• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The serum and breath Raman fingerprinting methodfor early lung cancer and breast cancer screening

    2018-04-23 08:15:17
    轉(zhuǎn)化醫(yī)學(xué)雜志 2018年2期
    關(guān)鍵詞:參考文獻(xiàn)

    (School of Physics, Dalian University of Technology, Dalian Liaoning 116024, China)

    IntroductionMany countries have proposed the "early discovery, early diagnosis, and early treatment" strategy to overcome the cancers, however there is currently no satisfactory consensus on how to achieve this. The main reason is because there is no established "early screening" strategy occurring before the "early discovery, early diagnosis, and early treatment" strategy. A precondition for early treatment is early diagnosis, and a precondition for early diagnosis is early detection. Thus, the foundation of early detection needs to have methods for early cancer screening. In the past, an insufficient focus on and investment in research and development for early cancer screening has prevented much progress, relegating it to just a vain slogan. Many cancer patients, especially lung cancer patients, are already in the advanced stages of cancer at diagnosis, and they miss the window for successful treatment or prolonging survival time. The aim of this paper is to report the progress of our serum-Raman fingerprinting method to screen for lung cancer and breast cancer, to explore the feasibility of our breath-Raman fingerprinting method to screen for lung cancer, and to propose that a combined breath- and serum-Raman fingerprinting method to screen for lung cancer can increase the specificity of detection of early lung cancer.

    1 Pre-research results of serum raman fingerprinting screening for early-breast disease

    1.1 Professor Wang Yongcai, a professor of shedding cytopathology, provided the pathological diagnosis data and serum samples of early stage breast disease patients to the Dalian University of Technology. We analyzed the SERSp data in serum samples from patients with breast disease (58 cases) and healthy controls (35 cases) on our assembled inverted microscope + Raman spectrometer (Renisaw) using silver nanoparticles to enhance the Raman signal. Of the 58 cases of breast disease, 14 were cases of breast cancer, 18 were cases of benign tumors, 21 were cases of hyperplasia (including 5 cases of atypical hyperplasia), and 5 were cases of mastitis. The majority of the serum samples were rare samples of early stage breast disease. The average SERSp with the internal standard of 725 cm-1Raman-peak is shown in Figure 1.

    The serum analysis results using hierarchical cluster analysis (HCA) for the 58 cases of breast disease patients and the 35 cases of healthy controls are shown in Figure 2.

    Figure 1 The average SERSp of serum of the 5 breast disease groups and the control group

    Figure 2 The HCA results of 58 patients with breast disease and 35 healthy persons[1]

    The true positive rate of distinguishing between breast disease patients and healthy volunteers is 100%, with an error rate of 0. The accuracy rate as distinguished from inflammation is as follows: hyperplasia 81%, benign tumor 61%, and breast cancer 50%. It is difficult to distinguish between inflammation, cancer, benign tumors, and hyperplasia using HCA because the individual data are too dispersed. However, it can be observed from the average SERSp in Figure 1 that specificity between inflammation, cancer, benign tumors, and hyperplasia exists. Their average SERSp can be distinguished from each other and there are some regularities that can be further differentiated with further investigation. Of the 58 cases of breast disease, 5 cases are precancerous-atypical hyperplasia serum samples. We combined these SERSp data with 6 cases of preoperative ductal carcinoma patient data and 29 cases of healthy control data. The principal component analysis (PCA) results are shown in Figure 3.

    Figure3 PCAclusteringgraphforserumofatypicalhyperplasia,ductalbreastcancer,andhealthyindividuals

    As seen in Figure 3, it is possible to distinguish between the PCA clusters of the three groups: atypical hyperplasia, ductal carcinoma, and healthy controls. There are 4 cases of atypical hyperplasia in the transition zone between the ductal carcinoma grouping and the healthy control grouping; the fifth case is severe atypical hyperplasia (clinically may be attributable to cancer). These cases, though few, confirm that the sensitivity and specificity of the serum-Raman fingerprint screening method can not only identify early ductal carcinoma cases but also detect and screen precancerous dysplasia cases in the breast. We found that the Raman fingerprint screening method has a very low detection capability limit, which went beyond our expectations.

    1.2 A comparison of the results of the Raman breast disease screening method and the immune CA153-chemiluminescence screening method The results of the serum-Raman fingerprint screening of the 58 cases of patients with breast disease and the 35 healthy controls were compared with the results published, which reported results obtained using the conventional CA153 immune chemiluminescence method to screen serum of 59 cases of breast cancer and 35 healthy controls. Table 1 shows the comparison, and demonstrates that the sensitivity and specificity of the serum-Raman fingerprinting screening method for breast disease and breast cancer is much higher than the routine serum CA153 immune chemiluminescence screening method.

    Table 1 Comparison of the Raman fingerprint and conventional CA153 screening methods

    2 Results of the serum Raman fingerprinting method for lung cancer screening

    2.1 The average SERSp and PCA analysis results for lung cancer screening The Dalian University of Technology cooperated with Jing Tong, a director of blood chemistry, to complete a serum Raman fingerprinting screening study[1]with 43 lung cancer patients and 41 healthy volunteers. Eight specific Raman lines are selected and shown in the mean SERSp graph (with an internal standard of 725 cm-1) in Figure 4. PCA is shown in Figure 5. The lung cancer screening accuracy rate is more than 95% with a false detection rate of 5% (two cases of false negatives), and the accuracy rate of screening healthy persons is 100% (41 total cases).

    2.2 Comparison of the Raman screening method to the immune luminescence method using the same number of patients with lung cancer To date, there are no effective early screening methods for lung cancer except for the difficult, regular low-dose spiral chest CT monitoring procedure combined with biopsy[2-3]. In our serum screening study using Raman fingerprinting, 40 out of the 43 total lung cancer serum samples had undergone multiple routine immunization luminescence detections. Table 2 shows the results of the comparison of the Raman fingerprint screening method and the routine immune luminescence method in the same serum samples. PCA of Raman fingerprint method screening for lung cancer demonstrates a true positive rate of 95% and a false negative rate of 5%, while the conventional immune luminescence method for detection of lung cancer shows a true positive rate of 48~68% with a false negative rate of 32%~52%. These results indicate that the Raman fingerprint method for lung cancer serum screening has achieved the lung cancer screening requirements, while the conventional immune luminescence method for lung cancer screening has met the requirements with only one sample. Even though the immune luminescence method has been the routine clinical detection method, the CEA, CYFRA21, and NSE true positive accuracy rates and false negative rates for lung cancer screening do not meet the clinical requirements. In addition, we found that dynamic changes in both adenocarcinoma CEA levels and NSE levels in small cell carcinoma occur in an individual over time. This reflects treatment effects, lung cancer relapse monitoring, and judgment of prognosis, which indicates a more important reference value for clinical diagnosis.

    Figure4 AverageSERSpand8characteristicspectrum

    Figure5 ScreeningforlungcancerwithPCA

    Table 2 Comparison of the Raman fingerprint method with the immune luminescence method using same serum samles screening

    3 Using serum raman fingerprinting as a unified treatment of screening for lung cancer and early breast disease[4]

    3.1 PCA of combined breast disease and lung cancer screening With the same 10 specific spectra lines (636,805,945,1 017,1 135,1 330,1 399,1 453,1 620,and 1 688 cm-1), and using the previous serum SERSp data from 58 cases of breast disease, 43 cases of lung cancer, and 35 healthy controls, we performed PCA (Figure 6) and determined the statistical likelihood ratio (equal to the true positive detection accuracy rate / the false negative rate) (Table 3).

    3.2 Unified HCA of breast disease, lung cancer, and healthy control samples Using the same serum sample SERPs data and 10 specific spectral line data as in the unified PCA method above, a HCA was also preformed (Figure 7 and Table 4).

    Table 3 Likelihood ratios of unified PCA for the lung cancer, breast disease, and healthy groups

    Figure 7 The unified HCA results for breast disease, lung cancer, and normal groups

    UnifiedHCA(+)AccuracyrateNumberoffalsenegativesFalserateLikelihoodratiosLungcancer(43)81.4%8casesofbreastdiseasefalselyidentifiedaslungcancer(+)18.6%4.4Breastdisease(58)86%8casesofbreastdiseasefalselyidentifiedaslungcancer(-)14%6.1Healthy(35)35/35(100%)00%maximum

    3.3 Comparison of the likelihood ratios of the PCA and HCA and with the CA153 serum screening method for breast cancer The likelihood ratios of PCA and HCA for serum samples of breast disease, lung cancer and healthy controls are shown in Table 5. The difference in likelihood ratios between the two methods suggests that one may prefer PCA for lung cancer screening and HCA for healthy control screening, with the exclusion of lung cancer. The likelihood ratios for PCA and HCA are similar for breast disease.

    Table 5 Comparison of the likelihood ratios of PCA and HCA of Raman-screening for lung cancer and breast disease

    4 Proposal for developing Raman fingerprinting screening methods using exhaled breath samples for early stage screening of lung cancer and other cancers as a complement to the serum-Raman fingerprint serum screening methods

    4.1 In the metabolism of cancer tissues and cells, there are some Non-volatile small molecule biological markers released into circulation and some gas-phase small molecule biological markers of volatile organic compounds (VOCs) present in exhaled breath In the process of cancer cell metabolism, a number of small molecule cancer biomarkers are produced, with some that are easily dissolved and some that are difficult to dissolve in blood. The insoluble metabolic small molecular VOC biomarkers that come from lung or other cancer cells of the respiratory system or the digestive system do not dissolve in the circulating blood, but will instead immediately and directly interfuse into the exhaled breath out of patient's body. The insoluble metabolic small molecular VOC biomarkers that come from cancer cells in the other parts of patient's body will circulate through the blood to the lungs and interfuse with exhaled breath out of the patient's body. Therefore, to further develop and popularize early lung cancer Raman fingerprinting screening methods, we must not only use serum samples but also breath VOC samples, namely "united serum- and breath-Raman fingerprinting screening methods."

    4.2 Progress of electronic nose research and SPME-GCMS have been shown to be very effective with breath-VOC sampling for early lung cancer screening Small molecular VOC cancer biomarkers in exhaled breath from a patient with lung cancer are collected using an airbag of standard design, and then detected using a combined system of solid phase micro extraction (SPME) and gas chromatography mass spectrometry (GCMS) and compared with the exhaled breath of a healthy control database. Dr. Hu Yanjie's doctoral dissertation[5]reported that 12 VOC biomarkers of lung cancer cells (including decane alkane, twelve alkanes, fourteen alkenes and fourteen alkanes, sixteen alkyl, 2-sixteen ketones, nineteen alkanes, and twenty alkyl VOCs) have been detected at significantly higher rates in lung cancer patients than in a healthy control population with SPME-GCMS. In 2003, Diana Poli reported[6]that the amount of decane-alkyl detected in the exhaled breath of patients with lung cancer decreased significantly after the patients underwent a lung cancer resection, which demonstrates that decane-alkyl is one of the most obvious lung cancer VOC biomarkers. In 2005, R. F. Machado et al. reported[7]the results of a lung cancer screening using an electronic nose with conductive polymer-carbon black composites-based sensor arrays. In a separate group of 76 individuals, 14 with and 62 without cancer, he obtained a (+) accuracy rate of 71.4% (10/14) and a (-) accuracy rate of 91.1% (57/62). In 2009, G. Peng et al[8-9]. Developed a sensor array with gold nanoparticles and a chemical resistance sensor combined with 9 kinds of organic receptors that could distinguish between lung cancer patients and the healthy control group. They further developed the technology, expanded the sensor array, increased the number of receptors to 14, and achieved a rapid discrimination of lung cancer, breast cancer, colorectal cancer, prostate cancer, and healthy control groups with breath samples[9]. In 2011, Orna Barash et al[10]reported in "classification of lung cancer histology by gold nanoparticle sensors" using a device that profiled VOCs in the headspace of (subtypes of) lung cancer cells using gold nanoparticle sensors that were suitable for detecting lung cancer-specific patterns of VOC profiles. This allowed for significant discrimination between (i) lung cancer and healthy cells; (ii) small cell lung cancer and non-small cell lung cancer; and (iii) two subtypes of non-small cell lung cancer: adenocarcinoma and squamous cell carcinoma. In 2013, Y.Y. Broza et al[11]reported that spherical AuNPs with an organic functionality sensor array used for identification of VOCs in exhaled breath enabled identification of malignant vs. benign cases (with stage Ia (n=7)+stage Ib (n=2)+stage IIa (n=3) lung cancer vs. Benign (n=5); sampling (1-2). Their results indicate that with a two sensor array (2-Nitro-4-trifluoro-methylbenzenethiol and Decanethiol) the CV1 of the multivariate discriminant factor analysis (DFA) of lung cancer is significantly higher than the Benign pre-surgery samples, and the CV1 of lung cancer is significantly reduced after surgery (Table 6). Results using another two sensor array (4-Methoxy-toluenethiol and Dibutyl disulfide) demonstrate that the CV1 of lung cancer pre-surgery is significantly reduced after surgery, while the CV1 of benign pre-surgery remains unchanged after surgery.

    Table6 The results of organic functionality of 3.5 nm spherical AuNPs sensor

    Section sumary: The development of gold nanoparticle sensors in electronic noses and very high sensitivity SPME-GCMS for early lung cancer breath screening has provided favorable support for early lung and breast cancer breath-Raman screening[12], as well as for their cancer sub-types.

    4.3 Using the results of GNPs array sensors and VOC biomarkers database of lung cancers with an electronic-nose to develop the breath-Raman screening method of lung cancer with VOC samples We have applied for an invent patent for a gas phase SERS Raman analysis chip to use for breath Raman detection for early lung cancer, or other cancer, screening. The patent application number is 2015101973328[13]. Although the detection principle is different in the GNPs sensor (modified receptors) for lung cancer screening technology with an electronic nose and the breath Raman gas phase SERS-GNPs lung cancer screening technology, there are many aspects that are exactly the same or similar. For example, the GNPs sensor array and SERS-GNPs or SERS-Ag-GNPs technology both modified the same receptors, the collection and pre-processing methods for the VOC gas phase samples are the same, and so on. (Table 7)

    Table 7 The TiO2 nano-metal particles film Raman chip with receptor for breath Raman screening compared with the GNPs sensor array of electronic nose for cancer screening and SPME-GMS analysis system

    5 Discussion and the focus of future research

    5.1 Early lung cancer detection is the most difficult of all the cancer detections Our previous study results from screening for lung cancer and breast disease with serum samples have set a good preliminary foundation. However, in the tested 43 cases, only 2 were from patients with early (I stage) lung cancer. Thus, we need to expand the sample size of the screening study in the future including more patients with early stage cancer to create a database of serum-Raman fingerprint screening for lung cancer, and to perfect early stage lung cancer serum Raman screening.

    5.2 Because the concentration of biomarkers present at early cancer stages is at extremely low, trace levels, it is necessary to collect more information about cancer characteristics in early lung cancer screening Cancer specific information is obtained as completely as possible from gas phase samples of VOCs and serum liquid phase samples. Therefore, an early stage lung cancer screening method using the two samples united in Raman analysis methods is right and feasible. The combined breath-and serum-Raman fingerprint screening method would be an important improvement over only using the serum-Raman fingerprint screening method. With this combined method, all of the metabolized cancer biomarkers in the liquid phase and gas phase will be entirely collected, and the sensitivity and specificity of early lung cancer Raman screening is likely to reach the best possible level.

    5.3 Of the three important strategies for overcoming cancer, "early discovery, early diagnosis, and early treatment," we recommend that research for early cancer screening methods be the highest priority of the cancer "early discovery, early diagnosis, and early treatment," strategies. It is the most important link and the key to overcoming cancer.

    To overcome cancer is the twenty-first century’s great national systems engineering initiative, involving the popularization of early cancer screening, especially in high-risk populations. We firmly believe that the combined breath-and serum-Raman fingerprinting cancer screening method will be the most effective early lung cancer and early gastric cancer screening method.

    Acknowledgements

    This study was supported by a fund from the National Natural Science Foundation of China (NO.11074029); Yongcai Wang (Dalian Medical University, the Second Affiliated Hospital, Dalian 1160272), Yue Deng, Yi Zhang, and Jianhua Ding (Dalian University of Technology, School of Physics Dalian 116024), and Jing Tong (Dalian Fifth People's Hospital, Chest Tumor Hospital, Dalian 116000) were the collaborators of the reference[4], from which some figures were cited in this paper. Thanks to coporators: Ding Jian Hua, Zhang Yi, Li Dawei, Deng yue, Zhou Rongge, Liu Kun, Li Rui, Pan lujun, etc; Thanks to Dr Hung Ruo-pan for to review and some correct this manus cript.

    【參考文獻(xiàn)】

    [1]Zhou Rongge,Wu Shifa,Tong Jing,et al.Using serum surface enhanced Raman spectroscopy study on the new method of lung cancer screening,topic exchange[J].Proceedings of development of national light scattering tech-nology and applications symposium,2014-04 (in Chinese).

    [2]Zhu Jinfang, Su Yuewen, Feng Yuan. Theearly diagnosis and research development of blood tumor markers for lung cancer[J].Medical Review,2010,16(7):1015-1018 .

    [3]Aberle DR,Berg CD,Black WC,et al.The national lung screening trial:overview and study design[J].Radiology,2011,258(1):243-253.

    [4]Wu Shifa.The development of Raman fingerprint unified screening research for the lung cancer and early breast disease with serums[J].Proceeding of Tianjin 2015 Nobel prize winner medical summit and international symposium on cancer research,2015,05,08-10.

    [5]Hu Yanjie.Study on screening and diagnostic value of lung cancer breath characteristic of VOCs[J].Doctoral Dissertation of Zhejiang University,2010-05-29 (in Chinese).

    [6]Phillips M,Cataneo RN,Cummin AR,et al.Detection of lung cancer with volatile markers in the breath[J].Chest,2003,23(6):2115-2123.

    [7]McCulloch Mng,Jezierski T,Broffman M,et al.Diagnostic accuracy of canine scent detection in early and late stage lung and breast cancers[J].Integr Cancer Ther,2006,5(1):30-39.

    [8]Peng G,Tisch U,Adams O,et al.Diagnosing lung cancer in exhaled breath using gold anoparticles[J].Nat Nanotechnol,2009,4(10):669-673.

    [9]Peng G,Hakim M,Broza YY,et al.Detection of lung,breast,coloreetal,and prostate cancers from exhaled breath using a single array of nanosensors[J].Br J Cancer,2010,103(4):542-551.

    [10]Barash O,Peled N,Tisch U,et al.Classification of lung cancer histology by gold nanoparticle sensors[J].Nanomedicine,2012,8(5):580-589.

    [11]Broza YY,Kremer R,Tisch U,et al.A nanomaterial-based breath test for short-term follow-up after lung tumor resection[J].Nanomedicine,2013,9(1):15-21.

    [12]Barash O,Zhang W.Differentiation between genetic mutations of breast cancer by breath volatolomics[J].Oncotarget,2015,6(42):44864-44876.

    [13]Wu Shifa.A with and without receptor modified titanium dioxide nano metal film Raman chip and manufacture method, patent application number:2015101973328,(2015-04).

    猜你喜歡
    參考文獻(xiàn)
    Heterologous expression of the Haynaldia villosa pattern-recognition receptor CERK1-V in wheat increases resistance to three fungal diseases
    Eurydice’s Face:the Paradox of Mallarmé’s Musical Poetics*
    Kidney health for everyone everywhere—from prevention to detection and equitable access to care
    Effect of low high-density lipoprotein levels on mortality of septic patients: A systematic review and meta-analysis of cohort studies
    SINO-EUROPE SYMPOSIUM ON TRADITIONAL CHINESE MEDICINE & HERBAL MEDICINE-MARKET OVERVIEW ®ULATION POLICY
    A prediction method for the performance of a low-recoil gun with front nozzle
    The Muted Lover and the Singing Poet:Ekphrasis and Gender in the Canzoniere*
    Where Does Poetry Take Place? On Tensions in the Concept of a National Art* #
    Chinese Cultural Influence on Hannah Jelkes in The Night of the Iguana*
    Study on the physiological function and application of γ—aminobutyric acid and its receptors
    東方教育(2016年4期)2016-12-14 13:52:48
    日韩一本色道免费dvd| 岛国毛片在线播放| 精品熟女少妇av免费看| 日韩伦理黄色片| 少妇的逼好多水| 99久久综合免费| 国产一级毛片在线| 80岁老熟妇乱子伦牲交| 三级国产精品欧美在线观看| 久久久久久伊人网av| 激情 狠狠 欧美| 视频中文字幕在线观看| 成人特级av手机在线观看| 国产精品人妻久久久影院| 国内揄拍国产精品人妻在线| 亚洲欧洲国产日韩| 亚洲精品国产色婷婷电影| 亚洲综合精品二区| 欧美xxxx性猛交bbbb| 国产综合精华液| 极品少妇高潮喷水抽搐| 国产精品嫩草影院av在线观看| 亚洲欧美清纯卡通| 久久久久精品性色| 最近2019中文字幕mv第一页| 午夜福利影视在线免费观看| 一二三四中文在线观看免费高清| 国产高清有码在线观看视频| 伦理电影大哥的女人| 18禁在线无遮挡免费观看视频| av一本久久久久| 麻豆国产97在线/欧美| 欧美性感艳星| 啦啦啦中文免费视频观看日本| 五月伊人婷婷丁香| 日日啪夜夜爽| 国产淫片久久久久久久久| 男女国产视频网站| 亚洲精品色激情综合| 最近最新中文字幕免费大全7| 久久久久人妻精品一区果冻| 久久99热6这里只有精品| 免费看不卡的av| 这个男人来自地球电影免费观看 | 女警被强在线播放| 久久国产精品人妻蜜桃| 精品国产一区二区三区四区第35| 日本五十路高清| 国产av一区二区精品久久| 天天影视国产精品| 中文字幕制服av| 老熟女久久久| 亚洲成人免费av在线播放| 亚洲av片天天在线观看| 日日夜夜操网爽| 国产男女内射视频| 青春草亚洲视频在线观看| 亚洲国产欧美在线一区| 91麻豆av在线| 国产精品偷伦视频观看了| 久久天躁狠狠躁夜夜2o2o | 一区二区三区乱码不卡18| 国产熟女午夜一区二区三区| 亚洲国产精品一区二区三区在线| 欧美日韩成人在线一区二区| 18在线观看网站| 免费看十八禁软件| 免费人妻精品一区二区三区视频| 欧美成狂野欧美在线观看| 国产午夜精品一二区理论片| 侵犯人妻中文字幕一二三四区| 97人妻天天添夜夜摸| 97人妻天天添夜夜摸| 亚洲精品一区蜜桃| avwww免费| 久久av网站| 五月开心婷婷网| 国产欧美亚洲国产| 老司机影院毛片| 欧美在线一区亚洲| 亚洲一区二区三区欧美精品| 国产精品偷伦视频观看了| 操出白浆在线播放| 色婷婷av一区二区三区视频| 91精品三级在线观看| 国产精品九九99| 国产精品久久久久久人妻精品电影 | 男女床上黄色一级片免费看| 国产精品久久久av美女十八| 国产91精品成人一区二区三区 | 99久久综合免费| 精品一区二区三区av网在线观看 | 久久久久久免费高清国产稀缺| 超碰成人久久| 在线 av 中文字幕| 老司机影院成人| 国产精品熟女久久久久浪| av不卡在线播放| 亚洲午夜精品一区,二区,三区| 久久久精品区二区三区| 狠狠精品人妻久久久久久综合| 国产xxxxx性猛交| 亚洲国产看品久久| 欧美变态另类bdsm刘玥| 国产在线视频一区二区| 欧美xxⅹ黑人| 亚洲精品国产色婷婷电影| 欧美成人午夜精品| 亚洲中文av在线| 极品人妻少妇av视频| av国产久精品久网站免费入址| 999久久久国产精品视频| 90打野战视频偷拍视频| 国产成人啪精品午夜网站| 一级a爱视频在线免费观看| 国产主播在线观看一区二区 | 超碰97精品在线观看| 国产一区二区三区综合在线观看| 久久这里只有精品19| 亚洲精品av麻豆狂野| av在线app专区| 国产成人精品无人区| 亚洲国产中文字幕在线视频| 一边摸一边做爽爽视频免费| 日本黄色日本黄色录像| 一本—道久久a久久精品蜜桃钙片| 一本久久精品| 两个人免费观看高清视频| 麻豆av在线久日| 久久国产精品人妻蜜桃| 男女午夜视频在线观看| 麻豆av在线久日| 精品少妇久久久久久888优播| 黄色 视频免费看| 色网站视频免费| 一边亲一边摸免费视频| 一级黄片播放器| 久久天堂一区二区三区四区| 欧美日韩福利视频一区二区| 热99国产精品久久久久久7| 日韩欧美一区视频在线观看| 免费人妻精品一区二区三区视频| 国产免费一区二区三区四区乱码| 久久人人97超碰香蕉20202| 80岁老熟妇乱子伦牲交| 黑丝袜美女国产一区| 午夜老司机福利片| 亚洲国产精品一区三区| 久久久久网色| 在线 av 中文字幕| 好男人电影高清在线观看| 黑人巨大精品欧美一区二区蜜桃| 日韩 欧美 亚洲 中文字幕| 97在线人人人人妻| 亚洲欧美色中文字幕在线| 天天躁狠狠躁夜夜躁狠狠躁| 女人高潮潮喷娇喘18禁视频| 97在线人人人人妻| 国产精品久久久av美女十八| 国产在线观看jvid| 国产又色又爽无遮挡免| 国产精品av久久久久免费| 亚洲九九香蕉| 久久女婷五月综合色啪小说| 免费观看人在逋| av福利片在线| 国产色视频综合| 少妇人妻 视频| 两个人看的免费小视频| 免费在线观看视频国产中文字幕亚洲 | 日韩制服骚丝袜av| 热99国产精品久久久久久7| a级片在线免费高清观看视频| 成人手机av| 亚洲欧美一区二区三区久久| 99re6热这里在线精品视频| e午夜精品久久久久久久| 曰老女人黄片| 色网站视频免费| 国产片内射在线| 啦啦啦啦在线视频资源| 黑丝袜美女国产一区| 日韩中文字幕视频在线看片| 婷婷色av中文字幕| 亚洲九九香蕉| 国产成人一区二区三区免费视频网站 | 亚洲成国产人片在线观看| 啦啦啦在线免费观看视频4| 亚洲欧美日韩另类电影网站| 日本欧美视频一区| 一区二区三区精品91| 日韩中文字幕视频在线看片| 国产日韩欧美在线精品| 欧美老熟妇乱子伦牲交| 在线看a的网站| 日韩制服骚丝袜av| 少妇猛男粗大的猛烈进出视频| 男人添女人高潮全过程视频| 一区在线观看完整版| 99久久99久久久精品蜜桃| h视频一区二区三区| 欧美日韩视频精品一区| 天天躁日日躁夜夜躁夜夜| 国产真人三级小视频在线观看| 亚洲熟女精品中文字幕| 一二三四在线观看免费中文在| 啦啦啦 在线观看视频| 高清av免费在线| 一级黄色大片毛片| 你懂的网址亚洲精品在线观看| 亚洲国产精品一区三区| tube8黄色片| 午夜av观看不卡| 最近手机中文字幕大全| 久久鲁丝午夜福利片| 亚洲精品国产一区二区精华液| 国产一级毛片在线| 丝袜人妻中文字幕| 国产成人免费无遮挡视频| av在线app专区| 久久久欧美国产精品| 国产亚洲av高清不卡| av在线老鸭窝| 性色av乱码一区二区三区2| 视频区图区小说| 高潮久久久久久久久久久不卡| 最近手机中文字幕大全| 亚洲国产成人一精品久久久| 亚洲国产看品久久| 19禁男女啪啪无遮挡网站| 精品一区二区三区四区五区乱码 | 黄片播放在线免费| 欧美日韩av久久| 飞空精品影院首页| kizo精华| 久久女婷五月综合色啪小说| 色精品久久人妻99蜜桃| 久久这里只有精品19| 精品少妇久久久久久888优播| 一级a爱视频在线免费观看| 日韩精品免费视频一区二区三区| 国产一区二区三区综合在线观看| 视频区图区小说| 亚洲欧美一区二区三区久久| 999精品在线视频| 赤兔流量卡办理| 超色免费av| √禁漫天堂资源中文www| 国产在视频线精品| 极品少妇高潮喷水抽搐| 男女之事视频高清在线观看 | 99久久99久久久精品蜜桃| 亚洲av成人不卡在线观看播放网 | 亚洲成人国产一区在线观看 | 妹子高潮喷水视频| 国产伦人伦偷精品视频| 中文字幕av电影在线播放| 久久亚洲精品不卡| 在线av久久热| 黑人巨大精品欧美一区二区蜜桃| 欧美人与性动交α欧美精品济南到| 水蜜桃什么品种好| 看十八女毛片水多多多| 亚洲国产精品一区三区| 美女午夜性视频免费| 国产成人一区二区三区免费视频网站 | 亚洲专区国产一区二区| av视频免费观看在线观看| 麻豆av在线久日| 50天的宝宝边吃奶边哭怎么回事| 成年人午夜在线观看视频| 亚洲精品一区蜜桃| 中文字幕人妻丝袜一区二区| 两性夫妻黄色片| 多毛熟女@视频| 亚洲自偷自拍图片 自拍| 中文字幕制服av| 久久亚洲国产成人精品v| 天堂中文最新版在线下载| 18禁黄网站禁片午夜丰满| 久久久久久久久免费视频了| 国产精品久久久久久精品电影小说| 亚洲av成人不卡在线观看播放网 | 欧美黑人欧美精品刺激| 久久精品久久久久久噜噜老黄| 欧美国产精品一级二级三级| 精品久久久精品久久久| 欧美av亚洲av综合av国产av| 国产福利在线免费观看视频| 国产1区2区3区精品| 亚洲精品成人av观看孕妇| 男女无遮挡免费网站观看| 欧美精品人与动牲交sv欧美| 制服人妻中文乱码| 晚上一个人看的免费电影| 五月开心婷婷网| 七月丁香在线播放| 精品久久久精品久久久| 成年av动漫网址| 妹子高潮喷水视频| 亚洲国产精品999| 日韩大码丰满熟妇| 欧美日韩视频高清一区二区三区二| 午夜免费成人在线视频| 日韩伦理黄色片| 另类精品久久| 亚洲五月婷婷丁香| 精品国产超薄肉色丝袜足j| 久久天躁狠狠躁夜夜2o2o | 99精国产麻豆久久婷婷| 99久久综合免费| 少妇被粗大的猛进出69影院| 国产有黄有色有爽视频| 国产午夜精品一二区理论片| 亚洲人成电影观看| 国精品久久久久久国模美| 国产xxxxx性猛交| 视频在线观看一区二区三区| 99久久99久久久精品蜜桃| 热re99久久精品国产66热6| netflix在线观看网站| 国产野战对白在线观看| 亚洲一区二区三区欧美精品| 美女福利国产在线| 国产在线视频一区二区| 欧美日韩视频高清一区二区三区二| 久久久欧美国产精品| 欧美中文综合在线视频| 午夜福利一区二区在线看| 一级片'在线观看视频| 极品少妇高潮喷水抽搐| 在线av久久热| 国产xxxxx性猛交| 狂野欧美激情性xxxx| 国产亚洲av片在线观看秒播厂| 午夜老司机福利片| 女人高潮潮喷娇喘18禁视频| 国产精品亚洲av一区麻豆| 日韩制服丝袜自拍偷拍| 午夜老司机福利片| 亚洲 国产 在线| 亚洲精品日韩在线中文字幕| 亚洲精品av麻豆狂野| 精品视频人人做人人爽| 午夜老司机福利片| 亚洲欧美精品综合一区二区三区| 亚洲精品美女久久久久99蜜臀 | av国产精品久久久久影院| 国产日韩欧美亚洲二区| bbb黄色大片| 午夜精品国产一区二区电影| 别揉我奶头~嗯~啊~动态视频 | 九草在线视频观看| 一级毛片女人18水好多 | 最近手机中文字幕大全| 亚洲七黄色美女视频| 精品久久久精品久久久| 51午夜福利影视在线观看| 2021少妇久久久久久久久久久| 成在线人永久免费视频| 国产成人a∨麻豆精品| 国产精品.久久久| 91精品国产国语对白视频| 国产一区二区三区综合在线观看| 国产成人免费无遮挡视频| 国产三级黄色录像| 91精品伊人久久大香线蕉| 久久久久精品人妻al黑| 18禁裸乳无遮挡动漫免费视频| 9热在线视频观看99| 亚洲成人免费电影在线观看 | 亚洲欧洲精品一区二区精品久久久| 日本欧美视频一区| 两人在一起打扑克的视频| 婷婷色av中文字幕| 电影成人av| 国产在视频线精品| 精品久久久久久久毛片微露脸 | 成人手机av| 一级毛片我不卡| 欧美变态另类bdsm刘玥| 国产日韩一区二区三区精品不卡| 捣出白浆h1v1| 精品卡一卡二卡四卡免费| 成人亚洲欧美一区二区av| 女人爽到高潮嗷嗷叫在线视频| 香蕉丝袜av| 2021少妇久久久久久久久久久| 亚洲欧美一区二区三区黑人| 美女国产高潮福利片在线看| 日韩一本色道免费dvd| 99热全是精品| 99香蕉大伊视频| 亚洲专区中文字幕在线| 精品久久久久久电影网| 免费少妇av软件| av网站在线播放免费| 午夜免费观看性视频| √禁漫天堂资源中文www| 另类亚洲欧美激情| 久久热在线av| 女性生殖器流出的白浆| 欧美人与性动交α欧美软件| 日韩人妻精品一区2区三区| 午夜激情av网站| 日韩大码丰满熟妇| 欧美 日韩 精品 国产| 亚洲欧美成人综合另类久久久| 十八禁高潮呻吟视频| 国产成人一区二区三区免费视频网站 | 黄色视频不卡| 一级毛片我不卡| 国产免费福利视频在线观看| 亚洲欧美中文字幕日韩二区| 国产精品偷伦视频观看了| 老司机靠b影院| 久久九九热精品免费| 99热全是精品| 精品久久久久久久毛片微露脸 | av线在线观看网站| 成人手机av| 欧美 亚洲 国产 日韩一| 黄色一级大片看看| 国产高清videossex| 亚洲国产成人一精品久久久| 天堂中文最新版在线下载| 人人澡人人妻人| 国产免费又黄又爽又色| 18在线观看网站| 精品国产国语对白av| 欧美变态另类bdsm刘玥| 又大又黄又爽视频免费| 色婷婷久久久亚洲欧美| 亚洲久久久国产精品| 午夜激情久久久久久久| 建设人人有责人人尽责人人享有的| 波野结衣二区三区在线| 校园人妻丝袜中文字幕| 久热这里只有精品99| 精品国产乱码久久久久久小说| 欧美精品啪啪一区二区三区 | 国产精品久久久久久精品古装| 黄频高清免费视频| 9191精品国产免费久久| 两个人免费观看高清视频| 精品国产一区二区三区四区第35| 精品国产一区二区久久| 伊人久久大香线蕉亚洲五| 天天躁夜夜躁狠狠久久av| 在线观看免费高清a一片| 久久亚洲国产成人精品v| 中文精品一卡2卡3卡4更新| 蜜桃国产av成人99| 天天躁夜夜躁狠狠久久av| 日本欧美国产在线视频| 欧美日韩综合久久久久久| 欧美大码av| 丝袜在线中文字幕| 超色免费av| 丝袜美足系列| 久久久久国产精品人妻一区二区| 黄频高清免费视频| av电影中文网址| 视频区欧美日本亚洲| 人人妻人人添人人爽欧美一区卜| 午夜影院在线不卡| 又大又爽又粗| 午夜91福利影院| 国产在线免费精品| 一级毛片电影观看| 涩涩av久久男人的天堂| 99热国产这里只有精品6| 在现免费观看毛片| 黄色一级大片看看| av一本久久久久| 亚洲国产看品久久| 亚洲欧洲国产日韩| 亚洲成人免费电影在线观看 | 国产激情久久老熟女| 狠狠精品人妻久久久久久综合| 男女边摸边吃奶| 欧美日韩国产mv在线观看视频| 国产成人一区二区在线| 国产精品三级大全| 亚洲国产看品久久| av又黄又爽大尺度在线免费看| 亚洲伊人色综图| 两性夫妻黄色片| 水蜜桃什么品种好| 免费观看人在逋| 国语对白做爰xxxⅹ性视频网站| www.av在线官网国产| 青青草视频在线视频观看| 午夜福利乱码中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 午夜影院在线不卡| 日韩中文字幕视频在线看片| 国产日韩欧美在线精品| e午夜精品久久久久久久| 精品人妻1区二区| 国产一区二区在线观看av| 嫩草影视91久久| 黄色片一级片一级黄色片| 韩国精品一区二区三区| 精品国产一区二区久久| 80岁老熟妇乱子伦牲交| 美女福利国产在线| a级毛片在线看网站| 纯流量卡能插随身wifi吗| 色综合欧美亚洲国产小说| 99国产精品免费福利视频| 无限看片的www在线观看| 精品福利永久在线观看| 999久久久国产精品视频| 成人三级做爰电影| 国产精品二区激情视频| 99国产精品一区二区三区| 久久九九热精品免费| 午夜福利视频在线观看免费| 国产精品一区二区免费欧美 | 菩萨蛮人人尽说江南好唐韦庄| 两个人免费观看高清视频| 少妇猛男粗大的猛烈进出视频| 欧美精品一区二区大全| 每晚都被弄得嗷嗷叫到高潮| 日韩中文字幕视频在线看片| 精品少妇黑人巨大在线播放| 色婷婷久久久亚洲欧美| 99香蕉大伊视频| 国产精品香港三级国产av潘金莲 | 最近最新中文字幕大全免费视频 | 香蕉国产在线看| 晚上一个人看的免费电影| 美女主播在线视频| 男人舔女人的私密视频| 性少妇av在线| 极品少妇高潮喷水抽搐| 欧美黄色淫秽网站| 男女午夜视频在线观看| 亚洲av成人精品一二三区| 亚洲精品中文字幕在线视频| 中文欧美无线码| 国产亚洲av高清不卡| 久久久亚洲精品成人影院| 下体分泌物呈黄色| 亚洲一区二区三区欧美精品| 水蜜桃什么品种好| 人成视频在线观看免费观看| 在现免费观看毛片| 大话2 男鬼变身卡| 日韩免费高清中文字幕av| 成人亚洲欧美一区二区av| 午夜日韩欧美国产| 成在线人永久免费视频| 91精品伊人久久大香线蕉| 大香蕉久久网| 天堂8中文在线网| 欧美激情 高清一区二区三区| 日韩av免费高清视频| 国产精品久久久av美女十八| 国产激情久久老熟女| 亚洲第一青青草原| 欧美日韩视频高清一区二区三区二| 在线精品无人区一区二区三| 精品一区二区三区av网在线观看 | 两人在一起打扑克的视频| 无遮挡黄片免费观看| 日韩大片免费观看网站| 国产成人系列免费观看| xxx大片免费视频| 国产午夜精品一二区理论片| 免费在线观看日本一区| videosex国产| 亚洲自偷自拍图片 自拍| 久久精品国产亚洲av高清一级| 老司机亚洲免费影院| 天天躁夜夜躁狠狠久久av| 亚洲欧美激情在线| 中文字幕人妻熟女乱码| 午夜福利视频在线观看免费| 亚洲精品久久午夜乱码| 大话2 男鬼变身卡| 欧美+亚洲+日韩+国产| 一级毛片电影观看| 中文字幕另类日韩欧美亚洲嫩草| 飞空精品影院首页| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩亚洲综合一区二区三区_| 欧美亚洲日本最大视频资源| 亚洲欧洲日产国产| 欧美日韩亚洲综合一区二区三区_| 欧美亚洲日本最大视频资源| 国产精品 欧美亚洲| 美女脱内裤让男人舔精品视频| 999精品在线视频| √禁漫天堂资源中文www| 99国产综合亚洲精品| 国产成人欧美| 久久久精品94久久精品| 最近中文字幕2019免费版| 欧美亚洲日本最大视频资源| svipshipincom国产片| 免费观看人在逋| 三上悠亚av全集在线观看| 欧美另类一区| 日本黄色日本黄色录像| 女人爽到高潮嗷嗷叫在线视频| 人成视频在线观看免费观看| 妹子高潮喷水视频| 最新在线观看一区二区三区 | 黄频高清免费视频| 国产精品99久久99久久久不卡| 一区二区三区精品91| 国产成人欧美| 女人精品久久久久毛片|