徐曉白 劉 璐 趙洛鵬 曲正陽 朱玉璞 張雅杰 李璦同 王麟鵬△
(1首都醫(yī)科大學(xué)附屬北京中醫(yī)醫(yī)院針灸科,北京100010;2北京中醫(yī)藥大學(xué),北京100029 )
偏頭痛是一種常見的神經(jīng)性功能障礙。流行病學(xué)調(diào)查報(bào)告指出目前中國成人的偏頭痛患病率達(dá)9.3%[1],西方國家的患病率大約在12%[2]。偏頭痛病理生理學(xué)改變認(rèn)為主要是疼痛閾值降低[3]。病理生理機(jī)制主要涉及下行痛覺調(diào)節(jié)通路失調(diào)[4]、三叉神經(jīng)及自主神經(jīng)系統(tǒng)活性改變[5]、丘腦敏化[6]等。目前,陣發(fā)性偏頭痛鎮(zhèn)痛的特異性藥物—5-HT1B/1D受體激動劑,不僅療效有限(緩解率僅40%)[7],而且長期使用會導(dǎo)致藥物濫用性頭痛,加重心血管負(fù)擔(dān);慢性偏頭痛預(yù)防性特異性藥物托吡酯具有抗痛覺敏化,減少發(fā)作頻率的作用,然而也出現(xiàn)了感覺異常、記憶障礙、消化不良等副作用。因此,希望能夠從鎮(zhèn)痛和抗痛覺敏化兩個方面尋找治療偏頭痛的新作用靶點(diǎn),從而達(dá)到提高緩解率、減少不良反應(yīng)等要求。
偏頭痛臨床隨機(jī)對照試驗(yàn)說明,曲坦類、選擇性五羥色胺再攝取抑制劑(SSRI)等藥物治療偏頭痛具有較好的臨床療效,因此我們推斷出5-HT神經(jīng)通路在偏頭痛病理生理機(jī)制—下行疼痛易化、抑制通路失調(diào)中起重要作用[8]。臨床前實(shí)驗(yàn)也證明,針刺可以減少偏頭痛大鼠自發(fā)及誘發(fā)痛行為,并升高5-HT在下行痛覺調(diào)節(jié)通路的表達(dá)[9]。除此之外,大量實(shí)驗(yàn)表明5-HT7受體參與痛覺調(diào)節(jié)機(jī)制[10],且在外周[11]和中樞[12]發(fā)揮著截然不同的作用。本團(tuán)隊(duì)的臨床前研究也發(fā)現(xiàn),針刺不僅可以改善偏頭痛大鼠的疼痛行為,且在中樞和外周兩個層面改變了5-HT7受體的數(shù)量和分布。本綜述首次從偏頭痛病理生理機(jī)制、痛覺調(diào)節(jié)環(huán)路與5-HT能神經(jīng)通路、5-HT7受體與疼痛、5-HT7受體與偏頭痛等方面,分析5-HT7受體可能在偏頭痛反復(fù)發(fā)作痛覺敏化形成中的作用機(jī)制,為明確以5-HT7受體通路為新的作用靶點(diǎn)的偏頭痛防治機(jī)制奠定理論基礎(chǔ)。
對于偏頭痛的病理生理機(jī)制,目前存在三叉神經(jīng)血管痛覺通路學(xué)說、皮層抑制擴(kuò)散學(xué)說、腦干功能異常學(xué)說等學(xué)術(shù)假說,其中三叉神經(jīng)血管痛覺通路的激活學(xué)說在偏頭痛病理機(jī)制中占主導(dǎo)地位,也是研究偏頭痛發(fā)生和反復(fù)發(fā)作的主流學(xué)說。
圖1 偏頭痛三叉神經(jīng)血管通路—上行投射系統(tǒng)[13]Au: auditory 聽覺皮層; Ect: ectorhinal, 嗅外皮層;Ins: insula, 島葉; LC: the locus coeruleus, 藍(lán)斑;M1/M2: primary and secondary motor cortices, 初級及次級運(yùn)動皮質(zhì); PAG: periaqueductal grey, 中央導(dǎo)水管周圍灰質(zhì); PtA: parietal association cortex, 頂葉聯(lián)合皮層; RS: retrosplenial, 后壓部皮質(zhì); RVM,rostral ventromedial medulla, 延髓頭端腹內(nèi)側(cè)區(qū);S1/S2: somatosensory cortices, 軀體感覺皮質(zhì); SPG:sphenopalantine ganglion, 蝶腭神經(jīng)節(jié); SuS: superior salivatory nucleus, 上泌涎核; TCC: trigeminocervical complex, 三叉頸復(fù)合體; TG: trigeminal ganglion, 三叉神經(jīng)節(jié); Thalamus, 丘腦; Hypothalamus,下丘腦; V1/V2: visual cortices, 視覺皮質(zhì).(引自Goadsby PJ, Holland PR, et al. Physiol Rev,2017)
該學(xué)說認(rèn)為三叉神經(jīng)節(jié)支配的軟腦膜、蛛網(wǎng)膜和硬腦膜的血管上分布著豐富的傷害性神經(jīng)纖維叢,這些神經(jīng)纖維叢是偏頭痛臨床表現(xiàn)中疼痛的起源[7](見圖1[13])。當(dāng)這些區(qū)域受到機(jī)械、化學(xué)或電刺激時會表現(xiàn)出類似于偏頭痛的疼痛,還有其他的包括惡心和畏光等與偏頭痛相關(guān)的癥狀。顱內(nèi)血管和腦膜主要受三叉神經(jīng)眼支的無髓鞘(C)和細(xì)髓鞘(Aδ)傷害性神經(jīng)纖維支配,這些傷害性神經(jīng)纖維末梢釋放神經(jīng)肽—降鈣素基因相關(guān)肽(Calcitonin Gene-Related Peptide, CGRP),P物質(zhì),神經(jīng)激酶A,和垂體腺苷酸環(huán)化酶激活肽(Cyclase-activating Peptide, PACAP)引起硬腦膜和軟腦膜血管舒張,從而引起偏頭痛[14]。
傷害性信息傳導(dǎo)首先從位于三叉神經(jīng)節(jié)的初級神經(jīng)元通過三叉神經(jīng)束,神經(jīng)末梢位于三叉神經(jīng)脊束核尾核(Spinal Trigeminal Nucleus Caudalis, TNC/SP5C)和上頸部脊束核(Upper Cervical Spinal Cord,C1-C2)兩個部位,合稱三叉頸髓復(fù)合體(trigeminocervical complex, TCC),傳至次級神經(jīng)元。傷害性信息經(jīng)位于TCC區(qū)域的次級神經(jīng)元上行與其他延髓腦橋核包括延髓腹內(nèi)側(cè)喙端、臂旁核、藍(lán)斑、中腦核、中央導(dǎo)水管周圍灰質(zhì)腹外側(cè)(Ventrolat Periaqueductal Gray, vlPAG)和楔狀核相連[15]。
圖2 偏頭痛上行、下行痛覺傳導(dǎo)調(diào)節(jié)通路[16]Amygdala, 杏仁核; CeA: the central nucleus of the amygdala, 杏仁中央核; LA: lateral amygdala, 杏仁外側(cè)核; BLA: basolateral amygdala, 杏仁基底外側(cè)核; DRt: dorsal reticular nucleus, 背側(cè)網(wǎng)狀核.(引自O(shè)ssipov MH, Dussor GO, Porreca F. Journal of Clinical Investigation, 2010)
一些內(nèi)源性的機(jī)制也可以下行調(diào)節(jié)三叉神經(jīng)血管傷害性通路,進(jìn)一步?jīng)Q定信息的性質(zhì)及程度(見圖2[16])。下行痛覺調(diào)節(jié)通路形成是疼痛易化、抑制的基礎(chǔ),該通路是指下丘腦、杏仁核和前扣帶回喙端(Rrostral Anterior Cingulate Cortex, rACC)等區(qū)域的信息下行至中腦的中央導(dǎo)水管周圍灰質(zhì)區(qū)域,并從該區(qū)域匯總信息下行直接或經(jīng)臂旁核、藍(lán)斑間接至包括中縫大核和巨細(xì)胞網(wǎng)狀結(jié)構(gòu)核的RVM區(qū)。從該區(qū)域匯總信息投射到三叉神經(jīng)脊束核尾核,增強(qiáng)或減弱傷害性通路,改變對外界信息的感受。
PAG-RVM之間神經(jīng)示蹤研究揭示了PAGRVM-TNC均通過背外側(cè)束下行投射[17],且RVM可能是傷害性下行抑制通路脊上位點(diǎn)的最后的共同中繼站,接受來自PAG的神經(jīng)傳入。在輕度麻醉的大鼠中,RVM區(qū)神經(jīng)元的活性是否因傷害性刺激而改變(比如對傷害性熱的甩尾反應(yīng))等研究明確了一類RVM神經(jīng)元在傷害性反應(yīng)時激活增強(qiáng)[稱為“On(開)細(xì)胞”],另一類神經(jīng)元在傷害性反應(yīng)時激活減少[稱為”O(jiān)ff(關(guān)) 細(xì)胞”][18],而其他細(xì)胞的興奮與傷害性刺激無關(guān)[稱為Neutral(中性)細(xì)胞][19]。Off細(xì)胞和On細(xì)胞投射到脊髓背角,下行傷害性傳入信號產(chǎn)生調(diào)節(jié)性影響,除這兩者之外,5-HT能神經(jīng)元也下行投射到TNC區(qū)域進(jìn)行疼痛調(diào)節(jié)[20]??傊?,下行痛覺調(diào)節(jié)通路的激活,投射到脊髓或者延髓的背角,逆轉(zhuǎn)或者加強(qiáng)原有信息的性質(zhì)及強(qiáng)度。
偏頭痛涉及的疼痛上行傳導(dǎo)和下行調(diào)節(jié)機(jī)制構(gòu)成一條脊束核-球-脊束核(spino-bulb-spinal)環(huán)路,其信息整合最后中繼站為RVM區(qū)(見圖3[21])。直接電刺激RVM會引起脊髓水平的5-HT釋放和伴隨的抗疼痛機(jī)制[22]。RVM區(qū)域的5-HT神經(jīng)元有疼痛調(diào)制作用[23]。由RVM投射到脊束核的5-HT作用不僅與受體亞型有關(guān),也與動物的生理病理狀態(tài)有關(guān)[21],在健康動物中,脊髓的5-HT起疼痛抑制的作用,但是在病理狀態(tài),5-HT有時起促痛的作用。中樞敏化的產(chǎn)生可能是由于5-HT下行抑制系統(tǒng)活性減低或缺損,而下行5-HT疼痛調(diào)節(jié)通路的恢復(fù)可以糾正由脊束核損傷引起的神經(jīng)元的過度興奮。
迄今為止,5-HT的研究主要集中于疼痛控制的兩個中樞水平—脊束核的背角和中腦,這兩者在解剖和功能上通過脊髓-腦-脊髓環(huán)路相互關(guān)聯(lián)。本團(tuán)隊(duì)在偏頭痛預(yù)防性針刺風(fēng)池穴單穴的前期研究中發(fā)現(xiàn),偏頭痛大鼠腦區(qū)內(nèi)5-HT含量低于對照組,針刺風(fēng)池穴可減少自發(fā)性痛行為,降低 PAG、RMg、 Sp5C 區(qū)域 c-Fos 的表達(dá)[24],增加 RVM、TNC 區(qū)域 5-HT 的含量[9]。不僅如此,最近研究顯示,含5-HT細(xì)胞主要分布在疼痛調(diào)控整合區(qū)最后中繼站—RVM區(qū)內(nèi)的中縫大核(RMg)中,而且5-HT7受體在此區(qū)分布廣泛。因此假設(shè),RVM區(qū)神經(jīng)元5-HT合成的選擇性抑制,引起了TNC-RVM-TNC的疼痛調(diào)控小環(huán)路功能失調(diào),同時可認(rèn)為5-HT7受體信號轉(zhuǎn)導(dǎo)通路與下行疼痛調(diào)節(jié)通路可能相關(guān)[25]。
5-HT7受體是5-HT受體家族最新確認(rèn)的成員,目前已經(jīng)被克隆出了很多種類:人類[26],大鼠[27]、小鼠[28]、豬[29]、豚鼠[30]和非洲爪蟾[31]等。在人類中,5-HT7受體基因位于10號染色體(10q21-q24)[26]。它包括三個內(nèi)含子,其中的兩個通過改變拼接方式,成為不同的受體亞型[27],這些亞型在細(xì)胞內(nèi)羧基端的長度是不同的,但是各亞型的藥理作用是類似的。
5-HT7受體是G蛋白偶聯(lián)受體,通過Gαs和Gα12蛋白與下游信號分子偶聯(lián)[32,33]。在大多數(shù)情況下,5-HT7受體和Gαs蛋白偶聯(lián),5-HT7受體激活,引起AC活性增加,cAMP的產(chǎn)生[34],進(jìn)而激活蛋白激酶A (PKA),誘導(dǎo)不同靶蛋白的磷酸化,導(dǎo)致神經(jīng)保護(hù)細(xì)胞外信號調(diào)節(jié)激酶(ERK)[35]和Akt(蛋白激酶B)[36]途徑的Ras依賴性和Rap1非依賴性等多個下游信號級聯(lián)的激活(見圖4)。
5-HT7受體在體內(nèi)通常與其他亞型的5-HT受體及其本身構(gòu)成異源或者同源二聚體,從而激活不同的信號通路。其中,與5-HT1A受體形成異源二聚體最常見[37]。
圖3 脊束核-球-脊束核(spino–bulbo–spinal)環(huán)路激活后,啟動腦干興奮性5-HT通路。Parabrachial, 臂旁核。RVM成為下行反饋影響脊束核的主要的中繼站[21](引自Suzuki R, Rygh LJ, Dickenson AH. Trends in Pharmacological Sciences, 2004)
圖4 5-HT7受體細(xì)胞信號通路模型GPCP:G Protein Coupled Receptor, G蛋白偶聯(lián)受體;Gαs, Gα刺激蛋白; Gα12, Gα12蛋白; AC:adenylate cyclase,腺苷酸環(huán)化酶, cAMP: cyclic adenosine monophosphate, 環(huán)磷酸腺苷; PKA: Protein Kinase A, 蛋白激酶A; Epac1/2:cAMP激活的鳥苷酸轉(zhuǎn)換因子; ERK: extracellular signal-regulated kinases, 細(xì)胞外信號調(diào)節(jié)激酶; Hsp90: heat shot shock protein 90, 熱休克蛋白90; CREB: cAMP response element-binding protein cAMP, 反應(yīng)因子結(jié)合蛋白; SRE: serum response element, 血清反應(yīng)因子; Akt: protein kinase B, 蛋白激酶B;RhoA:小鳥苷酸激酶Rho家族成員。(此圖為作者原創(chuàng),引用請注明出處)
PIerce等檢測到5-HT7受體mRNA在大鼠和人類的背根神經(jīng)節(jié)中存在[10]。解剖學(xué)研究發(fā)現(xiàn),5-HT7受體表達(dá)在沿痛覺傳導(dǎo)通路的關(guān)鍵突觸上。通過精確的電子顯微鏡發(fā)現(xiàn)5-HT7受體位于脊髓背角的無髓鞘和細(xì)髓鞘肽能神經(jīng)纖維突觸前膜,肽能細(xì)胞胞體和星形細(xì)胞突觸后膜[38]。在脊髓上水平,5-HT7受體分布在一些皮層,丘腦,中腦,腦橋和延髓等一些核團(tuán)[39],這些分布特點(diǎn)可能與痛覺調(diào)控功能兼容。
在脊髓及外周,5-HT7受體激活主要起促痛作用[38]。這些研究中局部注射選擇性的5-HT7受體拮抗劑時,會出現(xiàn)較原有基礎(chǔ)炎癥痛的促痛作用[11]。5-HT7受體激動劑的研究也表現(xiàn)了5-HT7R通路的局部促痛作用。如在大鼠關(guān)節(jié)內(nèi)注射混合的5-HT1A/5-HT7受體的激動劑(8-OH-DPAT),通過激活位于初級痛覺傳入纖維周圍端的5-HT7受體,增加了c-Fos在脊束核背角的表達(dá)[38]。研究還發(fā)現(xiàn),腦池內(nèi)注射辣椒素之后,靜脈注射選擇性的5-HT7受體激動劑LP-211,使大鼠三叉神經(jīng)尾核的表層c-Fos蛋白表達(dá)顯著增加[40]。除此之外,在向已經(jīng)注射過5-HT7受體激動劑E-57431的小鼠足底注射辣椒素時,會出現(xiàn)明顯的促痛效應(yīng)[41]。
與之相反,有一些實(shí)驗(yàn)卻認(rèn)為系統(tǒng)性注射5-HT7受體拮抗劑(SB-269970 和SB-258719)會增加辣椒素引起的小鼠敏化或者神經(jīng)損傷相關(guān)的機(jī)械性感覺敏化[41]。首先,鞘內(nèi)注射SB-269970藥理性拮抗脊髓的5-HT7受體,會消除靜脈注射嗎啡,曲馬多或者大麻素產(chǎn)生的鎮(zhèn)痛效應(yīng),并通過行為學(xué)測試甩尾實(shí)驗(yàn)等獲取數(shù)據(jù)支持[25]。與5-HT7受體在脊束核激活產(chǎn)生的鎮(zhèn)痛效應(yīng)一致,鞘內(nèi)注射5-HT7受體激動劑E-57431和E-55888,發(fā)現(xiàn)可以抑制繼發(fā)于辣椒素注射和神經(jīng)損傷大鼠和小鼠中的機(jī)械性感覺敏化[12],國內(nèi)學(xué)者也有一致的發(fā)現(xiàn)[42]。除此之外,AS19可以減輕鏈脲佐菌素誘導(dǎo)的實(shí)驗(yàn)性糖尿病小鼠的熱痛覺超敏現(xiàn)象,說明5-HT7受體激動劑可能治療糖尿病周圍神經(jīng)病變疼痛是有效的[43]。
事實(shí)上,5-HT7受體激活呈興奮性,應(yīng)表現(xiàn)為促痛性效應(yīng),而不應(yīng)直接抑制初級傳入神經(jīng)或者傷害性的背根神經(jīng)元發(fā)揮整體的抑痛效應(yīng)[38]。目前,兩個可能的機(jī)制被提出以解釋這些發(fā)現(xiàn)[44]:一是5-HT7受體觸發(fā)快速的脫敏現(xiàn)象;二是通過激動劑或5-HT7受體,介導(dǎo)抑制性神經(jīng)元的興奮。首先,5-HT7受體下調(diào)已經(jīng)在一些研究中被描述(比如氟西汀治療21天之后的下丘腦[45])。5-HT7受體長時程激活之后,即使沒有受體下調(diào)也會出現(xiàn)脫敏現(xiàn)象[46]。其次,5-HT7受體激活可能產(chǎn)生了一個5-HT再攝取的間接抑制作用,因此增加了細(xì)胞外的5-HT受體水平,并且長時間激活,鎮(zhèn)痛效應(yīng)會消失[47]。盡管5-HT7受體脫敏在治療中常常出現(xiàn),然而反復(fù)系統(tǒng)性的注射選擇性5-HT7R激動劑到神經(jīng)損傷的小鼠和大鼠中,證明了這些配體的鎮(zhèn)痛效果并沒有耐受性[12,41]。與第二個假設(shè)一致,通過特異性抗體雙標(biāo)免疫細(xì)胞化學(xué)方法發(fā)現(xiàn),在脊束核背角內(nèi),5-HT7受體通過中間神經(jīng)元被表達(dá)[12,41],特別是通過GABA能神經(jīng)元[12]。如預(yù)期所言,不同狀態(tài)下AS19的促痛和鎮(zhèn)痛效應(yīng)都能被特異性拮抗劑SB-269970拮抗。
5-HT7受體與偏頭痛相關(guān)研究較少,研究范圍以屬于外周神經(jīng)系統(tǒng)的硬腦膜及其血管上分布的傷害性感受器為主。由于顱內(nèi)血管擴(kuò)張是偏頭痛病理機(jī)制之一,有研究發(fā)現(xiàn)5-HT7受體在外周激活可以誘導(dǎo)血管擴(kuò)張,5-HT7受體拮抗劑可抑制5-CT(5-HT1A和5-HT7受體共同激動劑)引起的大腦中動脈的擴(kuò)張[47],所以認(rèn)為5-HT7受體激動劑可以誘發(fā)類似于偏頭痛疼痛的產(chǎn)生,而5-HT7受體拮抗劑有抑制作用。研究還發(fā)現(xiàn),5-HT7受體拮抗劑(SB-269970)能拮抗電刺激硬腦膜和三叉神經(jīng)造成的偏頭痛模型大鼠誘發(fā)的神經(jīng)源性的硬腦膜血管擴(kuò)張,5-HT7受體激動劑會使其擴(kuò)張?jiān)黾覽48]。除此之外,預(yù)注射5-HT7受體拮抗劑(SB-269970)能降低電刺激三叉神經(jīng)節(jié)偏頭痛模型大鼠產(chǎn)生的CGRP水平,同時AS19可以逆轉(zhuǎn)SB-269970的作用,這些均提示了5-HT7受體拮抗劑在偏頭痛發(fā)作之前有預(yù)防作用[49]。然而,這些實(shí)驗(yàn)只是5-HT7受體在周圍神經(jīng)及血管層面和正常健康大鼠中激活產(chǎn)生的作用,實(shí)驗(yàn)中并未涉及中樞神經(jīng)系統(tǒng)尤其是脊上水平和已經(jīng)發(fā)生偏頭痛產(chǎn)生痛覺敏化的大鼠。因此,目前確認(rèn)5-HT7受體與偏頭痛的關(guān)系還為時尚早。
偏頭痛是一種神經(jīng)性功能障礙,以下行痛覺調(diào)控通路失調(diào)為主。由于RVM是下行痛覺調(diào)節(jié)通路最后的中繼站,決定感覺的類型和強(qiáng)度,所以RVM區(qū)域未能發(fā)揮正常的痛覺調(diào)制作用是本疾病病理機(jī)制的核心??傊?-HT7受體在調(diào)節(jié)疼痛方面的作用比較復(fù)雜。在敏化的神經(jīng)病理痛狀態(tài)下,5-HT7受體在脊束核以上水平激活獲得表現(xiàn)出抗疼痛效應(yīng),而正常狀態(tài)下,激活周圍結(jié)構(gòu)的5-HT7受體會產(chǎn)生促痛作用。不僅如此,在系統(tǒng)性注射5-HT7受體激動劑后,通過中樞5-HT7受體介導(dǎo)的抗疼痛效應(yīng)似乎占優(yōu)勢。參考5-HT7受體在神經(jīng)病理性疼痛及炎癥性疼痛所致痛覺敏化中的表現(xiàn),我們可以推斷在病理情況下,5-HT7受體在下行疼痛調(diào)節(jié)通路在最后中繼站RVM呈抗痛覺敏化效應(yīng)(見圖5[44])。一般認(rèn)為,當(dāng)發(fā)生痛覺敏化時,外周傷害感受器信號激活5-HT能下行系統(tǒng)和抑制性GABA能中間神經(jīng)元。在慢性神經(jīng)性病理痛期間,GABA能中間神經(jīng)元過度活化[50],因此對脊髓內(nèi)突觸下游的5-HT能神經(jīng)元產(chǎn)生強(qiáng)烈的抑制作用,從而使5-HT能神經(jīng)元分泌的5-HT減少,產(chǎn)生痛覺敏化。然而5-HT7受體激動劑可以直接激活胞體-樹突的5-HT7受體觸發(fā)異二聚體5-HT7與5-HT1A受體二聯(lián)體的內(nèi)化[37],使其在5-HT能神經(jīng)元內(nèi),引發(fā)GABAA受體的磷酸化依賴性脫敏,從而拮抗GABA中間神經(jīng)元對下行5-HT能通路的抑制作用,從而使RVM區(qū)5-HT表達(dá)分泌增加,下行至TNC區(qū)起疼痛抑制作用。雖然需要補(bǔ)充實(shí)驗(yàn)來評估其在偏頭痛痛覺敏化狀況下是否發(fā)生,但這種機(jī)制可以解釋慢性壓迫性坐骨神經(jīng)損傷大鼠中激活5-HT7受體從而恢復(fù)5-HT介導(dǎo)的慢性疼痛的下行抑制作用的過程[12]。
偏頭痛是一個復(fù)雜的神經(jīng)功能障礙,單純靠現(xiàn)有的藥物無法滿足病人的需要,尋找新的作用機(jī)制和治療靶點(diǎn),盡早擺脫偏頭痛難題迫在眉睫。通過對近50年來5-HT7R方面的文獻(xiàn)進(jìn)行搜索分析,其在病理痛狀態(tài)下的整體及中樞部位主要起抑痛的作用。不僅如此,目前認(rèn)為,5-HT7受體在疼痛方面作用機(jī)制比較復(fù)雜。在正常狀態(tài)下外周局部組織主要起促痛作用的研究中大多與偏頭痛的發(fā)病相關(guān),認(rèn)為外周硬腦膜等部位的5-HT7受體激活會引起偏頭痛的發(fā)生。然而,在已經(jīng)形成偏頭痛的中樞敏化的狀態(tài)下,中樞部位的5-HT7R的作用機(jī)制仍待進(jìn)一步的研究和探索。這種趨勢和未知也鼓舞著更多科學(xué)研究者設(shè)計(jì)邏輯縝密,方法科學(xué)的實(shí)驗(yàn),為5-HT7R與偏頭痛的研究貢獻(xiàn)出自己的力量。
圖5 5-HT7受體RVM-TNC區(qū)5-HT7R抑制性疼痛調(diào)節(jié)通路模型[44] (引自Viguier F, Michot B, et al. European Journal of Pharmacology, 2013)
[1]Liu R, Yu S, He M,et al. Health-care utilization for primary headache disorders in China: a populationbased door-to-door survey. J Headache Pain, 2013,14:47.
[2]Hagen K, Zwart JA, Vatten L,et al. Prevalence of migraine and non-migrainous headache--head-HUNT,a large population-based study. Cephalalgia, 2000,20:900~906.
[3]Dahlem MA, Kurths J, Ferrari MD,et al. Understanding migraine using dynamic network biomarkers.Cephalalgia, 2015, 35:627~630.
[4]Schulte LH, Sprenger C, May A. Physiological brainstem mechanisms of trigeminal nociception: An fMRI study at 3T. Neuroimage, 2016 , 124(Pt A):518~525.
[5]Cernuda-Morollon E, Larrosa D, Ramon C,et al.Interictal increase of CGRP levels in peripheral blood as a biomarker for chronic migraine. Neurology, 2013,81:1191~1196.
[6]Burstein R, Jakubowski M, Garcia-Nicas E,et al.Thalamic sensitization transforms localized pain into widespread allodynia. Ann Neurol, 2010, 68:81~91.
[7]Melo-Carrillo A, Lopez-Avila A. A chronic animal model of migraine, induced by repeated meningeal nociception, characterized by a behavioral and pharmacological approach. Cephalalgia, 2013, 33:1096~1105.
[8]Hamel E. Serotonin and migraine: biology and clinical implications. Cephalalgia, 2007, 27:1293~1300.
[9]Liu L, Pei P, Zhao L,et al. Electroacupuncture Pretreatment at GB20 Exerts Antinociceptive Effects via Peripheral and Central Serotonin Mechanism in Conscious Migraine Rats. Evid-Based Compl Alt Med,2016, 2016:1~10.
[10]Pierce PA, Xie GX, Meuser T,et al. 5-Hydroxytryptamine receptor subtype messenger RNAs in human dorsal root ganglia: a polymerase chain reaction study. Neuroscience, 1997, 81:813~819.
[11]Rocha-Gonzalez HI, Meneses A, Carlton SM,et al.Pronociceptive role of peripheral and spinal 5-HT7 receptors in the formalin test. Pain, 2005, 117:182~192.
[12]Viguier F, Michot B, Kayser V,et al. GABA, but not opioids, mediates the anti-hyperalgesic effects of 5-HT7 receptor activation in rats suffering from neuropathic pain. Neuropharmacology, 2012, 63:1093~1106.
[13]Goadsby PJ, Holland PR, Martins-Oliveira M,et al.Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol Rev, 2017, 97:553~622.
[14]Uddman R, Goadsby PJ, Jansen I,et al. PACAP, a VIP-like peptide: immunohistochemical localization and effect upon cat pial arteries and cerebral blood flow. J Cereb Blood Flow Metab, 1993, 13:291~297.
[15]Liu Y, Broman J, Zhang M,et al. Brainstem and thalamic projections from a craniovascular sensory nervous centre in the rostral cervical spinal dorsal horn of rats. Cephalalgia, 2009, 29:935~948.
[16]Ossipov MH, Dussor GO, Porreca F. Central modulation of pain. Journal of Clinical Investigation, 2010,120:3779~3787.
[17]Sandkuhler J, Gebhart GF. Relative contributions of the nucleus raphe magnus and adjacent medullary reticular formation to the inhibition by stimulation in the periaqueductal gray of a spinal nociceptive re flex in the pentobarbital-anesthetized rat. Brain Res, 1984,30577~30587.
[18]Potrebic SB, Mason P, Fields HL. The density and distribution of serotonergic appositions onto identi fi ed neurons in the rat rostral ventromedial medulla. J Neurosci, 1995, 15(5 Pt 1):3273~3283.
[19]Fields HL, Malick A, Burstein R. Dorsal horn projection targets of ON and OFF cells in the rostral ventromedial medulla. J Neurophysiol, 1995, 74:1742~1759.
[20]Foo H, Mason P. Brainstem modulation of pain during sleep and waking. Sleep Med Rev, 2003, 7:145~154.
[21]Suzuki R, Rygh LJ, Dickenson AH. Bad news from the brain: descending 5-HT pathways that control spinal pain processing. Trends Pharmacol Sci, 2004, 25:613~617.
[22]Cui M, Feng Y, McAdoo D J,et al. Periaqueductal gray stimulation-induced inhibition of nociceptive dorsal horn neurons in rats is associated with the release of norepinephrine, serotonin, and amino acids. J Pharmacol Exp Ther, 1999, 289:868~876.
[23]Jensen TS, Yaksh TL. Spinal monoamine and opiate systems partly mediate the antinociceptive effects produced by glutamate at brainstem sites. Brain Res,1984, 321:287~297.
[24]Pei P, Liu L, Zhao L,et al. Effect of electroacupuncture pretreatment at GB20 on behaviour and the descending pain modulatory system in a rat model of migraine.Acupunct Med, 2016, 34:127~135.
[25]Dogrul A, Ossipov MH, Porreca F. Differential mediation of descending pain facilitation and inhibition by spinal 5HT-3 and 5HT-7 receptors. Brain Res, 2009,1280:52~59.
[26]Bard JA, Zgombick J, Adham N,et al. Cloning of a novel human serotonin receptor (5-HT7) positively linked to adenylate cyclase. J Biol Chem, 1993,268:23422~23426.
[27]Ruat M, Traiffort E, Leurs R,et al. Molecular cloning,characterization, and localization of a high-affinity serotonin receptor (5-HT7) activating cAMP formation.Proc Natl Acad Sci U S A, 1993, 90:8547~8551.
[28]Plassat JL, Amlaiky N, Hen R. Molecular cloning of a mammalian serotonin receptor that activates adenylate cyclase. Mol Pharmacol, 1993, 44:229~236.
[29]Bhalla P, Saxena PR, Sharma HS. Molecular cloning and tissue distribution of mRNA encoding porcine 5-HT7 receptor and its comparison with the structure of other species. Mol Cell Biochem, 2002, 238:81~88.
[30]Tsou AP, Kosaka A, Bach C,et al. Cloning and expression of a 5-hydroxytryptamine7 receptor positively coupled to adenylyl cyclase. J Neurochem, 1994,63:456~464.
[31]Nelson CS, Cone RD, Robbins LS,et al. Cloning and expression of a 5HT7 receptor from Xenopus laevis.Receptors Channels, 1995, 3:61~70.
[32]Kvachnina E, Dumuis A, Wlodarczyk J,et al. Constitutive Gs-mediated, but not G12-mediated, activity of the 5-hydroxytryptamine 5-HT7(a) receptor is modulated by the palmitoylation of its C-terminal domain. Biochim Biophys Acta, 2009, 1793:1646~1655.
[33]Kvachnina E, Liu G, Dityatev A,et al. 5-HT7 receptor is coupled to G alpha subunits of heterotrimeric G12-protein to regulate gene transcription and neuronal morphology. J Neurosci, 2005, 25:7821~7830.
[34]Shen Y, Monsma FJ, Metcalf M A,et al. Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype. J Biol Chem, 1993,268:18200~18204.
[35]Lin SL, Johnson-Farley NN, Lubinsky DR,et al.Coupling of neuronal 5-HT7 receptors to activation of extracellular-regulated kinase through a protein kinase A-independent pathway that can utilize Epac. J Neurochem, 2003, 87:1076~1085.
[36]Johnson-Farley NN, Kertesy SB, Dubyak GR,et al.Enhanced activation of Akt and extracellular-regulated kinase pathways by simultaneous occupancy of Gqcoupled 5-HT2A receptors and Gs-coupled 5-HT7A receptors in PC12 cells. J Neurochem, 2005, 92:72~82.
[37]Renner U, Zeug A, Woehler A,et al. Heterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signalling and traf fi cking. J Cell Sci,2012, 125(Pt 10):2486~2499.
[38]Meuser T, Pietruck C, Gabriel A,et al. 5-HT7 receptors are involved in mediating 5-HT-induced activation of rat primary afferent neurons. Life Sci, 2002, 71:2279~2289.
[39]Martin-Cora FJ, Pazos A. Autoradiographic distribution of 5-HT7 receptors in the human brain using [3H]mesulergine: comparison to other mammalian species.Br J Pharmacol, 2004, 141:92~104.
[40]Martinez-Garcia E, Leopoldo M, Lacivita E,et al.Increase of capsaicin-induced trigeminal Fos-like immunoreactivity by 5-HT(7) receptors. Headache,2011, 51:1511~1519.
[41]Brenchat A, Nadal X, Romero L,et al. Pharmacological activation of 5-HT7 receptors reduces nerve injuryinduced mechanical and thermal hypersensitivity. Pain,2010, 149:483~494.
[42]肖智, 文松. 中腦導(dǎo)水管周圍灰質(zhì)5-HT-7受體在神經(jīng)病理性疼痛中的鎮(zhèn)痛作用研究. 中國疼痛醫(yī)學(xué)雜志 , 2014, 12(11):861~865.
[43]Ulugol A, Oltulu C, Gunduz O,et al. 5-HT7 rece-ptor activation attenuates thermal hyperalgesia in streptozocin-induced diabetic mice. Pharmacol Biochem Behav,2012, 102:344~348.
[44]Viguier F, Michot B, Hamon M,et al. Multiple roles of serotonin in pain control mechanisms-Implications of 5-HT7 and other 5-HT receptor types. European Journal of Pharmacology, 2013, 716:8~16.
[45]Sleight AJ, Carolo C, Petit N,et al. Identification of 5-hydroxytryptamine7 receptor binding sites in rat hypothalamus: sensitivity to chronic antidepressant treatment. Mol Pharmacol, 1995, 47:99~103.
[46]Iceta R, Mesonero JE, Aramayona JJ,et al. Expression of 5-HT1A and 5-HT7 receptors in Caco-2 cells and their role in the regulation of serotonin transporter activity. J Physiol Pharmacol, 2009,60(1):157~164.
[47]Bosker FJ, Folgering JH, Gladkevich AV,et al. Antagonism of 5-HT(1A) receptors uncovers an excitatory effect of SSRIs on 5-HT neuronal activity, an action probably mediated by 5-HT(7) receptors. J Neurochem,2009,108(5):1126~1135.
[48]Wang X, Fang Y, Liang J,et al. 5-HT7 Receptors Are Involved in Neurogenic Dural Vasodilatation in an Experimental Model of Migraine. Journal of Molecular Neuroscience, 2014,54(2):164~170.
[49]Wang X, Fang Y, Liang J,et al. Selective Inhibition of 5-HT7 Receptor Reduces CGRP Release in an Experimental Model for Migraine. Headache: J Head Face Pain, 2010,50(4):579~587.
[50]Saade NE, Al AH, Barchini J,et al. Brainstem injection of lidocaine releases the descending pain-inhibitory mechanisms in a rat model of mononeuropathy. Exp Neurol, 2012,237(1):180~190.