韓冉,李天亞,宮文萍,李豪圣,宋健民,劉愛峰,曹新有,程敦公,趙振東,劉成,劉建軍
?
小麥稈銹病新抗源及抗病基因所在染色體特異分子標(biāo)記
韓冉1,李天亞2,宮文萍1,李豪圣1,宋健民1,劉愛峰1,曹新有1,程敦公1,趙振東1,劉成1,劉建軍1
(1山東省農(nóng)業(yè)科學(xué)院作物研究所/農(nóng)業(yè)部黃淮北部小麥生物學(xué)與遺傳育種重點實驗室/小麥玉米國家工程實驗室,濟南 250100;2沈陽農(nóng)業(yè)大學(xué)植物保護學(xué)院,沈陽 110866)
【】小麥稈銹病是具潛在毀滅性的小麥病害之一,稈銹菌小種Ug99嚴(yán)重威脅全球小麥生產(chǎn)。本研究通過對165份小麥-近緣植物染色體系進行抗稈銹病鑒定,篩選小麥稈銹病新抗源并建立抗病基因所在染色體特異分子標(biāo)記,以發(fā)掘小麥稈銹病新抗源,培育抗病品種,有效防御Ug99導(dǎo)致的稈銹病?!尽繉⒐┰嚨?65份小麥-近緣植物染色體系、3份六倍體小麥及感病對照小密穗分別播種于直徑10 cm的瓦盆中,生長到一葉一心時,用中國小麥稈銹菌流行小種34MKGQM和21C3CTHSM進行接種,當(dāng)感病品種小密穗充分發(fā)病時,按照0—4級標(biāo)準(zhǔn)調(diào)查記載侵染型,對供試材料的抗稈銹病級別進行統(tǒng)計。同時,提取免疫、近免疫、高抗稈銹病附加系/代換系及其對應(yīng)的整套染色體系、中國春等材料的基因組DNA,利用101對PLUG引物進行PCR擴增,擴增產(chǎn)物經(jīng)限制性內(nèi)切酶酶切后進行電泳檢測,篩選并建立抗稈銹基因所在染色體特異分子標(biāo)記。【】在165份小麥-近緣植物染色體系中,中國春-卵穗山羊草7Mg#1附加系、中國春-卵穗山羊草7Mg#1(7A)和7Mg#1(7B)代換系、中國春-帝國黑麥1R附加系、中國春-中間偃麥草?Ai附加系(?表示外源染色體同源群未鑒定)、中國春-單芒山羊草6N附加系、中國春-易變山羊草6SvS端體附加系和中國春-智利大麥6Hch附加系9份材料對稈銹病表現(xiàn)為免疫或近免疫;ALCD-尾狀山羊草7C#1附加系、中國春-卵穗山羊草7Mg#1(7D)代換系、中國春-帝國黑麥6R附加系、中國春-高大山羊草6Sl#3附加系、中國春-高大山羊草6Sl#2(6B)代換系、中國春-希爾斯山羊草3S#1附加系和中國春-擬斯卑爾脫山羊草2Sg#3附加系7份材料對稈銹病表現(xiàn)為高抗;其余材料均表現(xiàn)為中感或高感??苟掍P性基因定位信息比較分析發(fā)現(xiàn),高大山羊草6Sl#2和6Sl#3、帝國黑麥6R、智利大麥6Hch、卵穗山羊草7Mg#1、尾狀山羊草7C、中間偃麥草?Ai染色體上可能含有抗稈銹新基因。分子標(biāo)記篩選、定位及特異性驗證研究共獲得8個新的多態(tài)性標(biāo)記,其中5個(TNAC1715、TNAC1718、TNAC1737、TNAC1739和TNAC1753)和3個(TNAC1740、TNAC1751和TNAC1756)分別被定位在6R和6Sl染色體上?!尽亢Y選得到8份可能含有抗稈銹新基因的材料,建立了抗稈銹基因所在染色體特異新標(biāo)記8個。
小麥近緣植物;染色體系;稈銹??;多態(tài)性
【研究意義】小麥稈銹病由小麥稈銹菌(Pers. f. spEriks. and E. Henn)引起,是小麥的重要真菌病害之一。近30多年來,由于全球小麥普遍引入等抗稈銹病基因,小麥稈銹病得到了很好控制,基本上只在局部地區(qū)零星發(fā)生[1]。然而,1999年能夠克服抗性的小麥稈銹菌小種Ug99的出現(xiàn),使得世界小麥生產(chǎn)又重新處于稈銹病的威脅之下。Ug99除能克服的抗性外,還對其他多數(shù)重要抗稈銹病基因具有極罕見的聯(lián)合致病力,全球90%以上的重要小麥生產(chǎn)品種都表現(xiàn)為高度感病[2]。2006年中國118份小麥品種送到肯尼亞進行Ug99抗性分析鑒定,其中只有2份材料表現(xiàn)抗性[3],由此可見中國小麥品種對Ug99的抗性較差。Singh等[4]對52個抗稈銹病基因的Ug99抗性鑒定,只有22(42.3%)個基因?qū)g99表現(xiàn)一定抗性,因此,發(fā)掘新抗源是中國應(yīng)對Ug99以及其變異小種的最關(guān)鍵的任務(wù)之一[5-7]。【前人研究進展】迄今為止,小麥抗稈銹病基因已被正式命名至,并且還有許多未命名的抗病基因。小麥抗稈銹病基因來源廣泛,除來自普通小麥種之外,還有來自小麥屬的其他種,如一粒小麥、二粒小麥、硬粒小麥、提莫菲維小麥、阿拉拉特小麥以及小麥近緣屬。其中,、、和來自長穗偃麥草(),來自于頂芒山羊草(),來自偏凸山羊草(),、和來自擬斯卑爾脫山羊草(),、、和來自栽培黑麥(),來自中間偃麥草(),來自希爾斯山羊草(),來自簇毛麥(),來自卵穗山羊草()[1,8]。Singh等[4]鑒定的抗Ug99的基因中有19個來源于小麥親緣種屬??梢娦←溄壏N屬是小麥抗稈銹的重要基因源?!颈狙芯壳腥朦c】小麥族含有300多個物種,其中小麥近緣物種250個以上[9],前人僅對小麥近緣種屬的極少數(shù)物種進行了抗稈銹研究[1,8];另外,由于小麥與近緣種屬之間的不親和性等諸多因素,導(dǎo)致雜交成效較低,遠(yuǎn)緣種屬的優(yōu)異基因無法導(dǎo)入小麥,而小麥-近緣物種染色體系是向小麥轉(zhuǎn)育近緣物種優(yōu)異基因的良好載體和中間橋梁。因此,對較多的小麥-近緣植物染色體系進行抗稈銹鑒定,有利于篩選小麥稈銹病新抗源。【擬解決的關(guān)鍵問題】本研究利用中國小麥稈銹菌流行小種34MKGQM和21C3CTHSM對165份小麥-近緣植物染色體系進行苗期抗稈銹鑒定,與已報道的稈銹基因染色體定位信息比較,獲得小麥稈銹病新抗源;篩選基于水稻EST序列設(shè)計的PLUG(PCR-base landmark unique gene)引物,建立抗病基因所在染色體的特異分子標(biāo)記,為中國應(yīng)對Ug99增加新的候選抗源,也為染色體工程誘導(dǎo)獲得可用于小麥抗病育種的小麥-近緣植物染色體易位系奠定基礎(chǔ)。
供試材料為165份小麥-近緣植物染色體系(附加系、代換系和易位系)和3份六倍體小麥(對照)(電子附表1)。TA編號材料由美國堪薩斯州立大學(xué)植物病理系Jon Raupp博士提供;JIC編號材料、CSDA1N-CSDA4N、6N、7N和XX029由英國約翰英納斯中心Reader S M教授提供;中國春(Chinese Spring,CS)由電子科技大學(xué)楊足君教授提供;感病對照小麥小密穗(little club,LC)和中國當(dāng)前優(yōu)勢稈銹菌生理小種34MKGQM和21C3CTHSM(均采集于四川阿壩州)由沈陽農(nóng)業(yè)大學(xué)植物保護學(xué)院植物病理教研室保存并提供。其中,34MKGQM的有效抗病基因包括、、、、、、、、、、、、、、、、、、、、、、、、、和;21C3CTHSM的有效抗病基因包括、、、、、、、、、、、、、、、、、和。作為分子標(biāo)記篩選對照的濟麥19(JM19)、濟麥20(JM20)、濟麥22(JM22)、濟麥23(JM23)、濟麥262(JM262)和濟麥229(JM229)由山東省農(nóng)業(yè)科學(xué)院作物研究所小麥育種團隊育成。
試驗于2016年10月至2017年3月在玻璃溫室內(nèi)進行,供試小麥材料按編號播種于直徑10 cm的瓦盆中,以感病品種LC為對照,在溫室中當(dāng)幼苗長至一葉一心時(葉齡期在7 d左右),進行接種鑒定:將新鮮的按照1﹕1(v/v)混合的34MKGQM和21C3CTHSM用干燥滑石粉以1﹕10(v/v)稀釋后噴粉接種于已噴霧(0.01%吐溫20)的幼苗上,于16—18℃下保濕12—14 h后,置于18—20℃的溫室中培養(yǎng),待感病對照LC充分發(fā)病后進行抗病性鑒定。鑒定設(shè)3次重復(fù),分別調(diào)查記載。侵染型按0—4級進行記載[9],其中,0為免疫,;為近免疫,1為高抗,2為中抗,3為中感,4為高感[7]。
取供試材料的一葉一心期幼葉,利用SDS方法[10]提取其基因組DNA。PLUG引物序列參照文獻(xiàn)[11],由成都瑞信生物公司合成。反應(yīng)體系包含2.0 μL 10×PCR buffer(含Mg2+)、2.0 μL 2.5 mmol·L-1dNTP,上下游引物各1 μL(10 μmol·L-1)、0.2 μL5U·μL-1Taq酶、50—100 ng基因組DNA,加ddH2O補至20 μL。反應(yīng)程序為94℃3 min;94℃45 s,57℃45 s,72℃2 min,35個循環(huán);72℃10 min。PCR產(chǎn)物分別用限制性內(nèi)切酶Ⅰ和Ⅲ進行酶切,酶切產(chǎn)物用2%瓊脂糖凝膠電泳進行檢測。
利用免疫、近免疫和高抗小麥稈銹病的小麥-近緣植物染色體系和中國春為材料篩選染色體第6和7同源群的101對PLUG引物。相比中國春,選擇能在小麥-近緣物種染色體系中擴增出多態(tài)性的引物。將上述引物用于擴增所涉及近緣物種的整套染色體系,確定相應(yīng)擴增多態(tài)性片段為物種該染色體特異標(biāo)記。
用當(dāng)前中國小麥稈銹菌流行小種34MKGQM和21C3CTHSM的混合菌種對供試的168份材料進行抗稈銹鑒定,結(jié)果顯示,中國春-卵穗山羊草7Mg#1附加系、中國春-卵穗山羊草7Mg#1(7A)和7Mg#1(7B)代換系、中國春-帝國黑麥1R附加系、中國春-中間偃麥草?Ai附加系(TA3681和TA5566)(?表示未鑒定同源群)、中國春-單芒山羊草6N附加系、中國春-易變山羊草6SvS端體附加系和中國春-智利大麥6Hch附加系等9份材料對稈銹病表現(xiàn)為免疫或近免疫(電子附表1);ALCD-尾狀山羊草7C#1附加系、中國春-卵穗山羊草7Mg#1(7D)代換系、中國春-帝國黑麥6R附加系、中國春-高大山羊草6Sl#3附加系、中國春-高大山羊草6Sl#2(6B)代換系、中國春-希爾斯山羊草3S#1附加系和中國春-擬斯卑爾脫山羊草2Sg#3附加系等7份材料對稈銹病表現(xiàn)為高抗;其余材料均表現(xiàn)為中感或高感(電子附表1)。
對照六倍體小麥ALCD和中國春對小麥稈銹病分別表現(xiàn)為中感和高感,ALCD-尾狀山羊草2C—6C#1附加系、中國春-高大山羊草1Sl#3—5Sl#3、7Sl#3附加系、中國春-高大山羊草1Sl#2、3Sl#2、5Sl#2附加系、2Sl#2(2D)和4Sl#2(4D)代換系、中國春-卵穗山羊草1Mg-6Mg附加系和1Ug—7Ug附加系對小麥稈銹病均表現(xiàn)為中感和高感,而ALCD-尾狀山羊草7C#1附加系、中國春-卵穗山羊草7Mg#1附加系、中國春-卵穗山羊草7Mg#1(7A)、7Mg#1(7B)、7Mg#1(7D)代換系、中國春-高大山羊草6Sl#3附加系和中國春-高大山羊草6Sl#2(6B)代換系對小麥稈銹病均表現(xiàn)為高抗(電子附表1),表明尾狀山羊草7C染色體、卵穗山羊草7Mg#1染色體、高大山羊草6Sl#2和6Sl#3染色體上均含有抗稈銹基因。
中國春-希爾斯山羊草3Ss#1附加系、中國春-擬斯卑爾脫山羊草2S#3附加系和中國春-單芒山羊草6N附加系分別對小麥稈銹病表現(xiàn)為高抗和近免疫,而對照中國春、中國春-希爾斯山羊草1Ss#1、2Ss#1、4Ss#1—7Ss#1附加系、中國春-擬斯卑爾脫山羊草1Sg#3、3Sg#3—7Sg#3附加系、中國春-單芒山羊草1N—4N和7N附加系均中感或高感稈銹?。ǜ奖?),這表明,希爾斯山羊草3Ss#1染色體、擬斯卑爾脫山羊草2S#3染色體和單芒山羊草6N染色體上均含有抗小麥稈銹病基因。中國春-希爾斯山羊草3Ss#1附加系抗病可能是因為在希爾斯山羊草3Ss上存在抗稈銹基因的緣故;中國春-擬斯卑爾脫山羊草2S#3附加系抗病可能是因為擬斯卑爾脫山羊草2S上存在有抗病基因、和的原因。因為單芒山羊草N染色體是偏凸山羊草Nv染色體組的供體[12],而偏凸山羊草6Nv染色體含有抗小麥稈銹基因,因此,中國春-單芒山羊草6N附加系近免疫小麥稈銹病,可能是6N染色體上含有的緣故。
對照小麥中國春、中國春-帝國黑麥2R—5R和7R附加系高感稈銹病,中國春-帝國黑麥1R和6R附加系分別對小麥稈銹病表現(xiàn)為免疫和高抗(電子附表1),說明帝國黑麥1R和6R含有抗稈銹病基因,前者抗稈銹病可能是因為1R染色體上存在抗稈銹基因和。中國春-智利大麥1Hch+1HchS、4Hch—5Hch附加系高感小麥稈銹病,但中國春-智利大麥6Hch附加系表現(xiàn)為高抗(電子附表1),說明智利大麥6Hch含有抗2個小種的基因。2份中國春-中間偃麥草?Ai附加系(TA3681和TA5566)均近免疫小麥稈銹?。娮痈奖?),說明中間偃麥草?Ai染色體上含有抗稈銹基因。
為了建立稈銹病抗性較好材料中外源染色體特異的標(biāo)記,利用中國春-高大山羊草6Sl#3附加系、中國春-高大山羊草6Sl#2(6B)代換系、中國春-帝國黑麥6R附加系、中國春-單芒山羊草6N附加系、中國春-易變山羊草6SvS端體附加系、中國春-智利大麥6Hch附加系、中國春和濟麥系列小麥品種對染色體第6同源群的53對PLUG引物進行篩選。結(jié)果發(fā)現(xiàn),相比小麥對照,共有13對引物可在相應(yīng)附加/代換系中擴增出額外的多態(tài)性片段(表1),其中,TNAC1740、TNAC1751和TNAC1756能夠同時在中國春-高大山羊草6Sl#3附加系和6Sl#2(6B)代換系中擴增出多態(tài)性片段。TNAC1715、TNAC1718和TNAC1676等10對引物可在中國春-帝國黑麥6R附加系中擴增出多態(tài)性片段,其中TNAC1676等5對引物已被文獻(xiàn)[13-14]報道,因此,TNAC1715等5對引物擴增的多態(tài)性片段是黑麥6R染色體的新標(biāo)記。利用含卵穗山羊草7Mg#1染色體的材料與小麥對照篩選第7同源群的48對PLUG引物,未獲得多態(tài)性。TNAC1740、TNAC1751、TNAC1715、TNAC1718、TNAC1753和TNAC1748引物的擴增結(jié)果如圖1所示。
為了確定上述多態(tài)性片段是相應(yīng)外源物種染色體特異標(biāo)記,利用引物TNAC1740、TNAC1751和TNAC1756對中國春-高大山羊草1Sl#3—7Sl#3附加系、中國春-高大山羊草1Sl#2、3Sl#2和5Sl#2附加系、中國春-高大山羊草2Sl#2(2D)、4Sl#2(4D)和6Sl#2 (6B)代換系進行擴增(圖2),發(fā)現(xiàn)6Sl#3附加系和6Sl#2(6B)代換系均能擴增出多態(tài)性片段,說明3對引物擴增出的多態(tài)性片段是高大山羊草6Sl染色體特異標(biāo)記。
利用TNAC1715等10對PLUG引物對中國春-帝國黑麥1R—7R附加系進行擴增(圖2),發(fā)現(xiàn)這10對引物僅在中國春-帝國黑麥6R附加系中擴增出多態(tài)性片段,說明這10對引物擴增的多態(tài)性片段是帝國黑麥6R染色體的特異標(biāo)記。
圖1 引物TNAC1740(A)、TNAC1751(B)、TNAC1715(C)、TNAC1718(D)TNAC1753(E)和TNAC1748(F)的擴增
圖2 引物TNAC1740(A)、TNAC1751(B)、TNAC1715(C)、TNAC1718(D)TNAC1753(E)和TNAC1748(F)所獲多態(tài)性條帶的染色體定位
Fig 2 Chromosome localization of polymorphism bands that primer pairs TNAC1740 (A), TNAC1751 (B),TNAC1715 (C), TNAC1718 (D), TNAC1753 (E) and TNAC1748 (F) amplified
高大山羊草()染色體組為SlSl,高抗小麥白粉病、葉銹病、麥二叉蚜和眼斑病,抗干旱脅迫和鹽脅迫[15-16],并能夠顯著提高小麥籽粒Fe和Zn元素含量。Wang等[17]和Garg等[18]發(fā)現(xiàn)高大山羊草1Sl染色體導(dǎo)入小麥可顯著提高小麥品質(zhì);Neelam等[19]和Sharma等[20]先后從小麥-高大山羊草雜交后代中選育出了籽粒微量元素含量高的后代材料。Cenci等[21]發(fā)現(xiàn)高大山羊草3Sl染色體短臂上含有抗白粉病基因;Sheng等[22]發(fā)現(xiàn)高大山羊草1Sl、3Sl和5Sl上含有抗眼斑病基因;然而,未見高大山羊草染色體上存在抗稈銹基因的報道。
表1 13個特異PLUG標(biāo)記信息
※代表已報道的多態(tài)性引物[13-14]
※indicate the polymorphism primer pairs have been reported[13-14]
本研究發(fā)現(xiàn)中國春-高大山羊草6Sl#3附加系和中國春-高大山羊草6Sl#2(6B)代換系均高抗兩個稈銹生理小種34MKGQM和21C3CTHSM,說明高大山羊草6Sl上含有抗稈銹新基因。
黑麥?zhǔn)亲钤缫彩亲畛晒Φ赜糜诟牧夹←湹慕壷参镏?,具有諸多優(yōu)良性狀,如抗病蟲、抗逆、抗倒伏、分孽力強等。黑麥基因組中的抗白粉病基因~、、和抗銹基因、、、、、、已被導(dǎo)入小麥被廣泛應(yīng)用[23-26],其中的抗稈銹基因、、和分別位于黑麥3R、1RS、1RS和2RL染色體上。本研究發(fā)現(xiàn)中國春-帝國黑麥1R和6R附加系分別免疫和高抗小麥稈銹病,而2R—5R和7R附加系高感稈銹病。小麥-帝國黑麥1R附加系表現(xiàn)為免疫的原因可能是1R染色體上含有的是2個生理小種的有效抗病基因。迄今為止,未發(fā)現(xiàn)黑麥6R染色體上抗小麥稈銹病的報道,而本研究發(fā)現(xiàn)帝國黑麥6R染色體導(dǎo)入中國春之后導(dǎo)致該附加系對稈銹病表現(xiàn)為高抗,因此,6R染色體上含有未被報道的抗稈銹新基因,值得利用染色體工程的方法將其抗病基因通過小片段易位的形式轉(zhuǎn)移到栽培小麥中。本研究中小麥-帝國黑麥2R和3R附加系均高感稈銹病,可能是和對中國當(dāng)前流行的稈銹菌生理小種34MKGQM和21C3CTHSM失去了抗性。韓建東[27]對中國優(yōu)勢稈銹小種的致病性進行研究的結(jié)果也支持已經(jīng)對中國當(dāng)前流行的稈銹菌生理小種34MKGQM和21C3CTHSM失去了抗性的結(jié)論(文獻(xiàn)[27]發(fā)表時,還未被報道)。
卵穗山羊草()染色體組為UgUgMgMg,是山羊草屬中的一個異源四倍體種,高抗白粉病、葉銹病和條銹病[28-31]。來自該物種的抗白粉病基因被定位在卵穗山羊草第七同源群染色體上[32],抗葉銹基因和抗條銹病基因被定位在卵穗山羊草5Mg染色體上[31]。迄今,未見有關(guān)于卵穗山羊草基因組上存在稈銹基因的報道。本研究發(fā)現(xiàn)對照中國春高感稈銹病,而含卵穗山羊草7Mg#1染色體的附加系/代換系均對稈銹菌生理小種34MKGQM和21C3CTHSM均表現(xiàn)為高抗以上抗性,這表明卵穗山羊草7Mg#1染色體上含有抗稈銹基因。由于卵穗山羊草Mg染色體組來源于頂芒山羊草(),然而,在本研究的供試材料中中國春-頂芒山羊草7M附加系中感稈銹病,這可能是由于用于本研究的中國春-頂芒山羊草7M附加系中的頂芒山羊草不是中國春-卵穗山羊草7Mg附加系中卵穗山羊草的染色體組直接供體造成的。
智利大麥()染色體組HchHch,是一個主要分布于智利和阿根廷的二倍體物種。具有高抗葉銹病、白粉病、全蝕病、穎枯病、腥黑穗病、麥二叉蚜、麥雙尾蚜和禾谷孢囊線蟲等優(yōu)良性狀[33]。研究發(fā)現(xiàn),智利大麥4Hch染色體上含有小麥葉枯病抗性基因,7Hch上含有腥黑穗病抗病基因[34]和控制類胡蘿卜素含量的基因[35],1Hch、4Hch和5Hch上含有抗鹽基因,1Hch上還含有禾谷孢囊線蟲抗性基因[36]。迄今,未見有關(guān)于智利大麥染色體上存在稈銹基因的報道。本研究發(fā)現(xiàn)中國春智利大麥6Hch附加系對稈銹菌生理小種34MKGQM和21C3CTHSM表現(xiàn)為免疫,說明智利大麥6Hch染色體上含有新的抗稈銹基因。
尾狀山羊草(L.)染色體組成為CC,是山羊草屬的一個重要二倍體種,高抗白粉病[37]、葉銹病[38]、小麥癭蚊病和蚜蟲[37]。Friebe等[39]鑒定出了一套小麥-尾狀山羊草附加系B#-F#1和5C(5A)、5C(5D)代換系,因此,可以用這套材料來定位抗性基因所在染色體和作為橋梁進一步向小麥轉(zhuǎn)育其抗性。尾狀山羊草抗小麥葉銹基因已成功轉(zhuǎn)移到小麥中[38]。迄今,未見有關(guān)于尾狀山羊草染色體上存在稈銹基因的報道。本研究發(fā)現(xiàn)ALCD感稈銹病,但ALCD-尾狀山羊草7C#1附加系卻高抗稈銹病,說明尾狀山羊草7C染色體上存在有抗稈銹新基因。
長穗偃麥草()是偃麥草屬多年生野生草本植物,具有二倍體(2n=2x=14,EE或EeEe或E1E1)、四倍體(2n=4x=28,EeEeEbEb或E1E1E2E2)和十倍體(2n=10x=70,EeEeEbEbExExStStStSt或EEE1E1E2E2E4E4E5E5)之分[40],具有抗寒、耐旱、耐鹽、抗病和抗蟲等優(yōu)異性狀[40-41]。分別位于長穗偃麥草3AeL、7AeL、6AeL和7el2染色體上的、、和已經(jīng)被導(dǎo)入到小麥中。但在本研究中中國春-長穗偃麥草1E—7E附加系均高感或中感稈銹,這可能是由于(1)本研究中長穗偃麥草與其他研究的長穗偃麥草的來源不同;(2)和對于本研究所用到的2個稈銹生理小種34MKGQM和21C3CTHSM已經(jīng)失去抗性[ 42]。
高大山羊草染色體標(biāo)記建立方面,劉曉明等[16]建立了高大山羊草1Sl染色體特異分子標(biāo)記9個;覃碧等[43]建立2SlL染色體EST-STS標(biāo)記5個;Cenci等[21]建立了3SlS染色體上與抗白粉病基因連鎖的分子標(biāo)記。本研究發(fā)現(xiàn)引物TNAC1740、TNAC1751和TNAC1756在中國春-高大山羊草6Sl#3附加系和中國春-高大山羊草6Sl#2(6B)代換系均能擴增出1 100、700和700 bp的多態(tài)性片段,而在中國春-高大山羊草的其他幾個附加系和小麥對照中擴增不出相應(yīng)多態(tài)性片段,說明3對引物所擴增的多態(tài)性片段是高大山羊草6Sl染色體所特有的片段。
黑麥染色體分子標(biāo)記方面,劉成等[10]建立了黑麥基因組SCAR標(biāo)記用于小麥背景中黑麥染色質(zhì)的鑒定。Koebner等[44]合成了黑麥1R染色體的特異引物,能夠鑒定小麥背景下1RS染色質(zhì)的存在。Kofler等[45]通過構(gòu)建BCA文庫開發(fā)了74個黑麥1RS特異的分子標(biāo)記。王春梅等[46]檢測到5個EST-STS標(biāo)記定位到黑麥1RS染色體上。唐宗祥等[47]篩選到黑麥的6R染色體的SSR標(biāo)記。本研究建立了黑麥6R染色體PLUG標(biāo)記10個,其中5個標(biāo)記與前人報道相同[13-14],引物TNAC1715、TNAC1718、TNAC1737、TNAC1739和TNAC1753所擴增的多態(tài)性片段為被報道過的新標(biāo)記,增加了黑麥6R染色體標(biāo)記信息。
高大山羊草6Sl#2和6Sl#3、帝國黑麥6R、智利大麥6Hch、卵穗山羊草7Mg#1、尾狀山羊草7C、中間偃麥草?Ai染色體(同源群未鑒定)上含有抗稈銹新基因,值得利用染色體工程創(chuàng)制相應(yīng)抗稈銹病小片段易位系;獲得的8個新的多態(tài)性標(biāo)記豐富了黑麥6R和高大山羊草6Sl染色體標(biāo)記信息。
[1] 李偉華. 我國小麥稈銹菌兼Ug99監(jiān)測新體系建立及其品種抗病基因分析[D]. 沈陽: 沈陽農(nóng)業(yè)大學(xué), 2012.
LI W H. Establishment of new surveillance stem for chinese races and Ug99 off.sp.,resistant genes defection in commercial wheat varieties and distinct proteins display analysis of complementary host minn2761[D]. Shenyang: Shenyang agriculture university, 2012. (in Chinese)
[2] JIN Y, SINGH R P. Resistance in US wheat to recent Eastern African isolates off .sp.with virulence to resistance gene., 2006, 90: 476-480
[3] 何中虎, 夏先春, 陳萬權(quán). 小麥對稈銹菌新小種Ug99的抗性研究進展. 麥類作物學(xué)報, 2008, 28(1): 170-173.He Z H, Xia X C, Chen W Q. Breeding for resistance to new raceUg99 of stem rust pathogen., 2008, 28(1): 170-173. (in Chinese)
[4] SINGH R P, HODSON D P, JIN Y,HUERTA-ESPINO J, KINYUA M G, WANYERA R, NJAN P, WARD R W. Current status, likely migration and strategies to mitigate the threat to wheat production from raceUG99 (TTKS) of stem rust pathogen., 2006(54): 1-13.
[5] 曹遠(yuǎn)銀, 陳萬權(quán). 小麥稈銹菌生理小種鑒別寄主及命名方法的演變. 麥類作物學(xué)報, 2010, 30(1): 167-172.
CAO Y Y, CHEN W Q. Stepwise shift of differential hosts and racial designation off. sp., 2010, 30(1): 167-172. (in Chinese)
[6] 韓建東, 曹遠(yuǎn)銀, 孫仲桂. 2007-2008年我國小麥稈銹菌小種種群結(jié)構(gòu)及其對Ug99抗性新種質(zhì)的毒性分析.麥類作物學(xué)報, 2010, 30(1): 163-166.
HAN J D, CAO Y Y, SUN Z G. Race dynamics off.sp.in china and the virulence of CIMMYT wheat germplasm resistant to Ug99., 2010, 30(1): 163-166. (in Chinese)
[7] 吳限鑫, 李天亞, 陳思, 王冠欽, 曹遠(yuǎn)銀, 馬世良, 李明菊. 139份小麥品種(系)抗稈銹性測定及其Ug99抗病基因分子檢測. 中國農(nóng)業(yè)科學(xué), 2014, 47(23): 4618-4626.
WU X X, LI T Y, CHEN S, WANG G Q, CAO Y Y, MA S L, LI M J. Stem rust resistance evaluation and Ug99-resistance gene detection of 139 wheat cultivars., 2014, 47(23): 4618-4626.
[8] 尹靜, 王廣金, 張宏紀(jì), 馬鳳鳴, 孫巖, 肖佳雷. 小麥稈銹抗性遺傳及抗性基因研究進展. 植物遺傳資源學(xué)報, 2007, 8(1): 106-112.
YI J, WANG G J, ZHANG H J, MA F M, SUN Y, XIAO J L. Advances in resistance heredity and resistance stem rust genes of wheat., 2007, 8(1): 106-112. (in Chinese)
[9] SHARMA H C. how wide can a wide cross be., 1995, 82:43-64.
[10] 劉成, 李光蓉, 楊足君, 馮娟, 周建平, 任正隆. 黑麥基因組特異DNA片段的分離與SCAR標(biāo)記的建立. 西北植物學(xué)報, 2016, 26(12): 2434-2438.
LIU C, LI G R, YANG Z J, FENG J, ZHOU J P, REN Z L. Specific DNA band isolation and SCAR marker construction of Rye genome.,2016, 26(12): 2434-2438. (in Chinese)
[11] ISHIKAWA G, YONEMARU J, SAITO M, NAKAMURA T. PCR-based landmark unique gene (PLUG) markers effectively assign homoeologous wheat genes to A, B and D genomes., 2007, 8(1): 135.
[12] TANGUY A M, CORITON O, ABELARD P, DEDRYVER F, JAHIER J. Structure ofchromosome 6Nv, the donor of wheat genes,,, and., 2005, 48(3): 541.
[13] LI J, ENDO T R, SAITO M, ISHIKAWA G, NAKAMURA T, NASUDA S. Homoeologous relationship of rye chromosome arms as detected with wheat PLUG markers., 2013, 122: 555-564.
[14] 雷孟平, 李光蓉, 劉成, 楊足君. 抗條銹病的小麥-非洲黑麥異代換系的分子細(xì)胞學(xué)鑒定. 農(nóng)業(yè)生物技術(shù)學(xué)報, 2013, 21(3): 263-271.
LEI M P, LI G R, LIU C, YANG Z J. Molecular cytogenetic characterization of a-substitution line for resistance to stripe rust (. f. sp.)., 2013, 21(3): 263-271. (in Chinese)
[15] MONIKA G, HIROYUKI T, NAOYUKI I, KANENORI T, MIKIKO Y, HISASHI T. A novel pair of HMW glutenin subunits fromimproves quality of hexaploid wheat., 2009, 86: 26-32.
[16] 劉曉明, 張姝倩, 宮文英, 唐海田, 王燦國, 程敦公, 劉成,, 劉建軍. 高大山羊草1S1染色體特異分子標(biāo)記的建立與應(yīng)用. 湖北農(nóng)業(yè)科學(xué), 2015, 54(20): 4937-4940.
LIU X M, ZHANG Z Q, GONG W Y, TANG H T, WANG C G, CHENG D G, LIU C, LIU J J. Construction of 1Slchromosome specific molecular markers inand its application.,2015, 54(20): 4937-4940. (in Chinese)
[17] WANG S, YU Z, CAO M, SHEN X, LI N, LI X, MA W, WEI GERBER H, ZELLER F, HSAM S. Molecular mechanisms of HMW glutenin subunits from 1S(l) genome ofpositively affecting wheat breadmaking quality., 2013, 8(4): e58947.
[18] GARG M, KUMAR R, SINGH R P, TSUJIMOTO H. Development of ansubstitution line with improved bread-making quality., 2014, 60(2): 389-396.
[19] RAWAT N, NEELAM K, TIWARI V K, RANDHAWA G S, FRIEBE B, GILL B S, DHALIWAL H S. Development and molecular characterization of wheat-addition and substitution lines with high grain protein, iron and zinc contents., 2011, 54(11): 943-953.
[20] MENA M, ORELLANA J, LOPEZ-BRA A I, GARC A-OLMEDO F, DELIBES A. Biochemical and cytological characterization of wheat/addition and transfer lines carrying chromosome 4MV., 1989, 77(2): 184-188.
[21] CENCI A, D’OVIDIO R, TANZARELLA O A, CEOLONI C, PORCEDDU E. Identification of molecular markers linked to, angene conferring resistance to powdery mildew in wheat., 1999, 98(3): 448-454.
[22] SHENG H, SEE DR, MURRAY T D. Mapping resistance genes forin., 2014, 127(10): 2085-2093.
[23] KERBER E R, DYCK P L. Transfer to hexaploid wheat of linked genes for adult plant leaf rust and seedling stem rust resistance from an amphiploid of×., 1990, 33(4): 530-537.
[24] 吳金華, 吉萬全, 李鳳珍. 黑麥在小麥改良中的應(yīng)用研究進展. 麥類作物學(xué)報, 2005, 25(1): 115-119.
WU J H, JI W Q, LI F Z. Advanees of study on the application ofin the improvement of wheat., 2005, 25(1): 115-119. (in Chinese)
[25] 劉成, 閆紅飛, 宮文萍, 李光蓉, 劉大群, 楊足君. 小麥葉銹病新抗源篩選. 植物遺傳資源學(xué)報, 2013, 14(5): 936-944.
LIU C, YAN H F, GONG W P, LI G R, LIU D Q, YANG Z J. Screening of new resistance sources of wheat leaf rust., 2013, 14(5): 936-944. (in Chinese)
[26] RAHMATOV M, ROUSE M N, NIRMALA J, DANILOVA T, FRIEBE B, STEFFENSON B J, JOHANSSON E. A new 2DS·2RL Robertsonian translocation transfers stem rust resistance geneinto wheat., 2016, 129: 1-10.
[27] 韓建東. 小麥稈銹菌小種Ug99入侵的基因防控及相關(guān)機理研究[D]. 沈陽: 沈陽農(nóng)業(yè)大學(xué), 2009.
HAN J D. Resistant gene control and related mechanism to the invasion of race Ug99 off.sp.[D]. Shenyang: Shenyang agriculture university, 2009. (in Chinese)
[28] AGHAEE-SARBARZEH M, FERRAHI M, SINGH S, SINGH H, FRIEBE B, GILL B S, DHALIWAL H S.-induced transfer of leaf and stripe rust-resistance genes fromandto bread wheat., 2002, 127(3): 377-382.
[29] ZAHARIEVA M, MONNEVEUX P, HENRY M, RIVOAL R, VALKOUN J, NACHIT M M. Evaluation of a collection of wild wheat relativeRoth and identification of potential sources for useful traits., 2001, 119(1): 33-38.
[30] HSAM S L K, LAPOCHKINA I F, ZELLER F J. Chromosomal location of genes for resistance to powdery mildew in common wheat (L. em Thell.) 8 genein a wheat-translocation line., 2003, 133(3): 367-370.
[31] KURAPARTHY V, CHHUNEJA P, DHALIWAL H S, KAUR S, BOWDEN R L, GILL B S. Characterization and mapping of cryptic alien introgression fromwith new leaf rust and stripe rust resistance genesandin wheat., 2007, 114(8): 1379-1389.
[32] ZELLER F J, KONG L, HARTL L, MOHLER V, HSAM S L K. Chromosomal location of genes for resistance to powdery mildew in common wheat (L. em Thell.) 7. genein line Pova., 2002, 123(2): 187-194.
[33] NEVO E, CHEN G. Drought and salt tolerances in wild relatives for wheat and barley improvement., 2010, 33(4): 670-685.
[34] HU C J, HOLE D J, ALBRECHTSEN R S. Barley chromosome location and expression of dwarf bunt resistance in wheat addition lines., 1996, 80(11): 1273-1276.
[35] MATTERA M G, áVILA C M, ATIENZA S G, CABRERA A. Cytological and molecular characterization of wheat-chromosome 7Hchintrogression lines., 2015, 203(1): 165-176.
[36] CASTILLO A, ATIENZA S G, MART N A C. Fertility of CMS wheat is restored by twoloci located on a recombined acrocentric chromosome., 2014, 65(22): 6667-6677.
[37] GILL B S, SHARMA H C, RAUPP W J. Evaluation ofspecies for resistance to wheat powdery mildew, wheat leaf rust, hessian fly, and greenbug., 1985, 69: 314-316.
[38] RIIAR A K, KAUR S, DHALIWAL H S, SINGH K, CHHUNEJA P. Introgression of a leaf rust resistance gene fromto bread wheat., 2012, 91(2): 155-161.
[39] FRIEBE B, SCHUBERT V, B L THNER W D, HAMMER K. C-banding pattern and polymorphism ofand chromosomal constitutions of the amphiploid-and six derived chromosome addition lines., 1992, 83(5): 589-596.
[40] 張超. 長穗偃麥草E組染色體特異PCR標(biāo)記開發(fā)[D]. 揚州: 揚州大學(xué), 2009.
ZHANG C. Development of E-chromosome specific PCR markers for[D]. Yangzhou: Yangzhou University, 2009. (in Chinese)
[41] 陳士強, 秦樹文, 黃澤峰, 戴毅, 張璐璐, 高營營, 高勇, 陳建民. 基于SLAF-seq技術(shù)開發(fā)長穗偃麥草染色體特異分子標(biāo)記. 作物學(xué)報, 2013, 39(4): 727-734.
CHEN S Q, QIN S W, HUANG Z F, DAI Y, ZHANG L L, GAO Y Y, GAO Y, CHEN J M. Development of specific molecular markers forchromosome using SLAF-seq technique., 2013, 39(4): 727-734. (in Chinese)
[42] 李天亞. 中國?。ㄑ啵湺掍P病及Ug99遺傳防控技術(shù)研究[D]. 沈陽: 沈陽農(nóng)業(yè)大學(xué), 2014.
LI T Y. Genetic control approaches to wheat (Oat) stem rusts and Ug99 in china[D]. Shenyang: Shenyang agriculture university, 2014. (in Chinese)
[43] 覃碧, 王海燕, 紀(jì)劍輝, 曹愛忠, 黃倬, 王秀娥. 基于EST的普通小麥近緣物種第二部分同源群染色體特異分子標(biāo)記. 南京農(nóng)業(yè)大學(xué)學(xué)報, 2011, 34(2): 8-12.
QIN B, WANG H Y, JI J H, CAO A Z, HUANG Z, WANG X E. EST-based specific markers for homoeologous group 2 chromosomes of wheat relative species., 2011, 34(2): 8-12. (in Chinese)
[44] KOEBNER R M D. Generation of PCR-based markers for the detection of rye chromatin in a wheat background., 1995, 90(5): 740-745.
[45] KOFLER R, BARTO? J, GONG L, STIFT G, SUCH NKOV P, ?IMKOV H, BERENYI M, BURG K, DOLE?EL J, LELLEY T. Development of microsatellite markers specific for the short arm of rye (L.) chromosome 1., 2008, 117(6): 915-926.
[46] 王春梅, 馮祎高, 莊麗芳, 曹亞萍, 亓增軍, 別同德, 曹愛忠, 陳佩度. 普通小麥近緣物種黑麥1R、簇毛麥1V及鵝觀草1Rk#1染色體特異分子標(biāo)記的篩選. 作物學(xué)報, 2007, 33(11): 1741-1747.
WANG C M, FENG Y G, ZHUANG L F, CAO Y P, QI Z J, BIE T D, CAO A Z, CHEN P D. Screening of chromosome-specific markers for chromosome 1R of, 1V ofand 1Rk#1of, 2007, 33(11): 1741-1747. (in Chinese)
[47] 唐宗祥, 符書蘭, 張懷瓊, 晏本菊, 任正隆. 小麥SSR引物擴增黑麥及附加系6R染色體特異DNA片段的克隆. 麥類作物學(xué)報, 2008, 28(5): 728-732.
TANG Z X, FU S L, ZHANG H Q, YAN B J, REN Z L. Amplification of wheat SSR prime rs in Rye and cloning of 6R chromosome-specific DNA fragment., 2008, 28(5): 728-732. (in Chinese)
(責(zé)任編輯 李莉)
附表1 供試168份種質(zhì)的小麥感銹病苗期反應(yīng)型
Table S1 Wheat stem rust infection types of seedling stage of 168 germplasm
編號Accession No.材料Material侵染型Infection type編號Accession No.材料Material侵染型Infection type 中國春中國春T. aestivum CV. Chinese Spring (CS)4TA3601中國春-帝國黑麥1R附加系CS-Imperial rye 1R addition0 TA4072小麥-頂芒山羊草易位系wheat-Ae. comosa translocation3TA3603中國春-帝國黑麥2R附加系CS-Imperial rye 2R addition4 ALCD小麥品種AlcedoWheat variety Alcedo3TA3604中國春-帝國黑麥3R附加系CS-Imperial rye 3R addition4 TA3558ALCD-尾狀山羊草2C#1附加系A(chǔ)LCD-Ae. caudata 2C#1 addition4TA3605中國春-帝國黑麥4R附加系CS-Imperial rye 4R addition4 TA3559ALCD-尾狀山羊草5C#1附加系A(chǔ)LCD-Ae. caudata 5C#1 addition3-TA3606中國春-帝國黑麥5R附加系CS-Imperial rye 5R addition4 TA3560ALCD-尾狀山羊草6C#1附加系A(chǔ)LCD-Ae. caudata 6C#1 addition3-TA3608中國春-帝國黑麥6R附加系CS-Imperial rye 6R addition1 TA3562ALCD-尾狀山羊草7C#1附加系A(chǔ)LCD-Ae. caudata 7C#1 addition1+TA3609中國春-帝國黑麥7R附加系CS-Imperial rye 7R addition4 TA3561ALCD-尾狀山羊草3C#1附加系A(chǔ)LCD-Ae. caudata3C#1 addition4TA3681中國春-中間偃麥草?Ai附加系CS- Th. intermedium?Ai addition0 TA3563ALCD-尾狀山羊草4C#1附加系A(chǔ)LCD-Ae. caudata4C#1 addition4TA5566中國春-中間偃麥草?Ai附加系CS- Th. intermedium?Ai addition0 JIC-46小麥品種Hobbit 'sib'Wheat variety Hobbit 'sib'4 TA5567國春-中間偃麥草?Ai附加系CS- Th. intermedium?Ai addition4 JIC-10Hobbit 'sib'-頂芒山羊草2M附加系Hobbit 'sib'-Ae. comosa 2M addition4TA3664中國春-長穗偃麥草1E附加系CS-A. elongatum 1E addition4 JIC-11Hobbit 'sib'-頂芒山羊草2M(2D)代換系Hobbit 'sib'-Ae. comosa 2M(2D) substitution4TA3665中國春-長穗偃麥草2E附加系CS-A. elongatum 2E addition3 JIC-12Hobbit 'sib'-頂芒山羊草2M/2A易位系Hobbit 'sib'-Ae. comosa 2M/2A translocation4TA3666中國春-長穗偃麥草3E附加系CS-A. elongatum 3E addition4 JIC-17Hobbit 'sib'-頂芒山羊草2M/2D易位系Hobbit 'sib'-Ae.comosa 2M/2D translocation4TA3667中國春-長穗偃麥草4E附加系CS-A. elongatum 4E addition4 JIC-38Holdfast-二角山羊草3Sb附加系Holdfast -Ae. bicornis 3Sb addition4TA3704中國春-長穗偃麥草5E附加系CS-A. elongatum 5E addition3 JIC-40Holdfast-二角山羊草3Sb(3A )代換系Holdfast -Ae.bicornis 3Sb(3A) substitution4TA3668中國春-長穗偃麥草6E附加系CS-A. elongatum 6E addition4 JIC-41Holdfast-二角山羊草3Sb(3B)代換系Holdfast -Ae.bicornis 3Sb(3B) substitution4TA3706中國春-長穗偃麥草7E附加系CS-A. elongatum 7E addition3 JIC-42Holdfast-二角山羊草3Sb(3D)代換系Holdfast -Ae.bicornis 3Sb(3D) substitution4TA3698中國春-大麥2H附加系CS-Barley 2H addition4 JIC-44Holdfast-二角山羊草7Sb(7B)代換系Holdfast -Ae. bicornis 7Sb(7B)substitution4TA3699中國春-大麥3H附加系CS-Barley 3H addition4 TA7552中國春-粗穗披堿草1Ht附加系CS-E. trachycaulus 1Ht addition4TA3700中國春-大麥4H附加系CS-Barley 4H addition4 TA7557中國春-粗穗披堿草5Ht附加系CS-E. trachycaulus 5Ht addition4TA3701中國春-大麥5H附加系CS-Barley 5H addition4 TA7558中國春-粗穗披堿草6Ht附加系CS-E. trachycaulus 6Ht addition4TA3702中國春-大麥6H附加系CS-Barley 6H addition3 TA7559中國春-粗穗披堿草7Ht附加系CS-E. trachycaulus 7Ht addition4TA3697中國春-大麥7H單體附加系CS-Barley 2H monosomic addition4 TA7556中國春-粗穗披堿草1St附加系CS-E. trachycaulus 1St addition4TA7562中國春-小傘山羊草1U#1附加系CS-Ae. umbellulata1U#1addition4 續(xù)附表1 Continued table S1 編號Accession No.材料Material侵染型Infection type編號Accession No.材料Material侵染型Infection type TA5532中國春-粗穗披堿草T2HtS.5HtL附加系CS-E. trachycaulus T2HtS.5HtLaddition4TA7564中國春-小傘山羊草4U#1單體附加系CS-Ae.umbellulata 4U#1monosomicaddition4 TA7580中國春-粗穗披堿草5St單體附加系CS-E. trachycaulus 5St monosomic addition4TA7565中國春-小傘山羊草5U#1附加系CS-Ae. umbellulata 5U#1addition4 TA5072中國春-粗穗披堿草1HtS.1BL羅伯遜易位系CS-E. trachycaulus 1HtS.1BLRobertsonian translocation4TA7566中國春-小傘山羊草6U#1附加系CS-Ae. umbellulata 6U#1addition4 TA7543中國春-高大山羊草1Sl#3附加系CS- Ae. longissima 1Sl#3 addition4TA7567中國春-小傘山羊草7U#1附加系CS-Ae. umbellulata 7U#1addition4 TA7544中國春-高大山羊草2Sl#3附加系CS- Ae. longissima 2Sl#3 addition4TA7643中國春-大賴草2Lr#1附加系CS- L. racemosus 2Lr#1 addition4 TA7545中國春-高大山羊草3Sl#3附加系CS- Ae. longissima 3Sl#3 addition4TA7648中國春-大賴草7Lr#1附加系CS- L. racemosus7Lr#1 addition4 TA7546中國春-高大山羊草4Sl#3附加系CS- Ae. longissima 4Sl#3 addition4TA7649中國春-大賴草7Lr#1S端體附加系CS- L. racemosus 7Lr#1S monosomic addition4 TA7547中國春-高大山羊草5Sl#3附加系CS- Ae. longissima 5Sl#3 addition4CSDA1N中國春-單芒山羊草1N附加系CS- Ae. uniaristata 1N addition4 TA7548中國春-高大山羊草6Sl#3附加系CS- Ae. longissima 6Sl#3 addition1CSDA2N中國春-單芒山羊草2N附加系CS- Ae. uniaristata 2N addition3 TA7549中國春-高大山羊草7Sl#3單體附加系CS- Ae. longissima 7Sl#3 addition4CSDA3N中國春-單芒山羊草3N附加系CS- Ae. uniaristata 3N addition4 TA3573中國春-高大山羊草1Sl#2附加系CS- Ae. longissima 1Sl#2 addition4CSDA4N中國春-單芒山羊草4N附加系CS- Ae. uniaristata 4N addition4 TA3575中國春-高大山羊草3Sl#2附加系CS- Ae. longissima 3Sl#2 addition46N中國春-單芒山羊草6N附加系CS- Ae. uniaristata 6N addition0 TA3577中國春-高大山羊草5Sl#2附加系CS- Ae. longissima 5Sl#2 addition47N中國春-單芒山羊草7N附加系CS- Ae. uniaristata 7N addition4 TA 6506中國春-高大山羊草2Sl#2(2D)代換系CS- Ae. longissima 2Sl#2(2D) substitution4TA7594中國春-易變山羊草1Sv#1附加系CS-Ae. variabilis 1Sv#1 addition4 TA 6512中國春-高大山羊草4Sl#2(4D)代換系CS- Ae.longissima 4Sl#2(4D)substitution4TA7595中國春-易變山羊草2Sv#1附加系CS-Ae. variabilis 2Sv#1 addition4 TA6516中國春-高大山羊草6Sl#2(6B)代換系CS- Ae. longissima 6Sl#2(6B)substitution1+TA7596中國春-易變山羊草3Sv#1附加系CS-Ae. variabilis 3Sv#1 addition4 TA3580中國春-希爾斯山羊草1Ss#1附加系CS-Ae. searsii 1Ss#1 addition4TA7597中國春-易變山羊草4Sv#1附加系CS-Ae. variabilis 4Sv#1 addition4 TA3581中國春-希爾斯山羊草2Ss#1附加系CS-Ae. searsii 2Ss#1 addition4TA7598中國春-易變山羊草5Sv#1附加系CS-Ae. variabilis 5Sv#1 addition4 TA3582中國春-希爾斯山羊草3Ss#1附加系CS-Ae. searsii 3Ss#1 addition1-TA7599中國春-易變山羊草6SvS端體附加系CS-Ae. variabilis 6SvS telosomic addition0 TA3583中國春-希爾斯山羊草4Ss#1附加系CS-Ae. searsii 4Ss#1 addition4TA7600中國春-易變山羊草7Sv#1附加系CS-Ae. variabilis 7Sv#1 addition4 TA3584中國春-希爾斯山羊草5Ss#1附加系CS-Ae. searsii 5Ss#1 addition3+TA7614中國春-易變山羊草1Uv#1附加系CS-Ae. variabilis 1Uv#1 addition4 TA3585中國春-希爾斯山羊草6Ss#1附加系CS-Ae. searsii 6Ss#1 addition4TA7615中國春-易變山羊草2Uv#1附加系CS-Ae. variabilis 2Uv#1 addition4 TA3586中國春-希爾斯山羊草7Ss#1附加系CS-Ae. searsii 7Ss#1 addition4TA7616中國春-易變山羊草3Uv#1附加系CS-Ae. variabilis 3Uv#1 addition4 續(xù)附表1 Continued table S1 編號Accession No.材料Material侵染型Infection type編號Accession No.材料Material侵染型Infection type TA7718中國春-沙融山羊草4Ssh#8附加系CS-Ae. sharonensis 4Ssh#8 addition4TA7617中國春-易變山羊草4Uv#1附加系CS-Ae. variabilis4Uv#1 addition4 JIC-32中國春-沙融山羊草2Ssh附加系CS-Ae. sharonensis 2Ssh addition4TA7618中國春-易變山羊草5Uv#1附加系CS-Ae. variabilis 5Uv#1 addition4 JIC-33中國春-沙融山羊草4Ssh附加系CS-Ae. sharonensis 4Ssh addition4TA7619中國春-易變山羊草6Uv1附加系CS-Ae. variabilis6Uv#1 addition4 JIC-36中國春-沙融山羊草6Ssh附加系CS-Ae. sharonensis 6Ssh addition4TA7705中國春-纖毛披堿草2Sc附加系CS-El.ciliaris 2Sc addition4 JIC-37中國春-沙融山羊草7Ssh附加系CS-Ae. sharonensis 7Ssh addition4TA7706中國春-纖毛披堿草3Sc附加系CS-El.ciliaris 3Sc addition4 TA7689中國春-擬斯卑爾脫山羊草1S#3附加系CS- Ae. speltoides 1S#3 addition4TA7707中國春-纖毛披堿草7Sc附加系CS-El.ciliaris 7Sc addition4 TA7690中國春-擬斯卑爾脫山羊草2S#3附加系CS- Ae. speltoides 2S#3 addition1+TA7584中國春-纖毛披堿草1Yc附加系CS-El.ciliaris 1Yc addition4 TA7691中國春-擬斯卑爾脫山羊草3S#3附加系CS- Ae. speltoides 3S#3 addition4TA7708中國春-纖毛披堿草5Yc附加系CS-El.ciliaris 5Yc addition4 TA7692中國春-擬斯卑爾脫山羊草4S#3附加系CS- Ae. speltoides 4S#3 addition4TA7709中國春-纖毛披堿草7Yc附加系CS-El.ciliaris 7Yc addition4 TA7693中國春-擬斯卑爾脫山羊草5S#3附加系CS- Ae. speltoides 5S#3 addition3TA7684中國春-筑紫披堿草1Ets#1附加系CS-E.tsukushienis 1Ets#1 addition4 TA7694中國春-擬斯卑爾脫山羊草6S#3附加系CS- Ae. speltoides6S#3 addition4TA7685中國春-筑紫披堿草3Ets#1附加系CS- E. tsukushienis 3Ets#1 addition4 TA7695中國春-擬斯卑爾脫山羊草7S#3附加系CS- Ae. speltoides 7S#3 addition4TA7687中國春-筑紫披堿草5Ets#1單體附加系CS- E. tsukushienis 5Ets#1 monosomic addition4 TA7655中國春-卵穗山羊草1Mg#1附加系CS- Ae. geniculata 1Mg#1 addition4TA5660中國春-筑紫披堿草T1AL.1AS-1Ets#1S易位系CS- E. tsukushienis T1AL.1AS-1Ets#1S translocation4 TA7656中國春-卵穗山羊草2Mg#1附加系CS- Ae. geniculata 2Mg#1 addition4TA5661中國春-筑紫披堿草TiWL-1Ets#1S-WS易位系CS-E. tsukushienis TiWL-1Ets#1S-WS translocation4 TA7657中國春-卵穗山羊草3Mg#1附加系CS- Ae. geniculata 3Mg#1 addition4TA6664中國春-提莫菲維2G(2B)代換系CS-T. timopheevii 2G(2B)substitution3 TA7658中國春-卵穗山羊草4Mg#1附加系CS- Ae. geniculata 4Mg#1 addition4TA6666中國春-提莫菲維4G(4B)代換系CS-T. timopheevii 4G(4B)substitution3 TA7659中國春-卵穗山羊草5Mg#1附加系CS- Ae. geniculata 5Mg#1 addition3-TA6667中國春-提莫菲維5G(5B)代換系CS-T. timopheevii 5G(5B)substitution4 TA7660中國春-卵穗山羊草6Mg#1附加系CS- Ae. geniculata 6Mg#1 addition4JIC-2中國春-頂芒山羊草2/7M附加系CS- Ae. comosa 2/7M addition4 TA7661中國春-卵穗山羊草7Mg#1附加系CS- Ae. geniculata 7Mg#1 addition0JIC-3中國春-頂芒山羊草 2M附加系CS- Ae. comosa 2M addition3 TA7662中國春-卵穗山羊草1Ug#1附加系CS- Ae. geniculate 1Ug#1 addition3JIC-4中國春-頂芒山羊草3M附加系CS- Ae. comosa 3M addition4 TA7663中國春-卵穗山羊草2Ug#1附加系CS- Ae. geniculata 2Ug #1 addition3+JIC-5中國春-頂芒山羊草4M附加系CS- Ae. comosa 4M addition4 TA7688中國春-卵穗山羊草3Ug#1單體附加系CS- Ae. geniculata 3Ug #1 monosomic addition4JIC-6中國春-頂芒山羊草5M附加系CS- Ae. comosa 5M addition3 續(xù)附表1 Continued table S1 編號Accession No.材料Material侵染型Infection type編號Accession No.材料Material侵染型Infection type TA7664中國春-卵穗山羊草4Ug#1附加系CS- Ae. geniculate 4Ug#1 addition4JIC-7中國春-頂芒山羊草6M附加系CS- Ae. comosa 6M addition4 TA7665中國春-卵穗山羊草5Ug#1附加系CS- Ae. geniculata 5Ug#1 addition4JIC-8中國春-頂芒山羊草7M附加系CS- Ae. comosa 7M addition3 TA7666中國春-卵穗山羊草6Ug#1附加系CS- Ae. geniculata 6Ug #1 addition4JIC-21中國春-無芒山羊草2T?附加系CS- Ae. mutica 2T? addition4 TA6647中國春-卵穗山羊草7Mg#1(7B)代換系CS- Ae. geniculata 7Mg#1(7B) addition0JIC-25中國春-無芒山羊草7T附加系CS- Ae. mutica 7T addition4 TA6648中國春-卵穗山羊草7Mg#1(7D)代換系CS- Ae. geniculata 7Mg#1(7D) addition1JIC-27中國春-無芒山羊草7T?附加系CS- Ae. mutica 7T?addition3 TA7725中國春-兩芒山羊草1Ubi#1附加系CS-Ae. biuncialis 1Ubi#1 addition4JIC-29中國春-無芒山羊草2T?附加系CS- Ae. mutica 2T? addition4 TA7726中國春-兩芒山羊草2Ubi#1附加系CS-Ae. biuncialis 2Ubi#1 addition4XX029中國春-智利大麥1Hch+1HchS附加系CS-Chile barley 1Hch+1HchS addition4 TA7729中國春-兩芒山羊草5Ubi#1附加系CS-Ae. biuncialis 5Ubi#1 addition4TA7588中國春-智利大麥4Hch附加系CS-Chile barley 4Hch addition4 TA7733中國春-兩芒山羊草2Mbi#1附加系CS-Ae. biuncialis 2Mbi#1 addition4TA7589中國春-智利大麥5Hch附加系CS-Chile barley 5Hch addition4 TA7734中國春-兩芒山羊草3Mbi#1附加系CS-Ae. biuncialis 3Mbi#1 addition3+TA7590中國春-智利大麥6Hch附加系CS-Chile barley 6Hch addition0 TA7735中國春-兩芒山羊草4Mbi#1單體附加系CS-Ae. biuncialis 4Mbi#1 monosomic addition4TA7591中國春-智利大麥7Hch附加系CS-Chile barley 7Hch addition4
?表示外源染色體同源群歸屬未鑒定或不確定
?indicates homologous group of the alien chromosomes have not been identified or determined
“0”免疫;“;”近免疫;“1”高抗;“2”中抗;“3”中感;“4”高感;“+”比預(yù)想的孢子堆大;“-”比預(yù)想的孢子堆小
“0” Immune; “;” Nearly immune; “1” Highly resistance; “2” Moderate resistance; “3” Medium susceptible; “4” Highly susceptible; “+” Uredinia are larger than expected; “-” Uredinia are smaller then expected
New Resistance Sources of Wheat Stem Rust and Molecular Markers Specific for Relative Chromosomes that the Resistance Genes are Located on
HAN Ran1, LI Tianya2, GONG Wenping1, LI Haosheng1, SONG Jianmin1, LIU Aifeng1, CAO Xinyou1, CHENG Dungong1, ZHAO Zhendong1, LIU Cheng1, LIU Jianjun1
(1Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the North Yellow & Huai River Valley, Ministry of Agriculture/National Engineering Laboratory for Wheat & Maize, Ji’nan 250100;2College of Plant protection, Shenyang Agricultural University, Shenyang 110866)
【】Wheat stem rust, caused byPers. f. sp.Eriks. and E. Henn () is one of the most potentially destructive wheat diseases, seriously threatening world wheat production. The emergence of new races Ug99 of stem rust caused the global wheat to be under the threat.Exploring new resistant source of wheat stem rust is one of the effective measures against Ug99. In order to explore stem rust new resistant source, the mixed dominant stem rust physiological races in China were inoculated to 165 wheat-alien species chromosome lines at the seeding stages. 【】All of the 165 wheat-alien species chromosome lines, 3 hexaploid wheat and the susceptible control Little Club (LC), were sown in the 10 cm diameter clay pots. When the primary leaves were fully expanded, they were inoculated using talcurediospore powder mixture of the common races 34MKGQM and 21C3CTHSM. The Infection Types (ITs) of the material tested was recorded according to the standard ‘0-4’. Meanwhile, genomic DNA was extracted from stem rust immune, nearly immune, or highly resistant additions/substitutions and their corresponding whole set of chromosome lines and Chinese Spring (CS). PCR was performed on these materials by screening 101 pairs of PLUG primer. PCR products were firstly digested by DNA restricted enzymesI andeⅢ, and then were detected through 2.0% agarose gel electrophoresis to screen and establish chromosome-specific molecular marker where the stem rust resistance gene was located on.【】Among the 165 wheat-alien species chromosome lines, CS-7Mg#1 addition, CS-7Mg#1(7A) and 7Mg#1 (7B) substitutions, CS-Imperial rye 1R addition, CS-?Ai addition (? indicates homoeologous group of the alien chromosomes in wheat background was not identified), CS-6N addition, CS-6SvS telosomic addition, CS-Chile barley 6Hchaddition are immune or nearly immune to stem rust. ALCD-7C#1 addition, CS-7Mg#1(7D) substitution, CS-Imperial rye 6R addition, CS-6Sl#3 addition, CS-6Sl#2(6B) substitution, CS-3Ss#1 addition, CS-2S#3 addition are highly resistant to stem rust. Comparative analysis of chromosomal locations of stem rust resistant genes indicates that chromosomes 6Sl#2 and 6Sl#3 of, chromosome 6R of Imperial rye, chromosome 6Hchof Chile barley, chromosome 7Mg#1 of, chromosome7C ofand ?Ai ofmay harbor new stem rust resistance gene (s). Molecular marker screening, localization, specificity verification showed that 8 new molecular markers have been developed. Among them, 5 (TNAC1715, TNAC1718, TNAC1737, TNAC1739 and TNAC1753) and 3 (TNAC1740, TNAC1751, and TNAC1756) have been assigned to chromosomes 6R and 6Sl, respectively. 【】Eight materials which probably contain new gene(s) against stem rust were obtained, and eight new chromosome specific molecular markers for stem rust resistance gene(s) were established.
wheat alien species; chromosome lines; stem rust; molecular marker
2017-10-12;
2017-11-29
國家重點研發(fā)計劃(2017YFD0100600)、山東省自然科學(xué)基金(ZR2017MC004)、山東農(nóng)科院青年拔尖人才計劃(1-18-024)、現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-03)
韓冉,E-mail:hr022cn@aliyun.com;李天亞,E-mail:litianya11@163.com。韓冉與李天亞為同等貢獻(xiàn)作者。
劉成,E-mail:lch6688407@163.com。通信作者劉建軍,E-mail:ljjsaas@163.com