• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pressure gradient errors in a covariant method of implementing the σ-coordinate: idealized experiments and geometric analysis

    2016-11-23 03:30:17LIJinXiLIYiYunndWANGBin
    關(guān)鍵詞:氣壓梯度理想

    LI Jin-XiLI Yi-Yunnd WANG Bin,c

    aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing, China;bCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China;cMinistry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science, Tsinghua University, Beijing, China

    Pressure gradient errors in a covariant method of implementing the σ-coordinate: idealized experiments and geometric analysis

    LI Jin-Xia,bLI Yi-Yuanaand WANG Bina,c

    aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing, China;bCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China;cMinistry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science, Tsinghua University, Beijing, China

    A new approach is proposed to use the covariant scalar equations of the σ-coordinate (the covariant method), in which the pressure gradient force (PGF) has only one term in each horizontal momentum equation, and the PGF errors are much reduced in the computational space. In addition, the validity of reducing the PGF errors by this covariant method in the computational and physical space over steep terrain is investigated. First, the authors implement a set of idealized experiments of increasing terrain slope to compare the PGF errors of the covariant method and those of the classic method in the computational space. The results demonstrate that the PGF errors of the covariant method are consistently much-reduced, compared to those of the classic method. More importantly, the steeper the terrain, the greater the reduction in the ratio of the PGF errors via the covariant method. Next,the authors use geometric analysis to further investigate the PGF errors in the physical space, and the results illustrates that the PGF of the covariant method equals that of the classic method in the physical space; namely, the covariant method based on the non-orthogonal σ-coordinate cannot reduce the PGF errors in the physical space. However, an orthogonal method can reduce the PGF errors in the physical space. Finally, a set of idealized experiments are carried out to validate the results obtained by the geometric analysis. These results indicate that the covariant method may improve the simulation of variables relevant to pressure, in addition to pressure itself, near steep terrain.

    ARTICLE HISTORY

    Revised 27 February 2016

    Accepted 25 March 2016

    Pressure gradient force errors; covariant scalar equations of the σcoordinate; steep terrain;computational and physical space; geometric analysis; non-orthogonal σ-coordinate

    本文針對(duì)經(jīng)典σ坐標(biāo)的氣壓梯度誤差(PGF誤差),采用多種地形展開(kāi)理想試驗(yàn),對(duì)比經(jīng)典σ坐標(biāo)的經(jīng)典方案和協(xié)變方案的PGF誤差。結(jié)果表明:計(jì)算空間中,協(xié)變方案始終能減小經(jīng)典方案的誤差,地形越陡,效果越明顯。然而,幾何分析和理想試驗(yàn)均表明:協(xié)變方案僅能減小計(jì)算空間的誤差,不能減小物理空間的誤差;相比經(jīng)典方案,正交地形追隨坐標(biāo)能同時(shí)減小計(jì)算空間和物理空間的誤差。

    1. Introduction

    The pressure gradient force computational errors (PGF errors) in a terrain-following coordinate (σ-coordinate) can signifcantly afect the performance of a model, including the vorticity in the downslope of steep terrain, the blocking of cold air in the upslope of steep terrain, the potential vorticity near the tropopause over steep terrain, and so on (Smagorinsky et al. 1967; Kasahara 1974; Mahrer 1984;Steppeler et al. 2003; Hoinka and Z?ngl 2004; Li, Chen, and Shen 2005; Hu and Wang 2007). The PGF computational form is expressed by two terms in each horizontal momentum equation in the σ-coordinate. Computational errors are therefore inevitable as these two terms are opposite in sign and typically of the same order near steep terrain(Haney 1991; Fortunato and Baptista 1996; Lin 1997; Ly and Jiang 1999; Berntsen 2002; Chu and Fan 2003; Shchepetkin and McWilliams 2003; Li, Chen, and Li 2012).

    Much efort has been made to alleviate the PGF errors to an acceptable level (Corby, Gilchrist, and Newson 1972;Gary 1973; Zeng 1979; Qian and Zhong 1986; Blumberg and Mellor 1987; Yu 1989; Qian and Zhou 1994; Berntsen 2011; Klemp 2011; Z?ngl 2012), without touching this twoterm PGF (the so-called classic method). Alternatively, two new methods have been proposed to create a one-term PGF to overcome the PGF errors. One is to adopt the covariant scalar equations of the σ-coordinate (the covariant method by Li, Wang, and Wang (2012)); and the other is to design an orthogonal terrain-following coordinate (the orthogonal method by Li et al. (2014)). Using two idealizedexperiments, Li, Wang, and Wang (2012) showed that the covariant method signifcantly reduces the errors, compared to the classic method, in the computational space.

    Figure 1.The pressure feld (shading) and terrain (black curve). The pressure scale (color bar on the right) is in hPa.

    Many researchers have pointed out that the PGF errors of the classic method are related to terrain slope (Yan and Qian 1981; Zeng and Ren 1995; Steppeler et al. 2003; Weller and Shahrokhi 2014; Li, Li, and Wang 2016). But can the covariant method consistently reduce the PGF errors compared to the classic method as terrain slope increases?Moreover, although the calculation of a model is in the computational space, the fnal application of model results is in the physical space; can the covariant method reduce the PGF errors in the physical space?

    In this study, we frst carry out a set of sensitivity experiments of increasing terrain slope to compare the PGF errors of the classic method and those of the covariant method in the computational space. Then, we use a geometric schematic and associated idealized experiments to further investigate the PGF errors of these methods in the physical space. The results of the idealized experiments using various terrain in the computational space are presented in Section 2. The PGF errors in the physical space are compared in Section 3. Concluding remarks and a discussion are given in Section 4.

    2. Idealized experiments in the computational space

    Since the covariant method was shown to significantly reduce the PGF errors in the computational space,compared to the classic method, in the experiments using one kind of terrain implemented by Li, Wang, and Wang (2012), we further investigate the PGF errors of the covariant method and those of the classic method in the computational space over different kinds of terrain. We first introduce the basic parameters for all the experiments, and then compare the PGF errors of the covariant method and those of the classic method in the computational space in experiments of increasing terrain slope.

    2.1. Basic parameters

    For consistency, we use the same parameters as Li, Wang,and Wang (2012), except for the terrain slope. First, the defnition of σ, proposed by Gal-Chen and Somerville (1975) is adopted, where z represents the height, HTis the top of the model, and h represents terrain. We use a 2D bell-shaped terrain (black curve in Figure 1),

    where H = 4 km is the maximum height, a = 5 km is the half width, and h0= 50 km is the middle point of the terrain.

    Second, we use the centeral spatial discretization for the PGF in the horizontal and the forward scheme in the vertical for both methods. The expressions are given as follows:

    Finally, we use a pressure feld,

    as shown in Figure 1, where h(x) is defned by Equation (1), H is the maximum height of terrain, Hp= 300 km is a parameter to adjust the pressure gradient, p0= 1,015.0 hPa is surface pressure, and λ = 8 km is the typical height of the atmosphere. The domain of all the experiments is 0-100 km in the horizontal and 0-37 km in the vertical (Figure 1). The horizontal and vertical resolutions are 0.5 km and 3.7 km, respectively.

    Figure 2.RMS-REs of two methods in the computational space in experiments of increasing terrain slope. The slope is calculated by arctan (H/2a) and shown in (a). The RMS-REs of each method are shown in (b).

    2.2. Sensitivity experiments

    Through increasing the maximum height H of terrain in Equation (1) at 50-m intervals from 3 to 9 km, we carry out 121 sets of experiments (Figure 2(a)). Note that the maximum slope is almost three times the minimum in Figure 2(a).

    We calculate the root-mean-square of relative errors(RMS-REs) of the PGF of the covariant method and those of the classic method (Figure 2(b)). The RMS-REs of the covariant method are consistently reduced by one order of magnitude, compared to those of the classic method. Moreover, as the terrain slope increases, the RMS-REs of the classic method significantly increase (red line in Figure 2(b) relative to black line in Figure 2(a)); however,the RMS-REs of the covariant method remain approximately the same (blue line in Figure 2(b) relative to black line in Figure 2(a)). Therefore, the steeper the terrain, the greater the reduction of the ratio of PGF errors via the covariant method.

    3. Comparison of the PGF errors in the physical space

    In order to compare the PGF errors of the covariant method and those of the classic method in the physical space, we frst use a geometric schematic to further investigate the PGF errors in the physical space, and then carry out a set of associated idealized experiments to validate the results obtained by the geometric analysis.

    The geometric schematic of PGF is shown in Figure 3. The relationship between the lines with arrow heads in Figure 3 and the variables related to PGF are all listed below:

    Figure 3.Schematic of PGF vectors and their components in diferent methods.

    The vertical PGF of the z-coordinate,

    The horizontal PGF of the covariant method in the computational space,The vertical PGF of the covariant method in the computational space,

    In addition, through the geometric relationship in Figure 3,we obtain

    where φ is terrain slope, and

    First, the expressions of the PGF of the covariant method and the classic method in the physical space are respectively given by

    According to Equation (7), the PGF of the covariant method expressed in Equation (9) equals the PGF of the classic method shown in Equation (10); namely, the covariant method cannot reduce the PGF errors in the physical space compared to the classic method.

    Note that both the classic method and the covariant method are non-orthogonal methods (Li, Wang, and Wang 2011, 2012), namely, the PGF errors in the physical space cannot be reduced by the coordinate transformation in the non-orthogonal σ-coordinate. But can the orthogonal method proposed by Li et al. (2014) reduce the PGF errors in the physical space?

    Second, according to Figure 3, the horizontal and vertical PGFs of the orthogonal method in the computational space are respectively, where x′ is the horizontal coordinate of the orthogonal terrain-following coordinate. Then, the PGF of the orthogonal method in the physical space can be expressed by

    Using the geometric relationship in Figure 3, we obtain

    Substituting Equations (5) and (7) into Equations (14) and(15), we obtain

    Note that the PGF of the orthogonal method in the physical space is AJ-AH and that of the non-orthogonal method is AB-BE. According to Equation (16), the PGF errors in the physical space can be reduced by the orthogonal method when the terrain slope φ is large enough:

    (1) If is large enough to make the order of AH smaller than that of AJ, i.e. AH and AJ are no longer of the same order, the PGF errors in the physical space can be reduced by the orthogonal method;

    Figure 4.REs of three methods in the computational and physical spaces. The dashed contours are for negative values. The contour interval in (a), (b), (d), and (f) is 1.0, while that in (c) and (e) is 0.1. The diferences between (a) and (c) in this study and Li, Wang, and Wang(2012, Figure 6(c) and (d)) on the boundaryare due to the revised boundary condition used in this study. The revised boundary condition is directly from the defnition of pressure , to obtain the value on each boundary grid.

    Finally, we calculate the PGF errors of the three methods, i.e. the classic method, the covariant method and the orthogonal method. Substituting Equations (4), (5), (6), (8),(11), and (12) into Equations (9), (10), and (13), and using the discretization schemes given in Section 2.1, we can obtain the discrete expressions of the PGF of the three methods in the physical space as follows:Using Equations (17)-(19) and the parameters given in Section 2.1, we calculate the REs of the PGF of the three methods in the computational space as well as in the physical space (Figure 4). As obtained in the geometric analysis,the PGF errors of the covariant method are the same as those of the classic method in the physical space (Figure 4(b) and(d)), whereas the PGF errors of the orthogonal method are much reduced compared to those of the classic method in the physical space (Figure 4(b) and (f)). In addition, as with the covariant method, the orthogonal method can also reduce the PGF errors of the classic method in the computational space (Figure 4(a), (c), and (e)).

    4. Conclusion and discussion

    Through idealized experiments using increasing terrain slope in the computational space and a geometric analysis in the physical space, the present study investigates the validity of reducing the PGF errors via the covariant method proposed by Li, Wang, and Wang (2012), compared to the classic method. First, sensitivity experiments of increasing terrain slope in the computational space show that the RMS-REs of the covariant method are consistently one order of magnitude smaller than those of the classic method (Figure 2). More importantly, the steeper the terrain, the greater the reduction in the ratio of PGF errors via the covariant method, indicating that the covariant method may perform better near steep terrain.

    The geometric analysis (Figure 3) and associated idealized experiments then demonstrate that, compared to the classic method, the covariant method based on the non-orthogonal σ-coordinate can reduce the PGF errors in the computational space but not in the physical space(Figure 4(a)-(d)). However, the orthogonal method proposed by Li et al. (2014) can reduce the PGF errors in the computational space as well as in the physical space(Figure 4(a) and (b), (e) and (f)).

    In addition, since the covariant method cannot reduce the PGF errors in the physical space, but can signifcantly reduce the errors in the computational space, especially over steep terrain, the covariant method may not improve the simulation of pressure itself but could lead to improvement in the velocity (relevant to pressure, according to the momentum equations). For example, Weller and Shahrokhi(2014) used the curl-free PGF (the PGF of the covariant method is curl-free in the computational space) to obtain a better hydrostatic balance and better energy conservation.

    Besides, the patterns of PGF error of the orthogonal method are diferent from those of the other two methods based on the non-orthogonal σ-coordinate (Figure 4(a)-(d), (e) and (f)). This is related to the diference between computational grids in the orthogonal σ-coordinate and those in the non-orthogonal σ-coordinate used in this study. Further analyses are needed to investigate the relationship between computational grids and PGF errors. Plus, the true benefts of the covariant method and the orthogonal method need to be tested using primitive equations in more idealized experiments and realistic simulations.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This work was jointly supported by the National Basic Research Program of China (973 Program) [grant number 2015CB954102];the National Natural Science Foundation of China [grant number 41305095], [grant number 41175064].

    Notes on contributors

    LI Jin-Xi is a PhD candidate at LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences. His main research interests focus on dynamical core of atmospheric models. Recent publications include papers in Atmospheric and Oceanic Science Letters, Geoscientifc Model Development, Atmospheric Science Letters, and Chinese Science Bulletin.

    LI Yi-Yuan is an associated researcher at LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences. Her main research interests are the numerical methods for the dynamical core of atmospheric models, especially the methods related with the vertical. Recent publications include papers in Geoscientifc Model Development, Communication in Computational Physics,and Atmospheric Science Letters.

    WANG Bin is a professor at LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences and CESS, Tsinghua University. His main research interests are the numerical methods and data assimilation for the atmospheric, oceanic, and coupled models. Recent publications include papers in Geoscientifc Model Development, Monthly Weather Review, and Tellus.

    References

    Berntsen, J. 2002. “Internal pressure errors in sigma-coordinate ocean models.” Journal of Atmospheric and Oceanic Technology 19: 1403-1414. doi:http://dx.doi.org/10.1175/1520-0426(2002)019<1403:IPE ISC>2.0.CO;2.

    Berntsen, J. 2011. “A perfectly balanced method for estimating the internal pressure gradients in sigma-coordinate ocean models.” Ocean Modelling 38: 85-95. doi:http://dx.doi. org/10.1016/j.ocemod.2011.02.006.

    Blumberg, A. F., and G. L. Mellor. 1987. “A description of a three-dimensional coastal ocean circulation model.”P(pán)aper presented at the annual meeting for the American Geophysical Union, Washington, DC, 1-16. doi:http://dx.doi. org/10.1029/CO004p0001.

    Chu, P. C., and C. Fan. 2003. “Hydrostatic correction for sigma coordinate ocean models.” Journal of Geophysical Research 108: 3206-3217. doi:http://dx.doi.org/10.1029/2002JC001668.

    Corby, G. A., A. Gilchrist, and R. L. Newson. 1972. “A general circulation model of the atmosphere suitable for long period integrations.” Quarterly Journal of the Royal Meteorological Society 98: 809-832. doi:http://dx.doi.org/10.1002/qj.49709841808.

    Fortunato, A. B., and A. M. Baptista. 1996. “Evaluation of horizontal gradients in sigma-coordinate shallow water models.” Atmosphere-Ocean 34: 489-514. doi:http://dx.doi.or g/10.1080/07055900.1996.9649574.

    Gal-Chen, T., and R. C. J. Somerville. 1975. “On the use of a coordinate transformation for the solution of the Navierstokes equations.” Journal of Computational Physics 17: 209-228. doi:http://dx.doi.org/10.1016/0021-9991(75)90037-6.

    Gary, J. M. 1973. “Estimate of truncation error in transformed coordinate, primitive equation atmospheric models.” Journal of the Atmospheric Sciences 30: 223-233. doi:http://dx.doi. org/10.1175/1520-0469(1973)030<0223:EOTEIT>2.0.CO;2.

    Haney, R. L. 1991. “On the pressure gradient force over steep topography in sigma coordinate ocean models.” Journal of Physical Oceanography 21: 610-619. doi:http://dx.doi. org/10.1175/1520-0485(1991)021<0610:OTPGFO>2.0.CO;2.

    Hoinka, K. P., and G. Z?ngl. 2004. “The infuence of the vertical coordinate on simulations of a PV streamer crossing the Alps.”Monthly Weather Review 132: 1860-1867. doi:http://dx.doi. org/10.1175/1520-0493(2004)132h1860:TIOTVCi2.0.CO;2.

    Hu, J. L., and P. X. Wang. 2007. “The errors of pressure gradient force in high-resolution meso-scale model with terrainfollowing coordinate and its revised scheme.” Chinese Journal of Atmospheric Sciences 31: 109-118 (In Chinese). doi:http:// dx.doi.org/10.3878/j.issn.1006-9895.2007.01.11.

    Kasahara, A. 1974. “Various vertical coordinate systems used for numerical weather prediction.” Monthly Weather Review 102: 509-522. doi:http://dx.doi.org/10.1175/1520-0493(1974)102<0509:VVCSUF>2.0.CO;2.

    Klemp, J. B. 2011. “A terrain-following coordinate with smoothed coordinate surfaces.” Monthly Weather Review 139: 2163-2169. doi:http://dx.doi.org/10.1175/MWR-D-10-05046.1.

    Li, X. L., D. H. Chen, and X. S. Shen. 2005. “Impact study on the calculation of vertical velocity in diferent vertical coordinate.”Journal of Tropical Meteorology 21: 265-276 (In Chinese).

    Li, Y. Y., B. Wang, and D. H. Wang. 2011. “Characteristics of a terrain-following sigma coordinate.” Atmospheric and Oceanic Science Letters 4: 157-161. doi:http://dx.doi.org/10.1080/167 42834.2011.11446922.

    Li, Chao, D. H. Chen, and X. L. Li. 2012. “A design of heightbased terrain-following coordinates in the atmospheric numerical model: theoretical analysis and idealized tests.”Acta Meteorologica Sinica 70 (6): 1247-1259 (In Chinese).

    Li, Y. Y., D. H. Wang, and B. Wang. 2012. “A new approach to implement sigma coordinate in a numerical model.”Communications in Computational Physics 12: 1033-1050. doi:http://dx.doi.org/10.4208/cicp.030311.230911a.

    Li, Y. Y., B. Wang, D. H. Wang, and J. X. Li, and L. Dong. 2014.“An orthogonal terrain-following coordinate and its preliminary tests using 2-D idealized advection experiments.”Geoscientifc Model Development 7: 1767-1778. doi:http:// dx.doi.org/10.5194/gmd-7-1-2014.

    Li, J. X., Y. Y. Li, and B. Wang. 2016. “Characteristics of Pressure Gradient Force Errors in a Terrain-Following Coordinate.” Atmospheric and Oceanic Science Letters 9(3): 211-218. doi:http://dx.doi.org/10.1080/16742834.2 016.1164570.

    Lin, S. J. 1997.“A fnite-volume integration method for computing pressure gradient force in general vertical coordinates.”Quarterly Journal of the Royal Meteorological Society 123: 1749-1762. doi:http://dx.doi.org/10.1002/qj.49712354214.

    Ly, L. N., and L. Jiang. 1999. “Horizontal pressure gradient errors of the Monterey bay sigma coordinate ocean model with various grids.” Journal of Oceanography 55: 87-97. doi:http:// dx.doi.org/10.1023/A:1007865223735.

    Mahrer, Y. 1984. “An improved numerical approximation of the horizontal gradients in a terrain-following coordinate system.” Monthly Weather Review 112 (5): 918-922. doi:http:// dx.doi.org/10.1175/1520-0493(1984)112<0918:AINAOT>2.0 .CO;2.

    Qian, Y. F., and Z. Zhong. 1986. “General forms of dynamic equations for atmosphere in numerical models with topography.” Advances in Atmospheric Sciences 3: 10-22. doi:http://dx.doi.org/10.1007/BF02680042.

    Qian, Y. F., and T. J. Zhou. 1994. “Error subtraction method in computing pressure gradient force for high and steep topographic areas.” Journal of Tropical Meteorology 10: 358-368.

    Shchepetkin, A. F., and J. C. McWilliams. 2003. “A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate.” Journal of Geophysical Research 108: 3090-3123. doi:http://dx.doi. org/10.1029/2001JC001047.

    Smagorinsky, J., R. F. Strickler, W. E. Sangster, S. Manabe,J. L. Halloway Jr., and G. D. Hembree. 1967. “Prediction experiments with a general circulation model.” Paper presented at Dynamics of Large Scale Atmospheric Processes,Moscow, USSR, 70-134.

    Steppeler, J., R. Hess, U. Sch?ttler, and L. Bonaventura. 2003.“Review of numerical methods for nonhydrostatic weather prediction models.” Meteorology and Atmospheric Physics 82: 287-301. doi:http://dx.doi.org/10.1007/s00703-001-0593-8.

    Weller, H., and A. Shahrokhi. 2014. “Curl-Free Pressure Gradients over Orography in a Solution of the Fully Compressible Euler Equations with Implicit Treatment of Acoustic and Gravity Waves.” Monthly Weather Review 142: 4439-4457. doi:http:// dx.doi.org/10.1175/MWR-D-14-00054.1.

    Yan, H., and Y. F. Qian. 1981. “On the problems in the coordinate transformation and the calculation of the pressure gradient force in the numerical models with topography.” Chinese Journal of Atmospheric Sciences 5: 175-187. doi:http://dx.doi. org/10.3878/j.issn.1006-9895.1981.02.07.

    Yu, R. C. 1989. “Design of the limited area numerical weather prediction model with steep mountains.” Chinese Journal of Atmospheric Sciences 13: 145-158 (In Chinese). doi:http:// dx.doi.org/10.3878/j.issn.1006-9895.1989.02.02.

    Z?ngl, G. 2012. “Extending the numerical stability limit of terrain following coordinate models over steep slopes.”Monthly Weather Review 140: 3722-3733. doi:http://dx.doi. org/10.1175/MWR-D-12-00049.1.

    Zeng, Q. C. 1979. “Basic equations and coordinate transformation.” Mathematical and physical fundamental theory for numerical weather prediction. vol. 1, 22-25. Beijing: Science Press.

    Zeng, X. P., and Z. H. Ren. 1995. “Quantitative analysis of the discretization errors of the horizontal pressure gradient force over sloping terrain.” Chinese Journal of Atmospheric Sciences 19: 722-732. doi:http://dx.doi.org/10.3878/j.issn.1006-9895.1995.06.09.

    氣壓梯度誤差;

    協(xié)變方案; 陡峭地形; 計(jì)算空間和物理空間; 幾何分析; 正交地形追隨坐標(biāo)

    9 November 2015

    CONTACT LI Yi-Yuan liyiyuan@mail.iap.ac.cn

    ? 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    氣壓梯度理想
    理想之光,照亮前行之路
    金橋(2022年7期)2022-07-22 08:32:10
    一個(gè)改進(jìn)的WYL型三項(xiàng)共軛梯度法
    看不見(jiàn)的氣壓
    2021款理想ONE
    理想
    你是我的理想型
    花火彩版A(2021年11期)2021-02-08 12:42:52
    一種自適應(yīng)Dai-Liao共軛梯度法
    壓力容器氣壓端蓋注射模設(shè)計(jì)
    模具制造(2019年4期)2019-06-24 03:36:46
    一類(lèi)扭積形式的梯度近Ricci孤立子
    電滲—堆載聯(lián)合氣壓劈烈的室內(nèi)模型試驗(yàn)
    大码成人一级视频| 一进一出好大好爽视频| 亚洲精品成人av观看孕妇| 麻豆乱淫一区二区| 男人舔女人的私密视频| 黄色视频不卡| 十八禁人妻一区二区| 亚洲一区高清亚洲精品| 看片在线看免费视频| 欧美日韩黄片免| 精品一区二区三卡| 69av精品久久久久久| 亚洲一区高清亚洲精品| 国产精品乱码一区二三区的特点 | 国产精品国产高清国产av | 国产精品免费大片| 亚洲av成人一区二区三| 一本大道久久a久久精品| 校园春色视频在线观看| 久久久久国产一级毛片高清牌| 精品无人区乱码1区二区| 欧美成狂野欧美在线观看| 午夜精品在线福利| 午夜精品在线福利| 好男人电影高清在线观看| 久久精品aⅴ一区二区三区四区| 久久人妻福利社区极品人妻图片| aaaaa片日本免费| 国产精品电影一区二区三区 | 操出白浆在线播放| 精品高清国产在线一区| 91字幕亚洲| 日本黄色日本黄色录像| 中亚洲国语对白在线视频| 精品熟女少妇八av免费久了| 久99久视频精品免费| 午夜老司机福利片| 少妇的丰满在线观看| 高清av免费在线| 黄色丝袜av网址大全| videosex国产| 在线观看免费午夜福利视频| 搡老乐熟女国产| 国产精品免费视频内射| 美女高潮喷水抽搐中文字幕| 欧美日韩福利视频一区二区| 色综合婷婷激情| 国产高清视频在线播放一区| 日韩熟女老妇一区二区性免费视频| 亚洲熟女精品中文字幕| 99国产精品99久久久久| 午夜精品国产一区二区电影| 亚洲av电影在线进入| 久久久精品国产亚洲av高清涩受| 香蕉久久夜色| 国产xxxxx性猛交| 国产精品一区二区在线观看99| 一进一出抽搐动态| 成人永久免费在线观看视频| 国产精品香港三级国产av潘金莲| 母亲3免费完整高清在线观看| 免费久久久久久久精品成人欧美视频| 麻豆乱淫一区二区| 大香蕉久久网| 国产97色在线日韩免费| 美国免费a级毛片| 在线观看www视频免费| 免费观看a级毛片全部| 日韩人妻精品一区2区三区| 一级,二级,三级黄色视频| 日韩人妻精品一区2区三区| aaaaa片日本免费| 国产精品av久久久久免费| 色94色欧美一区二区| 国产有黄有色有爽视频| 日韩三级视频一区二区三区| 国产精品自产拍在线观看55亚洲 | 久久人妻av系列| 91精品国产国语对白视频| 看黄色毛片网站| a级毛片黄视频| 婷婷成人精品国产| av在线播放免费不卡| 美女高潮到喷水免费观看| 在线观看日韩欧美| 成人永久免费在线观看视频| 亚洲第一av免费看| 99国产精品一区二区蜜桃av | 亚洲精品美女久久久久99蜜臀| 制服诱惑二区| 91在线观看av| 精品视频人人做人人爽| 成年人黄色毛片网站| 精品国产乱子伦一区二区三区| 老汉色∧v一级毛片| 深夜精品福利| 午夜精品久久久久久毛片777| 国产激情欧美一区二区| 嫩草影视91久久| 国产成人精品在线电影| 777米奇影视久久| 成年版毛片免费区| 十八禁网站免费在线| av福利片在线| 女性被躁到高潮视频| 80岁老熟妇乱子伦牲交| 中国美女看黄片| 国产成人一区二区三区免费视频网站| 天天躁狠狠躁夜夜躁狠狠躁| 丝瓜视频免费看黄片| 亚洲国产毛片av蜜桃av| 美女高潮喷水抽搐中文字幕| 久久人妻熟女aⅴ| 后天国语完整版免费观看| 久久草成人影院| 热re99久久国产66热| 亚洲少妇的诱惑av| 视频在线观看一区二区三区| 日日夜夜操网爽| 亚洲精品在线观看二区| 母亲3免费完整高清在线观看| 欧美大码av| 亚洲精品国产区一区二| 中文字幕另类日韩欧美亚洲嫩草| 黑人猛操日本美女一级片| 亚洲成人免费电影在线观看| 一个人免费在线观看的高清视频| 欧美中文综合在线视频| 丝袜在线中文字幕| 亚洲七黄色美女视频| 多毛熟女@视频| 麻豆乱淫一区二区| 精品国产一区二区三区久久久樱花| 可以免费在线观看a视频的电影网站| 亚洲色图av天堂| 美女高潮喷水抽搐中文字幕| 夜夜夜夜夜久久久久| 色婷婷久久久亚洲欧美| 国产精品久久久人人做人人爽| 91国产中文字幕| 中文字幕av电影在线播放| 男女午夜视频在线观看| 桃红色精品国产亚洲av| 少妇猛男粗大的猛烈进出视频| 色在线成人网| 老鸭窝网址在线观看| 精品一区二区三区av网在线观看| 亚洲美女黄片视频| 久久九九热精品免费| 亚洲 欧美一区二区三区| 日本五十路高清| 亚洲av熟女| 成人18禁高潮啪啪吃奶动态图| 久久久久久久国产电影| 欧美在线一区亚洲| 久久人人爽av亚洲精品天堂| 精品亚洲成国产av| 国产精品久久久久久人妻精品电影| 精品第一国产精品| 久久国产乱子伦精品免费另类| a级毛片在线看网站| 看免费av毛片| 免费少妇av软件| 一边摸一边抽搐一进一小说 | 无遮挡黄片免费观看| 国产三级黄色录像| 免费久久久久久久精品成人欧美视频| 欧美日韩亚洲高清精品| 欧美在线一区亚洲| 黄色a级毛片大全视频| 成人18禁高潮啪啪吃奶动态图| 亚洲精品中文字幕在线视频| 大陆偷拍与自拍| 午夜成年电影在线免费观看| 伊人久久大香线蕉亚洲五| 最近最新中文字幕大全免费视频| 免费一级毛片在线播放高清视频 | 大型黄色视频在线免费观看| 在线观看午夜福利视频| 香蕉久久夜色| 欧美日本中文国产一区发布| 免费av中文字幕在线| 身体一侧抽搐| 电影成人av| 亚洲精品av麻豆狂野| 日韩成人在线观看一区二区三区| 国产精品久久视频播放| 搡老熟女国产l中国老女人| 欧美黑人精品巨大| 操出白浆在线播放| 午夜两性在线视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲色图综合在线观看| 国产免费av片在线观看野外av| 久9热在线精品视频| 两性午夜刺激爽爽歪歪视频在线观看 | 自线自在国产av| 交换朋友夫妻互换小说| 一级毛片女人18水好多| 午夜福利乱码中文字幕| 三级毛片av免费| 9热在线视频观看99| 亚洲精品美女久久av网站| 首页视频小说图片口味搜索| 亚洲五月色婷婷综合| 91成年电影在线观看| 国产精品免费大片| 91成人精品电影| 视频在线观看一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 天堂√8在线中文| 亚洲成国产人片在线观看| 亚洲五月色婷婷综合| 精品久久久久久久毛片微露脸| 免费av中文字幕在线| 91字幕亚洲| 69av精品久久久久久| 国产精品电影一区二区三区 | 国产成人av激情在线播放| 久久国产乱子伦精品免费另类| 国产精品成人在线| 777久久人妻少妇嫩草av网站| 成年人免费黄色播放视频| 一级片'在线观看视频| 身体一侧抽搐| 一边摸一边抽搐一进一小说 | 麻豆av在线久日| 亚洲国产欧美网| 80岁老熟妇乱子伦牲交| 老司机午夜十八禁免费视频| 亚洲精品中文字幕在线视频| 1024视频免费在线观看| av不卡在线播放| 日韩欧美三级三区| 国产精品免费大片| 亚洲国产精品sss在线观看 | 一级片'在线观看视频| 国产精品综合久久久久久久免费 | 在线观看免费视频网站a站| 免费观看a级毛片全部| 又黄又爽又免费观看的视频| 久久久久精品人妻al黑| 国产精品秋霞免费鲁丝片| 啦啦啦视频在线资源免费观看| 欧美不卡视频在线免费观看 | 亚洲一区二区三区不卡视频| 久久精品国产综合久久久| 日韩免费高清中文字幕av| 色老头精品视频在线观看| 黄网站色视频无遮挡免费观看| 女人被躁到高潮嗷嗷叫费观| 免费看a级黄色片| 精品一品国产午夜福利视频| 欧美黑人欧美精品刺激| 成人免费观看视频高清| 一夜夜www| 亚洲精品自拍成人| 久久午夜亚洲精品久久| 国产亚洲欧美98| 亚洲中文日韩欧美视频| 久久久国产欧美日韩av| 69av精品久久久久久| 国产男女内射视频| 亚洲中文字幕日韩| 国产欧美亚洲国产| 十分钟在线观看高清视频www| 欧美国产精品va在线观看不卡| 久久久久精品人妻al黑| 久久国产精品人妻蜜桃| 国产蜜桃级精品一区二区三区 | 一区福利在线观看| 成年女人毛片免费观看观看9 | 在线观看午夜福利视频| 一边摸一边抽搐一进一出视频| videosex国产| av国产精品久久久久影院| 日韩欧美一区视频在线观看| 少妇的丰满在线观看| 老熟妇仑乱视频hdxx| 国产伦人伦偷精品视频| 熟女少妇亚洲综合色aaa.| 亚洲成人手机| 黑人巨大精品欧美一区二区蜜桃| 国产精品久久久人人做人人爽| 人成视频在线观看免费观看| 国产成人免费观看mmmm| 9191精品国产免费久久| 免费看a级黄色片| 国产成人精品无人区| www.熟女人妻精品国产| 国产亚洲av高清不卡| 男女床上黄色一级片免费看| 69精品国产乱码久久久| 一区二区三区国产精品乱码| 91成人精品电影| 中文字幕人妻丝袜制服| av网站在线播放免费| 97人妻天天添夜夜摸| 国产不卡av网站在线观看| 大码成人一级视频| 亚洲国产毛片av蜜桃av| 三上悠亚av全集在线观看| а√天堂www在线а√下载 | 久久99一区二区三区| 精品卡一卡二卡四卡免费| 亚洲精品美女久久久久99蜜臀| 成人18禁在线播放| 久久久精品免费免费高清| 久久精品国产99精品国产亚洲性色 | bbb黄色大片| 国产亚洲一区二区精品| 免费看十八禁软件| 国产乱人伦免费视频| 国产伦人伦偷精品视频| 中文字幕精品免费在线观看视频| 99精国产麻豆久久婷婷| 亚洲av成人一区二区三| 日韩熟女老妇一区二区性免费视频| 91老司机精品| 在线免费观看的www视频| 成人三级做爰电影| 国产xxxxx性猛交| 操美女的视频在线观看| 亚洲少妇的诱惑av| 亚洲成a人片在线一区二区| 免费在线观看影片大全网站| 波多野结衣一区麻豆| 在线观看66精品国产| 亚洲欧美一区二区三区黑人| 不卡av一区二区三区| 国产精品自产拍在线观看55亚洲 | 狠狠婷婷综合久久久久久88av| 看片在线看免费视频| 一二三四社区在线视频社区8| 黄色丝袜av网址大全| 午夜福利欧美成人| 99久久综合精品五月天人人| 国产成人系列免费观看| 十分钟在线观看高清视频www| 亚洲av成人不卡在线观看播放网| 国产极品粉嫩免费观看在线| 日韩免费av在线播放| 欧美日韩视频精品一区| 老汉色∧v一级毛片| 在线观看免费日韩欧美大片| 日本黄色视频三级网站网址 | 男人舔女人的私密视频| 欧美人与性动交α欧美精品济南到| 建设人人有责人人尽责人人享有的| 中亚洲国语对白在线视频| 欧美性长视频在线观看| 亚洲一码二码三码区别大吗| 下体分泌物呈黄色| 亚洲一码二码三码区别大吗| 一边摸一边抽搐一进一出视频| 黄频高清免费视频| av不卡在线播放| 香蕉丝袜av| 亚洲国产欧美网| 91精品三级在线观看| 精品午夜福利视频在线观看一区| 日日爽夜夜爽网站| 亚洲欧美一区二区三区久久| 精品亚洲成a人片在线观看| 免费人成视频x8x8入口观看| 法律面前人人平等表现在哪些方面| 欧美日韩黄片免| 久久久国产精品麻豆| 性少妇av在线| 老司机亚洲免费影院| avwww免费| 欧美人与性动交α欧美精品济南到| 国产免费男女视频| 一本一本久久a久久精品综合妖精| 精品无人区乱码1区二区| 在线观看66精品国产| 露出奶头的视频| 国产精品 欧美亚洲| 一进一出抽搐gif免费好疼 | 成年人免费黄色播放视频| 狂野欧美激情性xxxx| 欧美日韩黄片免| 亚洲七黄色美女视频| 亚洲 欧美一区二区三区| 一a级毛片在线观看| 国产成人av教育| 日韩免费av在线播放| 一进一出抽搐动态| 日本黄色视频三级网站网址 | 正在播放国产对白刺激| 亚洲精品国产一区二区精华液| 精品福利观看| 久久精品国产清高在天天线| 国产欧美日韩综合在线一区二区| 成年人午夜在线观看视频| 日本黄色日本黄色录像| 欧美另类亚洲清纯唯美| 天天躁夜夜躁狠狠躁躁| 电影成人av| 91九色精品人成在线观看| 亚洲精品一二三| 99热网站在线观看| 精品国产超薄肉色丝袜足j| 国产成人精品久久二区二区91| 一级毛片精品| 国产主播在线观看一区二区| aaaaa片日本免费| 亚洲精品中文字幕在线视频| 最近最新中文字幕大全免费视频| 丁香六月欧美| a级片在线免费高清观看视频| 狂野欧美激情性xxxx| 亚洲第一av免费看| 在线播放国产精品三级| 免费在线观看完整版高清| 人人妻人人添人人爽欧美一区卜| 欧美激情极品国产一区二区三区| 美女福利国产在线| 国产精品av久久久久免费| 免费在线观看视频国产中文字幕亚洲| 欧美精品人与动牲交sv欧美| 国产亚洲一区二区精品| 国产精品美女特级片免费视频播放器 | 国产成人一区二区三区免费视频网站| 波多野结衣av一区二区av| 久久久久视频综合| 一区二区日韩欧美中文字幕| 久久久久久久久免费视频了| 日韩熟女老妇一区二区性免费视频| 黑人操中国人逼视频| 午夜亚洲福利在线播放| 下体分泌物呈黄色| 国产精品成人在线| 日韩制服丝袜自拍偷拍| 精品欧美一区二区三区在线| 他把我摸到了高潮在线观看| 国产精品国产高清国产av | 91老司机精品| 一进一出好大好爽视频| 亚洲avbb在线观看| 波多野结衣av一区二区av| 日韩有码中文字幕| 精品国产亚洲在线| 国产黄色免费在线视频| 99久久99久久久精品蜜桃| 午夜福利,免费看| 欧美另类亚洲清纯唯美| 午夜福利视频在线观看免费| 精品久久久久久电影网| 999精品在线视频| 色精品久久人妻99蜜桃| 757午夜福利合集在线观看| 久久国产精品大桥未久av| 99久久人妻综合| 久久九九热精品免费| 久热爱精品视频在线9| 日本a在线网址| 亚洲欧美一区二区三区久久| 人人妻人人澡人人爽人人夜夜| 黄色a级毛片大全视频| 他把我摸到了高潮在线观看| √禁漫天堂资源中文www| 丁香欧美五月| aaaaa片日本免费| 大型黄色视频在线免费观看| 精品熟女少妇八av免费久了| 飞空精品影院首页| 国产色视频综合| 国产精品免费视频内射| 久久九九热精品免费| 日韩制服丝袜自拍偷拍| 色综合欧美亚洲国产小说| 亚洲成人国产一区在线观看| 看黄色毛片网站| 在线看a的网站| 亚洲成人免费电影在线观看| 国产精品秋霞免费鲁丝片| 日本欧美视频一区| 黄片播放在线免费| 免费高清在线观看日韩| av免费在线观看网站| 国产熟女午夜一区二区三区| 午夜影院日韩av| 黑人猛操日本美女一级片| 国产一区二区三区综合在线观看| 欧美乱码精品一区二区三区| 一级片免费观看大全| 妹子高潮喷水视频| av片东京热男人的天堂| 久久亚洲精品不卡| 精品国内亚洲2022精品成人 | 国产成人免费无遮挡视频| 国产成人精品在线电影| 97人妻天天添夜夜摸| 麻豆国产av国片精品| av中文乱码字幕在线| 亚洲国产中文字幕在线视频| 99国产精品免费福利视频| 香蕉久久夜色| 99riav亚洲国产免费| ponron亚洲| 老司机福利观看| 99精品欧美一区二区三区四区| 亚洲av片天天在线观看| 最近最新免费中文字幕在线| 999久久久国产精品视频| 老司机福利观看| 亚洲成av片中文字幕在线观看| 香蕉久久夜色| 男人的好看免费观看在线视频 | 极品教师在线免费播放| 少妇 在线观看| bbb黄色大片| 日韩精品免费视频一区二区三区| 看免费av毛片| 国产成人精品久久二区二区91| 亚洲精品国产区一区二| 可以免费在线观看a视频的电影网站| 亚洲成人国产一区在线观看| 欧美乱码精品一区二区三区| 十八禁人妻一区二区| 99国产极品粉嫩在线观看| 国产精品永久免费网站| 久久香蕉国产精品| 欧美日韩瑟瑟在线播放| 久久香蕉激情| 国产淫语在线视频| 欧美最黄视频在线播放免费 | 如日韩欧美国产精品一区二区三区| 乱人伦中国视频| 夫妻午夜视频| 国产亚洲欧美在线一区二区| 欧美精品亚洲一区二区| 热99re8久久精品国产| 在线观看免费视频网站a站| 日日爽夜夜爽网站| 久久亚洲真实| 黑人巨大精品欧美一区二区蜜桃| 丰满人妻熟妇乱又伦精品不卡| 色94色欧美一区二区| 一级黄色大片毛片| 色婷婷av一区二区三区视频| av视频免费观看在线观看| 丝袜美足系列| 1024视频免费在线观看| 国产无遮挡羞羞视频在线观看| 国产av又大| 午夜视频精品福利| 叶爱在线成人免费视频播放| av网站在线播放免费| 午夜福利乱码中文字幕| 黑人欧美特级aaaaaa片| 日本黄色日本黄色录像| 国产1区2区3区精品| 亚洲av日韩精品久久久久久密| 亚洲国产欧美网| 成在线人永久免费视频| 国产精品久久久久成人av| 亚洲国产欧美一区二区综合| 中文亚洲av片在线观看爽 | 在线观看舔阴道视频| 大陆偷拍与自拍| 国产精品乱码一区二三区的特点 | 50天的宝宝边吃奶边哭怎么回事| 久久久久精品人妻al黑| 亚洲精品久久午夜乱码| 欧美日本中文国产一区发布| 日日摸夜夜添夜夜添小说| 午夜福利一区二区在线看| 色婷婷av一区二区三区视频| 午夜福利视频在线观看免费| 亚洲第一欧美日韩一区二区三区| 三上悠亚av全集在线观看| 黄片大片在线免费观看| 一区二区三区激情视频| 99精品久久久久人妻精品| 精品一区二区三区视频在线观看免费 | 国产高清视频在线播放一区| 久久这里只有精品19| 在线观看一区二区三区激情| 欧美成人免费av一区二区三区 | 在线观看免费日韩欧美大片| 午夜激情av网站| 国产精品久久久av美女十八| 少妇的丰满在线观看| 成年动漫av网址| 久久影院123| 亚洲精品美女久久久久99蜜臀| 在线观看免费高清a一片| 久久久国产精品麻豆| 欧美乱色亚洲激情| 99精国产麻豆久久婷婷| 久99久视频精品免费| 老司机靠b影院| 久久久久久亚洲精品国产蜜桃av| 99re在线观看精品视频| 91老司机精品| 国内毛片毛片毛片毛片毛片| 国产精品一区二区精品视频观看| 99riav亚洲国产免费| 男人舔女人的私密视频| 少妇的丰满在线观看| 久久精品国产清高在天天线| 亚洲中文日韩欧美视频| 亚洲国产欧美一区二区综合| 黑人巨大精品欧美一区二区mp4| 久久久国产成人免费| www.自偷自拍.com| 亚洲综合色网址| 99热只有精品国产| 色播在线永久视频| 日韩人妻精品一区2区三区| 国产成人欧美| 狂野欧美激情性xxxx| 18禁国产床啪视频网站|