• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The link between the Victoria mode in the preceding boreal winter and spring precipitation over the southeastern USA and Gulf of Mexico

    2016-11-23 03:30:19PUXiuShuCHENQunLingDINGRuiQingndGUOYiPengPlteuAtmospherendEnvironmentKeyLortoryofSihunProvineCollegeofAtmospheriSienesChengduUniversityofInformtionTehnologyChengduChinStteKeyLortoryofNumerilModelingforAtmospheriSien
    關鍵詞:比濕墨西哥灣海溫

    PU Xiu-Shu, CHEN Qun-Ling, DING Rui-Qingnd GUO Yi-Peng,Plteu Atmosphere nd Environment Key Lortory of Sihun Provine, College of Atmospheri Sienes, Chengdu University of Informtion Tehnology, Chengdu, Chin;Stte Key Lortory of Numeril Modeling for Atmospheri Sienes nd Geophysil Fluid Dynmis (LASG),Institute of Atmospheri Physis, Chinese Ademy of Sienes, Beijing, Chin;College of Erth Siene, University of Chinese Ademy of Sienes, Beijing, Chin

    The link between the Victoria mode in the preceding boreal winter and spring precipitation over the southeastern USA and Gulf of Mexico

    PU Xiu-Shua,b, CHEN Quan-Lianga, DING Rui-Qianga,band GUO Yi-Pengb,caPlateau Atmosphere and Environment Key Laboratory of Sichuan Province, College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, China;bState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG),Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;cCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China

    The sea surface temperature anomalies (SSTAs) associated with the Victoria mode (VM) can persist into the following season and then infuence climate variability in the tropical Pacifc. This paper demonstrates the connection between the preceding boreal winter VM and precipitation in the following spring over the southeastern United States (SE USA) and the Gulf of Mexico (GM). The results indicate that a positive (negative) preceding winter VM is usually followed by increased(reduced) precipitation over the SE USA and GM during the following spring. The corresponding mechanism is similar, but slightly diferent to, the seasonal footprinting mechanism. For positive VM cases, the preceding-winter VM-related SSTAs appear to persist into the following spring via airsea interactions, which then induce low-level convergence and vigorous ascending motion, leading to an adjustment of the zonal and meridional circulation. This adjustment can then infuence the local Hadley cell by weakening the downward branch. These anomalous patterns of vertical airfow enhance spring precipitation over the SE USA and GM under suitable moisture conditions. Hence,this work demonstrates that the preceding-winter VM has the potential to regulate precipitation over the SE USA and GM in the following spring.

    ARTICLE HISTORY

    Revised 8 March 2016

    Accepted 28 March 2016

    Victoria mode; spring precipitation; southeastern USA; Gulf of Mexico; air-sea interaction

    北太平洋海溫第二主導模態(tài)是一個呈現(xiàn)東北-西南“+-”偶極子型變化的海溫模態(tài),被定義為維多利亞模態(tài)(VM)。本文利用1979-2014年的逐月資料,通過偏相關分析及回歸分析等氣象統(tǒng)計方法,探究了北半球前冬VM與春季美國東南部及墨西哥灣(SE USA及GM,(24-34°N,95-80°W))降水之間的關系,結果表明兩者之間存在顯著的正相關關系。當前冬為正(負)VM事件,則在隨之而來的春季, SE USA及GM區(qū)域往往會出現(xiàn)降水增加(減少)。SE USA及GM區(qū)域的環(huán)流系統(tǒng)對前冬正(負)VM的響應十分顯著,具體表現(xiàn)為比濕偏高(偏低),輸入此區(qū)域的水汽輸送增多(減少),并且,此區(qū)域?qū)α鲗踊旧媳划惓I仙ㄏ鲁粒┻\動控制,有利于(不利于)降水發(fā)生。因此,本文的研究可能為春季美國東南部及墨西哥灣降水的季節(jié)預測提供新的預測因子。

    1. Introduction

    The Victoria mode (VM) is the second empirical orthogonal function mode (EOF2) of sea surface temperature anomalies (SSTAs) in the North Pacifc north of 20°N(Bond et al. 2003; Ding et al., “The Victoria Mode,” 2015),and is distinct from the Pacifc Decadal Oscillation (Mantua et al. 1997; Zhang, Wallace, and Battisti 1997), which is the leading mode of North Pacifc climate variability (fgure not shown). The VM exhibits a tripole structure that is characterized by a band of positive SSTAs extending from the west coast of North America to the central tropical Pacifc, a band of negative SSTAs extending from the central North Pacifc to the northwestern tropical Pacifc, and another band of positive SSTAs in the Pacifc north of 35°N (Bond et al. 2003; Ding et al., “The Victoria Mode”, 2015) Figure 1(a). The VM index (VMI) is the corresponding time coefcient of the EOF2 of the monthly SSTA feld over the North Pacifc (20-61°N, 100°E-100°W) (Bond et al. 2003; Ding et al., “The Victoria Mode”, “The Impact of South Pacifc”,2015). Previous studies indicate that the VM is driven by the North Pacifc Oscillation (NPO; Walker and Bliss 1932;Rogers 1981; Ding et al., “The Victoria Mode”, “The Impact of South Pacifc”, 2015).

    Figure 1.Correlation maps of the preceding winter VMI-DJF showing the three-month averaged SSTAs (shaded) and 850 hPa wind anomalies (vectors) for (a) DJF and (b) MAM.

    Ding et al., “The Victoria Mode”, (2015) suggested that the VM, as an ocean bridge through which extratropical atmospheric variability in the North Pacifc afects tropical variability, is more closely linked than the NPO to the development of ENSO. The VM can trigger the onset of ENSO via surface air-sea coupling and the evolution of subsurface ocean temperature anomalies along the equator. Meanwhile, the spring VM has been linked to variability in Pacifc ITCZ precipitation during the following summer(Ding et al., “The Impact of South Pacifc”, 2015). In positive VM cases, SSTAs in the subtropics associated with the spring VM persist until summer and develop towards the equator, inducing low-level convergence that leads to enhanced precipitation over the central-eastern Pacifc ITCZ region.

    Many studies have focused on the correlation between the VM and the tropical Pacifc climate system (Ding et al.,“The Victoria Mode”, “The Impact of South Pacifc”, 2015). Wang et al. (2010) found that spring precipitation over the southeastern United States (SE USA) is afected by SST patterns in the Pacifc. However, they did not address the efect of the preceding winter (December-January-February: DJF) VM on spring (March-April-May: MAM) precipitation. In this study, we explore a possible connection between the preceding winter VM and following spring precipitation over the SE USA and the Gulf of Mexico (GM)with the ENSO signal removed.

    2. Data description

    The following datasets were used in this study:(1) Precipitation data were obtained from the GPCP(Hufman et al. 1997), and the CMAP data-set (Xie and Arkin 1997) was used to validate the results for precipitation. The GPCP and CMAP datasets contain monthly precipitation data at a horizontal resolution of 2.5° × 2.5°.(2) Atmospheric variables are from the NCEP-NCAR reanalysis (Kalnay et al. 1996), which has a horizontal resolution of 2.5° × 2.5°. (3) SST data are from the HadISST data-set,gridded at a resolution of 1° × 1° (Rayner et al. 2006).(4) The ENSO index (Nin?3) is from the NOAA CPC website. In addition, we calculated the vertical integration of the anomalous moisture fux felds between the sea level and 300 hPa (Behera, Krishnan, and Yamagata 1999; Nnamchi and Li 2011).

    We analyzed the period from 1979 to 2014, for which satellite records are available. The signifcance of the correlation between two autocorrelated time series was assessed using the efective number of degrees of freedom.

    3. Results

    3.1. Connections between the preceding winter VM and spring precipitation

    To investigate the link between the preceding winter VM and following spring precipitation over the USA, we show in Figure 2(a) the correlation coefcients between the DJF-averaged VMI (denoted as the VMI-DJF) and the MAM-averaged precipitation anomalies over the USA based on the GPCP data-set. Large areas with signifcant positive values occur over the SE USA and GM, which includes Louisiana, Mississippi, Alabama, Georgia, and Florida. This feature implies that a positive (negative) preceding winter VM is likely to be followed by increased (reduced)spring precipitation over the SE USA and GM (hereafter referred to as ‘the Box,' i.e. the region enclosed by (24-34°N,95-80°W)). We represent spring precipitation using the area-averaged precipitation index (PI), which is defned as the standardized area-averaged spring precipitation for the Box region (Figure 2(c)). The preceding winter VM has a marked positive correlation with precipitation anomalies over the above region at a confdence level greater than 99%, with a correlation coefcient of 0.51. This result proves the reliability of the relationship between the preceding winter VM and spring precipitation.

    Figure 2.(a) Correlation map of the VMI-DJF with the spring (MAM) precipitation anomalies based on the GPCP data-set. Positive (blue)and negative (red) precipitation anomalies, signifcant at the 0.2 level, are shaded. The crosses indicate the 90% confdence level. The green box is the positive correlation box (24-34°N, 95-80°W), which indicates the location of the Box region. (c) Time series of VMI-DJF(red line) and MAM-averaged PI (blue line) for the Box region between 1979 and 2014. Both the VMI-DJF and PI have been detrended and standardized. (e) Regressions of the boreal winter (DJF) SSTA (°C) feld on the PI for the period 1979-2014. Shaded areas represent signifcance above the 0.1 level. (b, d, f) As in (a, c, e) but based on the CMAP data-set.

    To further confrm the connection between the preceding winter VM and spring precipitation over the SE USA and GM, we regressed the preceding winter North Pacifc SSTAs onto the PI, shown in Figure 2(c). The regression of the SSTAs (Figure 2(e)) shows a well-defned dipole structure over the North Pacifc poleward of 20°N, which closely resembles the VM-related SSTA pattern in Figure 1(a). It appears that the VM SST pattern bears a resemblance to the optimal initial SST condition that is likely to lead to spring precipitation anomalies over the SE USA and GM. A positive (negative) VM event in the preceding winter tends to be followed by more (less) precipitation during the following spring over this region. This result agreeswith the conclusions from Figure 2(a) and (c), and further supports the existence of a close relationship between the preceding winter VM and following spring precipitation over the SE USA and GM.

    Similar correlation maps and regression patterns were also obtained when using the CMAP data-set (Figure 2(b),(d), and (f)). These consistent results demonstrate that the spring precipitation anomalies over the SE USA and GM are closely related to the VM from the previous winter. Thus,the preceding winter VM is one possible factor that afects spring precipitation over the SE USA and GM.

    Figure 3.Correlation maps of the VMI-DJF with anomalies of MAM-averaged (a) 700 hPa specifc humidity, (b) moisture transport magnitude vertically integrated from the 1,000 to 400 hPa pressure levels (shading and vectors), (c) 500 hPa vertical pressure velocity, and (d) 200 hPa divergence.

    3.2. Spring atmospheric circulation anomalies associated with the preceding winter VM

    The distribution of precipitation is closely associated with the combined efect of the water vapor conditions and vertical motion. To explain the above-mentioned link between the preceding winter VM and spring precipitation over the SE USA and GM, we present the following spring meteorological variable anomalies that are correlated with the preceding winter VM (Figure 3(a-d)).

    Figure 3(a) displays the correlation between the VMIDJF and spring specifc humidity at 700 hPa. During positive VM cases, positive anomalies are centered over the SE USA and GM, indicating that the air is wetter over this region. Furthermore, Figure 3(b) indicates that the vertically integrated moisture fux feld characterizes much of the specifc humidity anomaly pattern. The vector of the moisture fux shows that the moisture transport induced by the preceding winter's VM is centered over the GM. The majority of the region is dominated by strong southerly winds, which promote the moisture transport from the GM.

    When the preceding winter VM is positive, anomalous upward motion prevails over the SE USA and GM (Figure 3(c)). The correlation between the VMI-DJF and spring divergence at 200 hPa is displayed in Figure 3(d). The confguration of the divergence feld in the upper troposphere matches these upward motion anomalies well. The vertical motion associated with the positive preceding winter VM is consistent with the vapor conditions that favor the spring precipitation pattern in Figure 2(a) and (b).

    To summarize, in the case of a positive preceding winter VM, the anomalous horizontal divergence at 200 hPa favors ascending motion of wetter air over the SE USA and GM. The combination of favorable vapor conditions, vertical motion, and the divergence feld generates increased precipitation in this region.

    3.3. Possible physical mechanisms

    As mentioned above, the preceding winter VM has the potential to infuence the following spring precipitation over the SE USA and GM. However, the question remains as to exactly how the winter VM afects the SE USA and GM during the following spring. To provide a physicalexplanation for the observed relationship, we examined the VM-related SST and atmospheric circulation anomalies.

    Figure 4.(a) Correlation map of the VMI-DJF with the MAM-averaged 850 hPa divergence anomalies. Correlation signifcant at the 0.1 level is shaded. (b) Correlation map of the VMI-DJF with anomalies of the meridional mean spring (MAM) zonal wind and omega components for 10°S-10°N. The green lines indicate the longitudinal band of the Box region. (c) Correlation map of the VMI-DJF with anomalies of the zonal mean spring(MAM) meridional wind and omega components for 95-80°W. The green lines indicate the latitudinal band of the Box region. In(b, c), the omega value with the vector is multiplied by 10. Shading represents signifcance above the 0.1 level.

    Figure 1(a) and (b) present the correlation between the VMI-DJF and SST and the 850-hPa wind anomalies in the winter and following spring. During winter, the positive VM is accompanied by a dipole-like SSTA pattern in the North Pacifc north of 20°N, and a subtropical (0°-20°N)band of positive SSTAs extending from the northeastern Pacifc to the tropical central Pacifc (Figure 1(a)). The related wind anomalies resemble those associated with the NPO (Walker and Bliss 1932; Rogers 1981). This result is consistent with those reported by Vimont, Wallace, and Battisti (2003), Vimont, Battisti, and Hirst (2003), Alexander et al. (2010), and Ding et al., “The Victoria Mode,” (2015). These signifcant SST and wind anomalies in the North Pacifc north of 20°N decrease quickly in the following spring (Figure 1(b)). In contrast, SSTAs in the subtropical central-eastern North Pacifc (10-20°N) can persist from the preceding winter and into spring (Figure 1(b)) via surface air-sea interactions associated with the VM (Ding, Li, and Tseng 2015; Ding et al., “The Impact of South Pacifc”, 2015). Specifcally, anomalous southwesterlies associated with the VM during the preceding winter reduce the upward latent heat fux (fgure not shown) and subsequently warm the ocean from the northeastern Pacifc to the equatorial central Pacifc.

    In response to the warming induced by the above processes in the central-eastern tropical Pacifc, strong anomalous southwesterlies in the central-western tropical Pacifc strengthen (Figure 1(b)), leading to convergence at 850 hPa with the center located in the central-eastern North Pacifc(Figure 4(a)). These convergence zones in the lower tropospheric layers cause vigorous ascending motion centered near the dateline (10°S-10°N, 170°E-170°W). Meanwhile,signifcant descending motion occurs over the tropical eastern Pacifc of the west coast of Colombia and Ecuador((10°S-10°N, 95-80°W); Figure 4(b)). This anomalous east-west oriented circulation resembles the Walker circulation across the tropical Pacifc, resulting in enhancement of the latter. In addition, the increased convection and precipitation caused by low-level convergence in the central-eastern North Pacifc may intensify the release of the latent heat of condensation into the atmosphere, which favors the ascending motion, convective precipitation, and so on (Ding et al., “The Impact of South Pacifc”, 2015).

    Adjustment of the Walker circulation also infuences the meridional circulation over the region 95-80°W, which is the longitudinal band of the Box region. Following the increased Walker circulation, the sinking airfow over the tropical eastern Pacifc of the west coast of Colombia and Ecuador is strengthened (Figure 4(c)). Subsequently,this enhanced downward motion is superposed onto the upward branch of the local Hadley cell in the tropical eastern Pacifc, weakening the latter and thereby leading to anomalous ascending motion and precipitation over the SE USA and GM (Figure 4(c)).

    Note that signifcant anomalous southerlies are seen over the Box region (Figure 4(c)), which is consistent with anomalous rising airfow there, indicating that the abundant supply of water vapor over the SE USA and GM is closely linked to the ascending motion over this region,and together they encourage the generation of local precipitation. In general, our interpretation is that a largescale convergence over the central-eastern North Pacifc induced by the VM plays an important role in causing anomalous ascending motion and increased precipitation over the SE USA and GM.

    4. Conclusions and discussion

    This paper focuses on the relationship between the preceding winter VM and precipitation over the SE USA and GM during the following spring. Our analysis demonstrates that the VM may have a marked efect on the interannual variation in spring precipitation over this region. A positive preceding winter VM is related to an intensifed Walker circulation across the tropical eastern Pacifc and a suppressed local Hadley cell within the longitude of the Box region. The related anomalous upward motion over the Box region,which contains large amounts of water vapor, dominates the SE USA and GM. The confguration of the atmospheric circulation and the water vapor conditions is consistent with the positive precipitation anomalies over the SE USA and GM. In brief, the underlying physical processes associated with the infuence of the preceding winter VM on spring precipitation over the SE USA and GM are similar, but slightly diferent to, the seasonal footprinting mechanism(SFM). The SFM was proposed by Vimont, Battisti, and Hirst(2001), Vimont, Wallace, and Battisti (2003), Vimont, Battisti,and Hirst (2003) to explain the efects of the NPO-like variability during a particular winter on ENSO during the following winter. The preceding winter VM SST pattern displayed in Figure 1a closely resembles the SST footprint reported by Vimont, Battisti, and Hirst (2001), Vimont, Wallace, and Battisti (2003), Vimont, Battisti, and Hirst (2003). However,here we emphasize the linkage between the VM and precipitation over the SE USA and GM. Specifcally, the preceding winter VM signal can persist into the following spring,inducing anomalous southwesterlies that have a potential efect on the circulation in the central-eastern tropical Pacifc through air-sea interaction. Thus, the Walker circulation and local Hadley cell act as an atmospheric bridge,which allows the North Pacifc VM to infuence precipitation over the SE USA and GM during the following spring. Our analysis suggests that the preceding winter VM provides an additional source of predictability for downscaled seasonal predictions of the following spring precipitation over the SE USA and GM. Nevertheless, the problem of how to construct a prediction model for the following spring precipitation based on the preceding winter VM remains;additional study is required in this area. Moreover, given that the VM is closely correlated with ENSO (Ding et al.,“The Victoria Mode,” 2015), and ENSO could signifcantly infuence precipitation over the USA (Ting and Wang 1997;Gutzler, Kann, and Thornbrugh 2002; Wang et al. 2010,2012; Ciancarelli et al. 2014), the question naturally arises as to whether the efect of the VM and ENSO on the precipitation over the SE USA and GM are independent. Further research into this issue is also necessary.

    Acknowledgements

    The authors thank Dr Sen Zhao for calculating the vertical integration of the anomalous moisture fux felds.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This work was jointly supported by the China Special Fund for Meteorological Research in the Public Interest [grant number GYHY201506013]; the National Basic Research Program of China[973 Program, grant number 2012CB955200]; the National Natural Science Foundation of China for Excellent Young Scholars[grant number 41522502]; the National Natural Science Foundation of China [grant number 41475037], and the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA11010303].

    References

    Alexander, M. A., D. J. Vimont, P. Chang, and J. D. Scott. 2010. “The Impact of Extratropical Atmospheric Variability on ENSO: Testing the Seasonal Footprinting Mechanism Using Coupled Model Experiments.” Journal of Climate 23: 2885-2901.

    Behera, S. K., R. Krishnan, and T. Yamagata. 1999. “Unusual Ocean-Atmosphere Conditions in the Tropical Indian Ocean during 1994.” Geophysical Research Letters 26: 3001-3004.

    Bond, N. A., J. E. Overland, M. Spillane, and P. Stabeno. 2003. “Recent Shifts in the State of the North Pacifc.”Geophysical Research Letters 30: 2183. doi:http://dx.doi. org/10.1029/2003GL018597.

    Ciancarelli, B., C. L. Castro, C. Woodhouse, F. Dominguez, and H. I. Chang. 2014. “Dominant Patterns of US Warm Season Precipitation Variability in a Fine Resolution Observational Record, with Focus on the Southwest.” International Journal of Climatology 34 (3): 687-707.

    Ding, R. Q., J. P. Li, Y. H. Tseng, C. Sun, and Y. P. Guo. 2015. “The Victoria Mode in the North Pacifc Linking Extratropical Sea Level Pressure Variations to ENSO.” Journal of Geophysical Research Atmospheres 120 (1): 27-45. doi:http://dx.doi. org/10.1002/2014JD022221.

    Ding, R. Q., J. P. Li, Y.-h. Tseng, and C. Q. Ruan. 2015. “Infuence of the North Pacifc Victoria Mode on the Pacifc ITCZ Summer Precipitation.” Journal of Geophysical Research Atmospheres 120: 964-979. doi:http://dx.doi.org/10.1002/2014JD022364.

    Ding, R. Q., J. P. Li, and Y. H. Tseng. 2015. “The Impact of South Pacifc Extratropical Forcing on ENSO and Comparisons with the North Pacifc.” Climate Dynamics 44: 2017-2034.

    Gutzler, D. S., D. M. Kann, and C. Thornbrugh. 2002. “Modulation of ENSO-Based Long-Lead Outlooks of Southwestern U.S. Winter Precipitation by the Pacifc Decadal Oscillation.”Weather and Forecasting 17: 1163-1172.

    Hufman, G. J., R. F. Adler, P. Arkin, A. Chang, R. Ferraro, A. Gruber, J. E. Janowiak, et al. 1997. “The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset.”Bulletin of the American Meteorological Society 78: 5-20.

    Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, et al. 1996. “The NCEP/NCAR 40-Year Reanalysis Project.” Bulletin of the American Meteorological Society 77: 437-471.

    Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis. 1997. “A Pacifc Interdecadal Climate Oscillation with Impacts on Salmon Production.” Bulletin of the American Meteorological Society 78: 1069-1079.

    Nnamchi, H. C., and J. P. Li. 2011. “Infuence of the South Atlantic Ocean Dipole on West African Summer Precipitation.” Journal of Climate 24: 1184-1197.

    Rayner, N. A., P. Brohan, D. E. Parker, C. K. Folland, J. J. Kennedy,M. Vanicek, T. J. Ansell, et al. 2006. “Improved Analyses of Changes and Uncertainties in Sea Surface Temperature Measured in Situ since the mid-Nineteenth Century: The HadSST2 Dataset.” Journal of Climate 19: 446-469.

    Rogers, J. C. 1981. “The North Pacifc Oscillation.” Journal of Climatology 1: 39-57.

    Ting, M. F., and H. Wang. 1997. “Summertime U.S. Precipitation Variability and Its Relation to Pacifc Sea Surface Temperature.”Journal of Climate 10 (8): 1853-1873.

    Vimont, D. J., D. S. Battisti, and A. C. Hirst. 2001. “Footprinting: A Seasonal Connection between the Tropics and mid-Latitudes.” Geophysical Research Letters 28: 3923-3926.

    Vimont, D. J., J. M. Wallace, and D. S. Battisti. 2003. “the Seasonal Footprinting Mechanism in the Pacifc: Implications for ENSO.” Journal of Climate 16: 2668-2675.

    Vimont, D. J., D. S. Battisti, and A. C. Hirst. 2003. “The Seasonal Footprinting Mechanism in the CSIRO General Circulation Models.” Journal of Climate 16: 2653-2667.

    Walker, G. T., and E. W. Bliss. 1932. “World Weather V.” Memoirs of the Royal Meteorological Society 4: 53-84.

    Wang, H. L., S. Schubert, M. Suarez, and R. Koster. 2010. “The Physical Mechanisms by Which the Leading Patterns of SST Variability Impact U.S. Precipitation.” Journal of Climate 23 (7): 1815-1836.

    Wang, H., A. Kumar, W. Q. Wang, and B. Jha. 2012. “U.S. Summer Precipitation and Temperature Patterns following the Peak Phase of El Ni?o.” Journal of Climate 25: 7204-7215.

    Xie, P. P., and P. A. Arkin. 1997. “Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs.” Bulletin of the American Meteorological Society 78: 2539-2558.

    Zhang, Y., J. M. Wallace, and D. S. Battisti. 1997. “ENSO-like Interdecadal Variability: 1900-93.” Journal of Climate 10: 1004-1020.

    維多利亞模態(tài); 春季降水;美國東南部; 墨西哥灣;海氣相互作用

    6 February 2016

    CONTACT DING Rui-Qiang drq@mail.iap.ac.cn

    ? 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    比濕墨西哥灣海溫
    美國港口工人大罷工
    國企管理(2024年10期)2024-12-31 00:00:00
    雅安地區(qū)近50 年濕度變化特征分析
    溫暖的墨西哥灣
    基于深度學習的海溫觀測數(shù)據(jù)質(zhì)量控制應用研究
    海洋通報(2021年3期)2021-08-14 02:20:48
    基于Argo、XBT數(shù)據(jù)的蘇拉威西海溫鹽特征分析
    海洋通報(2021年1期)2021-07-23 01:55:22
    基于探空資料的1961—2018年新疆高空大氣比濕氣候特征分析
    南方比濕特征及其與暴雨的關系
    南印度洋偶極型海溫與中國西南地區(qū)初秋降水的關系
    墨西哥灣魚蝦死亡案
    2017年朝陽市地面比濕特征分析
    深夜a级毛片| 亚洲一级一片aⅴ在线观看| 搡老乐熟女国产| 一本久久精品| 国产91av在线免费观看| 人人妻人人爽人人添夜夜欢视频 | 亚洲精品乱码久久久久久按摩| 久久精品久久久久久噜噜老黄| 久久影院123| 一本一本综合久久| 97在线人人人人妻| 黄色配什么色好看| 亚洲精品亚洲一区二区| 日韩大片免费观看网站| 久久久久久久精品精品| 大香蕉97超碰在线| 99久国产av精品国产电影| 久久久久精品性色| 一区二区三区免费毛片| 丰满少妇做爰视频| 热re99久久国产66热| 99九九在线精品视频 | 啦啦啦视频在线资源免费观看| 国产男女内射视频| 9色porny在线观看| 一级二级三级毛片免费看| 亚洲精品国产色婷婷电影| 午夜久久久在线观看| 我的女老师完整版在线观看| 久久久久久久久大av| 十分钟在线观看高清视频www | 精品卡一卡二卡四卡免费| 最近中文字幕高清免费大全6| 国产极品粉嫩免费观看在线 | 老女人水多毛片| 国产成人a∨麻豆精品| 亚洲第一区二区三区不卡| 国产精品99久久99久久久不卡 | 国产精品麻豆人妻色哟哟久久| 免费黄频网站在线观看国产| 在线观看人妻少妇| 久久久精品免费免费高清| 国产免费又黄又爽又色| 精品一品国产午夜福利视频| 少妇精品久久久久久久| 久热这里只有精品99| 高清黄色对白视频在线免费看 | 午夜免费男女啪啪视频观看| 久久久亚洲精品成人影院| 国产国拍精品亚洲av在线观看| 亚洲精品国产av成人精品| 日日啪夜夜爽| av天堂中文字幕网| 国产伦精品一区二区三区视频9| 久久6这里有精品| 亚洲精品中文字幕在线视频 | 国产精品免费大片| 简卡轻食公司| 精品久久久噜噜| 一级毛片黄色毛片免费观看视频| 十分钟在线观看高清视频www | 女性生殖器流出的白浆| 一区二区av电影网| 精品少妇内射三级| 十八禁高潮呻吟视频 | 人妻少妇偷人精品九色| 日韩精品免费视频一区二区三区 | 一级毛片aaaaaa免费看小| 大话2 男鬼变身卡| 亚洲国产欧美在线一区| 成年人午夜在线观看视频| 日本欧美视频一区| 国产免费一级a男人的天堂| 大码成人一级视频| 男人和女人高潮做爰伦理| 在线观看一区二区三区激情| 久久久久久久久久人人人人人人| 精品久久久久久电影网| 好男人视频免费观看在线| 乱人伦中国视频| 老司机影院毛片| 日韩精品有码人妻一区| 国产一区二区在线观看日韩| 嫩草影院入口| 精品久久久精品久久久| 国产男女内射视频| 国产男人的电影天堂91| 久久久久久久久大av| 久久国产精品男人的天堂亚洲 | 最新的欧美精品一区二区| 3wmmmm亚洲av在线观看| 免费不卡的大黄色大毛片视频在线观看| 国产一区亚洲一区在线观看| 午夜久久久在线观看| av国产精品久久久久影院| 亚洲四区av| 欧美成人精品欧美一级黄| 欧美3d第一页| 如何舔出高潮| 欧美高清成人免费视频www| 亚洲av国产av综合av卡| 国产日韩一区二区三区精品不卡 | 日日啪夜夜爽| 寂寞人妻少妇视频99o| 在线观看三级黄色| 最近2019中文字幕mv第一页| 亚洲精华国产精华液的使用体验| 婷婷色麻豆天堂久久| 免费大片18禁| 中文字幕亚洲精品专区| 亚洲成色77777| 国产黄频视频在线观看| 亚洲,一卡二卡三卡| 亚洲图色成人| 高清午夜精品一区二区三区| 精品久久国产蜜桃| 秋霞在线观看毛片| 亚洲久久久国产精品| 美女主播在线视频| 99九九在线精品视频 | 国产亚洲最大av| 麻豆精品久久久久久蜜桃| 伊人久久精品亚洲午夜| 亚洲美女视频黄频| 91精品伊人久久大香线蕉| 在线免费观看不下载黄p国产| 亚洲精品aⅴ在线观看| 日韩成人伦理影院| 夜夜看夜夜爽夜夜摸| 日韩伦理黄色片| 人人澡人人妻人| 国产69精品久久久久777片| 亚洲人成网站在线观看播放| 汤姆久久久久久久影院中文字幕| 成人国产av品久久久| 最近2019中文字幕mv第一页| 国产69精品久久久久777片| 中文字幕亚洲精品专区| 欧美97在线视频| 人体艺术视频欧美日本| 欧美精品国产亚洲| 国产中年淑女户外野战色| 伦精品一区二区三区| 99热国产这里只有精品6| 国产成人免费无遮挡视频| 十八禁高潮呻吟视频 | 最近2019中文字幕mv第一页| 久久久久久久久久成人| 精华霜和精华液先用哪个| 国产精品久久久久久av不卡| 一级爰片在线观看| 婷婷色麻豆天堂久久| 色视频在线一区二区三区| 久久久久久久久久久丰满| 午夜福利在线观看免费完整高清在| 日本猛色少妇xxxxx猛交久久| 最近2019中文字幕mv第一页| 一个人看视频在线观看www免费| 免费播放大片免费观看视频在线观看| 日韩亚洲欧美综合| 人妻一区二区av| 最新中文字幕久久久久| 在现免费观看毛片| 伦精品一区二区三区| 日韩制服骚丝袜av| 亚洲国产色片| 欧美+日韩+精品| 搡女人真爽免费视频火全软件| 女性被躁到高潮视频| a级片在线免费高清观看视频| 精品国产乱码久久久久久小说| 最近手机中文字幕大全| 欧美变态另类bdsm刘玥| 少妇丰满av| 国产亚洲精品久久久com| 午夜视频国产福利| 精华霜和精华液先用哪个| 大香蕉97超碰在线| 高清视频免费观看一区二区| 菩萨蛮人人尽说江南好唐韦庄| 国产片特级美女逼逼视频| 尾随美女入室| 色婷婷av一区二区三区视频| 狂野欧美激情性bbbbbb| 国产精品一区二区三区四区免费观看| 亚洲一级一片aⅴ在线观看| 秋霞在线观看毛片| av福利片在线观看| av又黄又爽大尺度在线免费看| 特大巨黑吊av在线直播| 国产 精品1| 国产欧美日韩一区二区三区在线 | av专区在线播放| 99精国产麻豆久久婷婷| 如日韩欧美国产精品一区二区三区 | 国产 精品1| 亚洲av成人精品一区久久| 大香蕉久久网| 日产精品乱码卡一卡2卡三| 一级毛片电影观看| 夜夜骑夜夜射夜夜干| 99久久人妻综合| 人人妻人人澡人人爽人人夜夜| 日韩三级伦理在线观看| 韩国av在线不卡| 伦理电影大哥的女人| 国产亚洲91精品色在线| 国产精品成人在线| 久久97久久精品| 一级爰片在线观看| 亚洲av二区三区四区| 如何舔出高潮| 在线免费观看不下载黄p国产| 久久久国产欧美日韩av| 久久毛片免费看一区二区三区| 久久久精品免费免费高清| 成人美女网站在线观看视频| 成年人免费黄色播放视频 | 熟女av电影| 国产av码专区亚洲av| 日日啪夜夜撸| 国产欧美另类精品又又久久亚洲欧美| 国产成人免费无遮挡视频| 免费黄色在线免费观看| 国产淫语在线视频| 波野结衣二区三区在线| 一级,二级,三级黄色视频| 黑人高潮一二区| 好男人视频免费观看在线| 国产精品国产三级国产专区5o| 少妇被粗大的猛进出69影院 | videos熟女内射| 免费观看av网站的网址| 夫妻午夜视频| 免费黄网站久久成人精品| .国产精品久久| 黑人高潮一二区| 久久久久网色| 久久久久久久久久成人| 在线观看三级黄色| 少妇人妻精品综合一区二区| 国产在线免费精品| 一级a做视频免费观看| 日韩一区二区三区影片| 色94色欧美一区二区| 国产精品国产三级国产av玫瑰| 免费在线观看成人毛片| 高清午夜精品一区二区三区| 最近中文字幕高清免费大全6| 免费少妇av软件| 日本与韩国留学比较| 欧美日韩国产mv在线观看视频| 精品视频人人做人人爽| 草草在线视频免费看| av女优亚洲男人天堂| 亚洲第一av免费看| 午夜视频国产福利| √禁漫天堂资源中文www| 亚州av有码| 国产亚洲最大av| 最近2019中文字幕mv第一页| 国产色婷婷99| 男女边摸边吃奶| 伦理电影免费视频| 久久久久国产精品人妻一区二区| 蜜桃在线观看..| 伊人亚洲综合成人网| 男女国产视频网站| 韩国av在线不卡| 国产成人午夜福利电影在线观看| 午夜福利网站1000一区二区三区| 一本—道久久a久久精品蜜桃钙片| 王馨瑶露胸无遮挡在线观看| 久久精品国产亚洲av天美| 国内少妇人妻偷人精品xxx网站| 一二三四中文在线观看免费高清| 亚洲av成人精品一区久久| 亚洲美女黄色视频免费看| 男人爽女人下面视频在线观看| 久久精品国产亚洲av涩爱| 黄色一级大片看看| 中国国产av一级| 成人美女网站在线观看视频| 色婷婷av一区二区三区视频| 国产欧美日韩一区二区三区在线 | 亚洲精品日韩av片在线观看| 少妇人妻精品综合一区二区| 人妻夜夜爽99麻豆av| 毛片一级片免费看久久久久| 熟女av电影| 日本猛色少妇xxxxx猛交久久| 91成人精品电影| 又大又黄又爽视频免费| 男人狂女人下面高潮的视频| 国产精品国产三级专区第一集| 国产精品久久久久成人av| 精品酒店卫生间| 一级毛片久久久久久久久女| 蜜桃在线观看..| 少妇的逼好多水| 观看免费一级毛片| 菩萨蛮人人尽说江南好唐韦庄| 欧美成人精品欧美一级黄| 久久99精品国语久久久| 曰老女人黄片| 精品熟女少妇av免费看| 六月丁香七月| 精品酒店卫生间| 色视频在线一区二区三区| 久久av网站| 精品久久国产蜜桃| 又黄又爽又刺激的免费视频.| 久久久久精品久久久久真实原创| 丰满饥渴人妻一区二区三| 91久久精品电影网| 国产在视频线精品| 大陆偷拍与自拍| av在线播放精品| kizo精华| 午夜久久久在线观看| 成年av动漫网址| 精品人妻偷拍中文字幕| 人人妻人人添人人爽欧美一区卜| 日本欧美国产在线视频| 卡戴珊不雅视频在线播放| 久久精品熟女亚洲av麻豆精品| 亚洲精品aⅴ在线观看| av在线播放精品| 国产av一区二区精品久久| 少妇丰满av| 成年人午夜在线观看视频| 青春草视频在线免费观看| 在线观看免费日韩欧美大片 | 最近中文字幕高清免费大全6| 久久久久久久亚洲中文字幕| 亚洲真实伦在线观看| 能在线免费看毛片的网站| 久久久欧美国产精品| 极品人妻少妇av视频| 亚洲欧美日韩另类电影网站| 女人久久www免费人成看片| 国产国拍精品亚洲av在线观看| 特大巨黑吊av在线直播| 三级国产精品欧美在线观看| 三上悠亚av全集在线观看 | 高清欧美精品videossex| 亚洲久久久国产精品| 各种免费的搞黄视频| 99热全是精品| 欧美最新免费一区二区三区| 最近最新中文字幕免费大全7| 在线免费观看不下载黄p国产| 久久女婷五月综合色啪小说| 一本—道久久a久久精品蜜桃钙片| 麻豆乱淫一区二区| 人体艺术视频欧美日本| 久久午夜综合久久蜜桃| 久久精品国产鲁丝片午夜精品| 国产永久视频网站| 久久国产亚洲av麻豆专区| 日韩电影二区| 69精品国产乱码久久久| 国产淫片久久久久久久久| 岛国毛片在线播放| 免费久久久久久久精品成人欧美视频 | 99国产精品免费福利视频| 国国产精品蜜臀av免费| 高清在线视频一区二区三区| 亚洲欧美中文字幕日韩二区| 自线自在国产av| 在线天堂最新版资源| 国产高清国产精品国产三级| 国产精品蜜桃在线观看| 亚洲,欧美,日韩| 国产欧美另类精品又又久久亚洲欧美| 色视频www国产| 国产精品国产av在线观看| 三级国产精品片| 男人狂女人下面高潮的视频| 少妇裸体淫交视频免费看高清| 特大巨黑吊av在线直播| 看十八女毛片水多多多| 自拍欧美九色日韩亚洲蝌蚪91 | 色94色欧美一区二区| 国产精品免费大片| 亚洲国产成人一精品久久久| 永久网站在线| 午夜免费鲁丝| av专区在线播放| 国产伦精品一区二区三区视频9| 国产日韩欧美视频二区| 亚洲成色77777| 成人漫画全彩无遮挡| 国产色爽女视频免费观看| 69精品国产乱码久久久| 国产精品一区www在线观看| 久久久久久久久久久免费av| 亚洲av电影在线观看一区二区三区| 国产亚洲av片在线观看秒播厂| 婷婷色综合大香蕉| 国产精品一区www在线观看| 久久久久久久久久人人人人人人| 一级毛片久久久久久久久女| 99热这里只有是精品50| 国产极品粉嫩免费观看在线 | 99热网站在线观看| 亚洲欧美一区二区三区国产| 人人妻人人澡人人爽人人夜夜| 在线观看国产h片| 国产高清三级在线| 美女主播在线视频| 久久人人爽人人片av| 在线天堂最新版资源| 一区二区三区四区激情视频| 久久久欧美国产精品| 日韩三级伦理在线观看| 久久久久久人妻| 国产亚洲5aaaaa淫片| 亚洲欧美清纯卡通| 国产探花极品一区二区| 男女国产视频网站| 国产精品麻豆人妻色哟哟久久| 亚洲av成人精品一二三区| 国产日韩欧美视频二区| 永久免费av网站大全| 最后的刺客免费高清国语| 免费观看在线日韩| 51国产日韩欧美| 欧美亚洲 丝袜 人妻 在线| 男人狂女人下面高潮的视频| 日韩制服骚丝袜av| 精品一区二区三卡| 亚洲欧洲精品一区二区精品久久久 | videos熟女内射| 中文精品一卡2卡3卡4更新| 少妇被粗大的猛进出69影院 | 少妇丰满av| 又爽又黄a免费视频| xxx大片免费视频| 赤兔流量卡办理| 视频中文字幕在线观看| 国产精品.久久久| 丰满少妇做爰视频| 22中文网久久字幕| 亚洲国产欧美日韩在线播放 | 久久婷婷青草| 色视频在线一区二区三区| 看十八女毛片水多多多| 在现免费观看毛片| 日本与韩国留学比较| 亚洲人成网站在线播| av免费在线看不卡| av视频免费观看在线观看| 狂野欧美激情性xxxx在线观看| 人人妻人人爽人人添夜夜欢视频 | 久久av网站| 国产免费视频播放在线视频| 国产免费福利视频在线观看| 日韩 亚洲 欧美在线| 国产 一区精品| 高清在线视频一区二区三区| 亚洲国产毛片av蜜桃av| 18禁裸乳无遮挡动漫免费视频| 亚洲三级黄色毛片| 青春草亚洲视频在线观看| av有码第一页| 男人爽女人下面视频在线观看| 亚洲真实伦在线观看| 在线亚洲精品国产二区图片欧美 | 国产精品久久久久成人av| 天天躁夜夜躁狠狠久久av| 亚洲精品中文字幕在线视频 | 狂野欧美激情性bbbbbb| 一区在线观看完整版| 极品少妇高潮喷水抽搐| 丰满乱子伦码专区| 五月开心婷婷网| 国产精品熟女久久久久浪| 日韩av在线免费看完整版不卡| 亚洲成人一二三区av| 搡女人真爽免费视频火全软件| 欧美一级a爱片免费观看看| 成人18禁高潮啪啪吃奶动态图 | 成人毛片a级毛片在线播放| 久久精品国产亚洲网站| 日韩精品有码人妻一区| 一级毛片aaaaaa免费看小| 视频中文字幕在线观看| 欧美日韩一区二区视频在线观看视频在线| 国产精品99久久99久久久不卡 | 日韩伦理黄色片| 日本91视频免费播放| 亚洲欧洲日产国产| 国产成人freesex在线| 夜夜骑夜夜射夜夜干| 这个男人来自地球电影免费观看 | 国产av码专区亚洲av| 久久久久国产精品人妻一区二区| 国内揄拍国产精品人妻在线| 成年女人在线观看亚洲视频| 国产高清有码在线观看视频| 久久女婷五月综合色啪小说| 51国产日韩欧美| 少妇丰满av| 欧美97在线视频| 综合色丁香网| 精品熟女少妇av免费看| 啦啦啦啦在线视频资源| 97超视频在线观看视频| 亚洲精华国产精华液的使用体验| 王馨瑶露胸无遮挡在线观看| 亚洲精品自拍成人| 亚洲精品一区蜜桃| 97在线视频观看| 成人免费观看视频高清| 精品人妻熟女av久视频| av福利片在线| 欧美一级a爱片免费观看看| 视频中文字幕在线观看| 亚洲电影在线观看av| 国产亚洲一区二区精品| 日本vs欧美在线观看视频 | 91精品伊人久久大香线蕉| 日韩欧美 国产精品| 欧美日韩亚洲高清精品| 2018国产大陆天天弄谢| 国产在线视频一区二区| 日本欧美国产在线视频| av播播在线观看一区| 晚上一个人看的免费电影| 成人国产麻豆网| 日本黄色片子视频| 国产精品久久久久久久久免| 亚洲美女黄色视频免费看| 亚洲精品中文字幕在线视频 | 亚洲激情五月婷婷啪啪| 久久久久国产精品人妻一区二区| 亚洲av中文av极速乱| 黄色视频在线播放观看不卡| 久久久久久伊人网av| 欧美日韩一区二区视频在线观看视频在线| 国产免费一区二区三区四区乱码| 在线天堂最新版资源| 亚洲精品日本国产第一区| 亚洲精品亚洲一区二区| 免费看av在线观看网站| 国产精品偷伦视频观看了| 热re99久久精品国产66热6| 美女国产视频在线观看| 亚洲国产精品999| 一区二区三区乱码不卡18| 日日啪夜夜撸| 一个人免费看片子| 亚洲欧洲精品一区二区精品久久久 | 18禁裸乳无遮挡动漫免费视频| 亚洲,欧美,日韩| 老司机影院成人| av福利片在线| 成人午夜精彩视频在线观看| 热re99久久国产66热| 亚洲精品自拍成人| 丁香六月天网| 青青草视频在线视频观看| 亚洲国产精品一区二区三区在线| 久久久久久久大尺度免费视频| 色哟哟·www| 老司机影院毛片| 韩国高清视频一区二区三区| 亚洲国产欧美在线一区| 五月开心婷婷网| 亚洲精品成人av观看孕妇| 中国三级夫妇交换| 国产一区二区三区综合在线观看 | 王馨瑶露胸无遮挡在线观看| 中文天堂在线官网| 国产爽快片一区二区三区| 18禁裸乳无遮挡动漫免费视频| 国产一区二区三区综合在线观看 | 国产 一区精品| 精品亚洲成a人片在线观看| 我要看日韩黄色一级片| 午夜福利在线观看免费完整高清在| 欧美 日韩 精品 国产| 亚洲内射少妇av| 高清视频免费观看一区二区| 久久 成人 亚洲| 人妻夜夜爽99麻豆av| 蜜桃久久精品国产亚洲av| 一级毛片电影观看| 伊人久久精品亚洲午夜| 人妻人人澡人人爽人人| 久久久午夜欧美精品| 精品亚洲成国产av| 久久精品久久精品一区二区三区| 天天躁夜夜躁狠狠久久av| 丁香六月天网| 久久97久久精品| 亚洲av国产av综合av卡| 国产日韩欧美在线精品| 91精品伊人久久大香线蕉| 国产黄频视频在线观看| 日韩电影二区| 亚洲国产最新在线播放| 免费观看a级毛片全部| 赤兔流量卡办理| 久久国内精品自在自线图片| 久久久久精品久久久久真实原创| 日韩成人伦理影院| 国产片特级美女逼逼视频| 精品一区二区免费观看| 精品人妻熟女毛片av久久网站| 亚洲欧美中文字幕日韩二区| 日日撸夜夜添| 免费大片黄手机在线观看| 99热全是精品|