 国产三级黄色录像| 日本撒尿小便嘘嘘汇集6| 国产伦精品一区二区三区四那| 免费av不卡在线播放| 色噜噜av男人的天堂激情| 亚洲av日韩精品久久久久久密| 久久午夜亚洲精品久久| 看免费av毛片| 大型黄色视频在线免费观看| 亚洲内射少妇av| 成年人黄色毛片网站| 亚洲天堂国产精品一区在线| 亚洲精品在线美女| 19禁男女啪啪无遮挡网站| 久久午夜亚洲精品久久| 国产欧美日韩精品一区二区| 亚洲精品一区av在线观看| 亚洲av日韩精品久久久久久密| 欧美日韩一级在线毛片| 午夜视频国产福利| 国产野战对白在线观看| 91在线精品国自产拍蜜月 | 99久久精品热视频| 久久九九热精品免费| 亚洲人成网站在线播| 又黄又爽又免费观看的视频| 国产精品久久久久久精品电影| 日韩av在线大香蕉| 国产av一区在线观看免费| 国语自产精品视频在线第100页| eeuss影院久久| 51午夜福利影视在线观看| 首页视频小说图片口味搜索| 免费无遮挡裸体视频| 一a级毛片在线观看| 狠狠狠狠99中文字幕| 久久草成人影院| 久久精品国产亚洲av涩爱 | 午夜亚洲福利在线播放| 国产精品久久久久久久久免 | 在线天堂最新版资源| 亚洲激情在线av| 在线观看午夜福利视频| 久久国产精品人妻蜜桃| 日韩免费av在线播放| 19禁男女啪啪无遮挡网站| 成年人黄色毛片网站| 成熟少妇高潮喷水视频| 久久精品91无色码中文字幕| 国产爱豆传媒在线观看| 神马国产精品三级电影在线观看| 国产野战对白在线观看| 黄片小视频在线播放| 欧美一区二区亚洲| 国产亚洲精品久久久com| 成人鲁丝片一二三区免费| 真实男女啪啪啪动态图| 国产伦在线观看视频一区| 在线天堂最新版资源| 色在线成人网| 无人区码免费观看不卡| 精品人妻一区二区三区麻豆 | 亚洲精品美女久久久久99蜜臀| 国产亚洲精品久久久com| 高潮久久久久久久久久久不卡| 国产99白浆流出| 亚洲熟妇熟女久久| 狂野欧美白嫩少妇大欣赏| 在线国产一区二区在线| 国产不卡一卡二| 国产精品久久久久久人妻精品电影| 成人亚洲精品av一区二区| h日本视频在线播放| 国产伦精品一区二区三区视频9 | 成人高潮视频无遮挡免费网站| 国产成人系列免费观看| 男人的好看免费观看在线视频| 亚洲在线自拍视频| 日本五十路高清| 一夜夜www| 校园春色视频在线观看| 九九在线视频观看精品| 国产一区二区亚洲精品在线观看| 老司机午夜福利在线观看视频| 国内精品一区二区在线观看| 一二三四社区在线视频社区8| bbb黄色大片| 韩国av一区二区三区四区| 亚洲欧美日韩无卡精品| a在线观看视频网站| 天堂网av新在线| 日韩人妻高清精品专区| av视频在线观看入口| 在线播放国产精品三级| 精品国产亚洲在线| 黄色视频,在线免费观看| 国产日本99.免费观看| 成人永久免费在线观看视频| 亚洲美女视频黄频| 别揉我奶头~嗯~啊~动态视频| 小蜜桃在线观看免费完整版高清| 91av网一区二区| 男女视频在线观看网站免费| 国产伦精品一区二区三区四那| 国产三级在线视频| 在线观看午夜福利视频| 日日夜夜操网爽| 99国产极品粉嫩在线观看| 在线观看美女被高潮喷水网站 | 欧美一级a爱片免费观看看| 久久久久久九九精品二区国产| 久久久精品欧美日韩精品| 免费看日本二区| 国产精品99久久99久久久不卡| 国产精品免费一区二区三区在线| 日本撒尿小便嘘嘘汇集6| 亚洲国产精品合色在线| 日韩欧美三级三区| 成年免费大片在线观看| 欧美不卡视频在线免费观看| 19禁男女啪啪无遮挡网站| 色视频www国产| 免费无遮挡裸体视频| 五月玫瑰六月丁香| 精品午夜福利视频在线观看一区| 精品国产亚洲在线| 亚洲狠狠婷婷综合久久图片| 久久久久精品国产欧美久久久| 成人av一区二区三区在线看| 欧美成人性av电影在线观看| 欧美最黄视频在线播放免费| 国产av在哪里看| 天天躁日日操中文字幕| 99热这里只有是精品50| 国产午夜精品久久久久久一区二区三区 | 免费大片18禁| 精品一区二区三区av网在线观看| 国产av在哪里看| 夜夜爽天天搞| 午夜免费男女啪啪视频观看 | 亚洲欧美日韩高清在线视频| www日本黄色视频网| 国产成人影院久久av| 看片在线看免费视频| 久久人人精品亚洲av| 免费搜索国产男女视频| 午夜日韩欧美国产| 美女黄网站色视频| 国产精品久久久久久久久免 | 欧美日本亚洲视频在线播放| 男插女下体视频免费在线播放| a级一级毛片免费在线观看| 亚洲乱码一区二区免费版| 亚洲黑人精品在线| 丁香六月欧美| 国产蜜桃级精品一区二区三区| 久9热在线精品视频| 一本综合久久免费| 色吧在线观看| 老司机午夜十八禁免费视频| 999久久久精品免费观看国产| 淫秽高清视频在线观看| 真实男女啪啪啪动态图| 色噜噜av男人的天堂激情| 日韩亚洲欧美综合| 91九色精品人成在线观看| 久久99热这里只有精品18| 日韩有码中文字幕| 伊人久久精品亚洲午夜| 欧美bdsm另类| 国产精品女同一区二区软件 | 国产精品三级大全| 国产av一区在线观看免费| 精品电影一区二区在线| 黄片大片在线免费观看| 岛国在线观看网站| 国产精品爽爽va在线观看网站| 欧洲精品卡2卡3卡4卡5卡区| 女人高潮潮喷娇喘18禁视频| 国产精品嫩草影院av在线观看 | 99久国产av精品| 变态另类成人亚洲欧美熟女| 午夜亚洲福利在线播放| 成人精品一区二区免费| 99精品欧美一区二区三区四区| 亚洲一区高清亚洲精品| 成年女人看的毛片在线观看| 亚洲欧美一区二区三区黑人| 精品久久久久久久久久免费视频| 日本 av在线| 久99久视频精品免费| 少妇熟女aⅴ在线视频| 岛国视频午夜一区免费看| 夜夜夜夜夜久久久久| 国产亚洲精品久久久久久毛片| 国产成+人综合+亚洲专区| 宅男免费午夜| 校园春色视频在线观看| 久久人人精品亚洲av| 免费观看的影片在线观看| 91九色精品人成在线观看| 18禁国产床啪视频网站| 色av中文字幕| 国内少妇人妻偷人精品xxx网站| 51午夜福利影视在线观看| 一级毛片女人18水好多| 一进一出好大好爽视频| 久久久国产成人精品二区| 全区人妻精品视频| 亚洲av熟女| 丁香六月欧美| 美女黄网站色视频| 国产久久久一区二区三区| 男人舔奶头视频| 99riav亚洲国产免费| 亚洲国产日韩欧美精品在线观看 | 成人精品一区二区免费| 黄片小视频在线播放| 性欧美人与动物交配| 精品一区二区三区视频在线观看免费| 一个人观看的视频www高清免费观看| 麻豆一二三区av精品| 日韩欧美一区二区三区在线观看| 老司机午夜福利在线观看视频| 1000部很黄的大片| 午夜免费激情av| 国产免费男女视频| 欧美日韩中文字幕国产精品一区二区三区| 亚洲天堂国产精品一区在线| 精品国产三级普通话版| 中出人妻视频一区二区| 亚洲 国产 在线| 亚洲精品久久国产高清桃花| 成人国产综合亚洲| 一个人免费在线观看电影| 日韩大尺度精品在线看网址| 美女黄网站色视频| svipshipincom国产片| 午夜福利在线在线| 成年人黄色毛片网站| 国产精品国产高清国产av| 国产精品日韩av在线免费观看| 午夜久久久久精精品| 午夜福利18| 欧美乱妇无乱码| 欧美不卡视频在线免费观看| 51午夜福利影视在线观看| 麻豆一二三区av精品| 宅男免费午夜| 国产av一区在线观看免费| 色在线成人网| 国产视频内射| 97碰自拍视频| 熟女人妻精品中文字幕| 亚洲精品在线美女| 日韩高清综合在线| 欧美最新免费一区二区三区 | 性色avwww在线观看| 欧美日韩国产亚洲二区| 国产精品自产拍在线观看55亚洲| 脱女人内裤的视频| 国产高清视频在线观看网站| 日韩欧美国产在线观看| 国产精品久久久人人做人人爽| 久久精品国产99精品国产亚洲性色| 91久久精品电影网| 99在线视频只有这里精品首页| 婷婷精品国产亚洲av| 国内毛片毛片毛片毛片毛片| 国产探花在线观看一区二区| 久久精品国产清高在天天线| www.熟女人妻精品国产| 啦啦啦免费观看视频1| 中文字幕精品亚洲无线码一区| 国产老妇女一区| 成人午夜高清在线视频| 亚洲va日本ⅴa欧美va伊人久久| 免费高清视频大片| 欧美极品一区二区三区四区| 成人三级黄色视频| 女人被狂操c到高潮| 成人国产一区最新在线观看| tocl精华| 人妻夜夜爽99麻豆av| 久久久久国内视频| 日本成人三级电影网站| 91在线精品国自产拍蜜月 | 午夜福利在线观看吧| 伊人久久精品亚洲午夜| 精品免费久久久久久久清纯| 国产成+人综合+亚洲专区| 亚洲无线在线观看| 18+在线观看网站| АⅤ资源中文在线天堂| 一级毛片女人18水好多| 国产av不卡久久| 久久国产精品人妻蜜桃| 久久久久久久久久黄片| 国产高清三级在线| 亚洲,欧美精品.| 成熟少妇高潮喷水视频| 男人舔女人下体高潮全视频| 国产精品久久电影中文字幕| 国产成人系列免费观看| 91麻豆av在线| 亚洲成人中文字幕在线播放| 又爽又黄无遮挡网站| 久久精品人妻少妇| 国产成人av教育| 色哟哟哟哟哟哟| 桃红色精品国产亚洲av| 日本黄色视频三级网站网址| 国产精华一区二区三区| 日本黄色视频三级网站网址| 亚洲成av人片免费观看| 日本黄大片高清| 最后的刺客免费高清国语| 欧美日韩瑟瑟在线播放| 亚洲aⅴ乱码一区二区在线播放| 亚洲一区二区三区不卡视频| 免费看美女性在线毛片视频| 久久精品亚洲精品国产色婷小说| 性色av乱码一区二区三区2| 在线播放无遮挡| 欧美性猛交黑人性爽| 亚洲在线自拍视频| 黄片小视频在线播放| 精品人妻一区二区三区麻豆 | 中出人妻视频一区二区| 久久精品国产自在天天线| 欧美一级毛片孕妇| 久久人人精品亚洲av| 亚洲欧美激情综合另类| 精品久久久久久,| e午夜精品久久久久久久| 久久欧美精品欧美久久欧美| 日本撒尿小便嘘嘘汇集6| 国产精品久久久久久亚洲av鲁大| 成年免费大片在线观看| 搡老岳熟女国产| 亚洲精品456在线播放app | 又粗又爽又猛毛片免费看| 国产淫片久久久久久久久 | 亚洲国产精品999在线| 首页视频小说图片口味搜索| 国产真人三级小视频在线观看| 亚洲精品456在线播放app | 人人妻,人人澡人人爽秒播| 在线免费观看不下载黄p国产 | 欧美日韩黄片免| 毛片女人毛片| 国产精品综合久久久久久久免费| 亚洲人与动物交配视频| 午夜免费成人在线视频| 久久草成人影院| 五月伊人婷婷丁香| 法律面前人人平等表现在哪些方面| 日本 av在线| 国产精品永久免费网站| 欧美黄色片欧美黄色片| 亚洲欧美日韩高清在线视频| 国产三级黄色录像| 国产熟女xx| 免费观看人在逋| 老司机深夜福利视频在线观看| a级毛片a级免费在线| 午夜日韩欧美国产| 天美传媒精品一区二区| 网址你懂的国产日韩在线| 亚洲欧美日韩高清专用| 国内少妇人妻偷人精品xxx网站| 操出白浆在线播放| 男女午夜视频在线观看| 久久精品国产99精品国产亚洲性色| 成人三级黄色视频| 亚洲精品乱码久久久v下载方式 | 国产亚洲精品综合一区在线观看| 制服丝袜大香蕉在线| 国产探花极品一区二区| 欧美zozozo另类| 色老头精品视频在线观看| 男女视频在线观看网站免费| 亚洲国产高清在线一区二区三| 一本一本综合久久| 男人舔奶头视频| 97超级碰碰碰精品色视频在线观看| 欧美日本亚洲视频在线播放| 校园春色视频在线观看| 国产精品免费一区二区三区在线| 99精品在免费线老司机午夜| 国产一区二区三区在线臀色熟女| 免费看光身美女| 99久久无色码亚洲精品果冻| 久久香蕉精品热| 国产精华一区二区三区| 日韩人妻高清精品专区| 性欧美人与动物交配| 久久精品国产自在天天线| 国产精品 欧美亚洲| 国产欧美日韩一区二区三| 国产在线精品亚洲第一网站| 丰满乱子伦码专区| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久久精品吃奶| 又紧又爽又黄一区二区| 午夜精品久久久久久毛片777| 欧美+亚洲+日韩+国产| 最新在线观看一区二区三区| 亚洲美女视频黄频| 高潮久久久久久久久久久不卡| 琪琪午夜伦伦电影理论片6080| 波多野结衣巨乳人妻| 国产精品女同一区二区软件 | 一本综合久久免费| 久久亚洲真实| 黄色视频,在线免费观看| 中文资源天堂在线| 免费搜索国产男女视频| 亚洲中文字幕一区二区三区有码在线看| 亚洲人成电影免费在线| 人人妻人人澡欧美一区二区| 校园春色视频在线观看| 88av欧美| 91在线观看av| 夜夜爽天天搞| 麻豆久久精品国产亚洲av| 狂野欧美白嫩少妇大欣赏| 国产午夜精品久久久久久一区二区三区 | 亚洲最大成人中文| 欧美xxxx黑人xx丫x性爽| 精品国产超薄肉色丝袜足j| 亚洲成人久久爱视频| 欧美日本亚洲视频在线播放| 国产精品 欧美亚洲| 欧美黑人欧美精品刺激| 久久精品国产综合久久久| 成人午夜高清在线视频| 亚洲 欧美 日韩 在线 免费| 午夜激情福利司机影院| 精华霜和精华液先用哪个| 国产av一区在线观看免费| 亚洲av成人av| 亚洲成av人片在线播放无| 久久久久久久精品吃奶| 亚洲中文字幕一区二区三区有码在线看| 国产麻豆成人av免费视频| 日韩欧美精品v在线| 日本在线视频免费播放| 国产一区二区在线av高清观看| 搡老熟女国产l中国老女人| 免费人成视频x8x8入口观看| 亚洲中文字幕日韩| 老司机午夜十八禁免费视频| 亚洲美女视频黄频| 窝窝影院91人妻| 在线观看美女被高潮喷水网站 | 好男人电影高清在线观看| 国产成人欧美在线观看| 国产91精品成人一区二区三区| 国产激情欧美一区二区| 搡老妇女老女人老熟妇| 中文亚洲av片在线观看爽| 18禁黄网站禁片午夜丰满| 亚洲精品日韩av片在线观看 | 五月伊人婷婷丁香| 久久久久久久亚洲中文字幕 | 国产成人欧美在线观看| 国产精品,欧美在线| 亚洲av中文字字幕乱码综合| 99国产精品一区二区蜜桃av| 人妻夜夜爽99麻豆av| 亚洲一区高清亚洲精品| 高清日韩中文字幕在线| 18+在线观看网站| 欧美在线一区亚洲| 身体一侧抽搐| 美女高潮的动态| 丰满的人妻完整版| 色综合婷婷激情| 亚洲黑人精品在线| ponron亚洲| 特大巨黑吊av在线直播| 在线免费观看的www视频| 国产亚洲精品综合一区在线观看| 国产精品 国内视频| 人妻夜夜爽99麻豆av| 国产单亲对白刺激| 国产成年人精品一区二区| 好看av亚洲va欧美ⅴa在| 一边摸一边抽搐一进一小说| 亚洲av成人不卡在线观看播放网| 亚洲国产中文字幕在线视频| 国产一区二区在线av高清观看| 日本熟妇午夜| 午夜精品在线福利| 搡老岳熟女国产| 国产成人a区在线观看| 免费看美女性在线毛片视频| 成人特级黄色片久久久久久久| 一级黄片播放器| 黄色女人牲交| 看黄色毛片网站| 日本 欧美在线| 伊人久久大香线蕉亚洲五| 亚洲avbb在线观看| 国产一区二区亚洲精品在线观看| 免费无遮挡裸体视频| 成人av在线播放网站| av国产免费在线观看| 国产成人av激情在线播放| 日韩欧美免费精品| 国产99白浆流出| 成年女人毛片免费观看观看9| 亚洲精品色激情综合| 成人永久免费在线观看视频| 国产亚洲精品久久久com| 午夜福利18| 亚洲人成网站高清观看| 国产黄色小视频在线观看| 国产一区二区三区视频了| 国产69精品久久久久777片| 宅男免费午夜| 特级一级黄色大片| 国产欧美日韩一区二区精品| 国产真人三级小视频在线观看| 欧美最黄视频在线播放免费| 色播亚洲综合网| 好男人电影高清在线观看| 国产精品 欧美亚洲| a级毛片a级免费在线| 又紧又爽又黄一区二区| 两人在一起打扑克的视频| 在线免费观看的www视频| 又黄又粗又硬又大视频| 欧美乱妇无乱码| 五月伊人婷婷丁香| 日日摸夜夜添夜夜添小说| 久久久久久久精品吃奶| 成人国产一区最新在线观看| 国产在视频线在精品| 极品教师在线免费播放| 亚洲精品在线美女| 久久精品亚洲精品国产色婷小说| 免费观看的影片在线观看| 亚洲国产精品sss在线观看| 啦啦啦观看免费观看视频高清| 91在线精品国自产拍蜜月 | 欧美成人免费av一区二区三区| 免费av毛片视频| 欧美乱码精品一区二区三区| 亚洲五月婷婷丁香| 一级a爱片免费观看的视频| 成人一区二区视频在线观看| 亚洲精华国产精华精| 女人高潮潮喷娇喘18禁视频| 99热这里只有是精品50| av视频在线观看入口| 精品人妻偷拍中文字幕| 国产精品 欧美亚洲| 欧美性猛交╳xxx乱大交人| 亚洲国产高清在线一区二区三| 成年女人毛片免费观看观看9| 床上黄色一级片| 亚洲av二区三区四区| av片东京热男人的天堂| 男女床上黄色一级片免费看| 久久久久国产精品人妻aⅴ院| 18禁黄网站禁片午夜丰满| 国产精品一及| 两性午夜刺激爽爽歪歪视频在线观看| 成人av在线播放网站| 他把我摸到了高潮在线观看| 熟妇人妻久久中文字幕3abv| 欧美色视频一区免费| 草草在线视频免费看| 欧美乱码精品一区二区三区| 一本一本综合久久| 热99在线观看视频| 国产亚洲精品综合一区在线观看| 亚洲最大成人手机在线| 国内揄拍国产精品人妻在线| 亚洲国产日韩欧美精品在线观看 | 日韩成人在线观看一区二区三区| 国产精品电影一区二区三区| 国产精品久久视频播放| 在线视频色国产色| 真人做人爱边吃奶动态| 国模一区二区三区四区视频| 91av网一区二区| 成人精品一区二区免费| 禁无遮挡网站| www.999成人在线观看| 国产精品99久久99久久久不卡| 国产亚洲欧美98| 亚洲内射少妇av| 国产视频一区二区在线看| 亚洲av不卡在线观看| 嫩草影院精品99| 不卡一级毛片|