• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Time Sequence Change-Point Model of Electrostatic State Parameters of Aircraft Engine

    2018-03-29 07:36:00,,,

    ,,,

    1.College of Aeronautical Engineering,Civil Aviation University of China,Tianjin 300300,P.R.China;

    2.College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    0 Introduction

    Condition monitoring and fault diagnosis of aircraft engines are effective means to guaranteeing air safety and reduce maintenance costs.Engine monitoring system (EMS),prognostics and health management[1](PHM)have been recently further developed toward condition monitoring technology to realize condition-based maintenance(CBM)[2].Although traditional monitoring and diagnosis technologies hold advantages in aviation safety and economic efficiency,they are limited by the principle of monitoring means with many defects.

    In bore-detection based on internal damage detection,the light source is limited by the endoscopic diameter.The internal structure of the engine is complex,and it presents an irregular geometric shape.Under the illumination of point light sources,many shadow areas will be easily generated in the image.These drawbacks hinder the extraction of image features and the subsequent diagnosis[3-4].

    In vibration monitoring and diagnostic technology,abnormal vibration(i.e.,vibration generated under normal engine operation)is accompanied by strong background signals,making abnormal signals difficult to capture accurately[5-6].In addition,measured vibration signals can reflect only the overall vibration of engine,and the abnormal vibration is concealed in the macroscopic system-level vibration.Therefore,this technology is not ideal for fault localization.

    In gas path performance parameter monitoring technology[7-8],the deficiency of this method lies in its poor reaction capability to short-term performance change of the engine[9].Moreover,the system structure of the aircraft engine is extremely complex and the operating environment is harsh,leading to poor fault diagnosis capacity and localizing depth.

    Gas-path electrostatic monitoring is an approach for intelligent health management of online monitoring early-stage faults.An increasing amount of literature on its methodologies,applications,and experiments has been presented in recent years.Vatazhin et al.[10]presented the theoretical method,laboratory modeling and simulation of electrostatic monitoring for engine.The electrostatic monitoring technology was also used in engine diagnostics through monitoring the overall electrostatic charge level.Considering the great potential of electrostatic monitoring,F(xiàn)isher et al.[11]conducted an on-line monitoring experiment on gas path debris using electrostatic sensors.They reported that the electrostatic monitoring technology would be an important PHM tool.Powrie et al.[12]applied this technology to the PHM system of aero-engines.The inlet debris monitoring system and exhaust debris monitoring system (EDMS),using the electrostatic monitoring,were also developed and applied to a certain type of joint-fighter.Wilcox et al.[13]investigated the application in industrial gas turbines for gas path condition monitoring and discussed the sensor installation issues.Addabbo et al.[14-15]presented a theoretical modeling of an electrostatic gas path debris detection system and conducted an experimental validation.A similar research was conducted by the RMS Center of Nanjing University of Aeronautics and Astronautics in China.Wen et al.[16-17]optimized the electrostatic sensor design and conducted a simulated experimental study with a simulation test bench.Fu et al.[18-19]conducted a verified electrostatic monitoring experiment on a certain type of turbojet engine.Yin et al.[20]conducted a verified electrostatic monitoring experiment on a certain type of civil turbofan engine accordingly,and found a blade case rubbing fault and combustion fault.

    Combining gas-path electrostatic with the change-point analysis method[21]of time sequence AR(P)model,we diagnosed the occurrence of a corresponding fault and further localized the damaged component and the damage degree.The proposed diagnosis method has the following advantages:Guaranteed air safety,reduced cost,and improved service efficiency of aircraft,and so on.

    1 Formulation of Change-Point Model

    The change-point model is defined as″one or a number of points that suddenly change in the model″.This problem involves a sequence of samples in a chronological order.At an unknown time t,the mathematical features or statistical distribution of these samples suddenly change.Thus,t is called the change point at this time.For convenience,in the unary linear regression changepoint model,we assume that:X is an independent variable,Y is a dependent variable,andntimes of observed values are taken;i.e.,(Xi,Yi),i= 1,2,…,n.The model is set wheni=1,2,…,m-1,(Xi,Yi)follows the linear regression model,that is

    Wheni=m,m+1,…;(Xi,Yi)follows linear regression

    where eiis a random error in the model,a1and a2are the constant terms,b1and b2the independent variable coefficients of the equation,and Yiis thei-th valuation of the dependent variable.At least one of a1=a2and b1=b2is false.At point m,if the coefficients of this regression equation are unequal,m is called the regressive change point.

    2 Time Sequence Change-Point Model

    2.1 Difference calculation

    Most time series are non-stationary,and they could not accord with the precise demand to analyze aero-engine condition by change-point model of stationary time series.To realize a refined analysis of the aircraft engine state,stationary processing of the sample data must be conducted.At present, non-stationary time sequences are analyzed by using certain factor de-composition method,and difference method is a convenient and effective technique for information extraction.After the original data are stabilized with difference method,the stable time sequence change-point model(we take AR (P)as an example)can be used to analyze the identification of change points.

    For anyp-order auto-regression AR (P)process

    where xtis the observed value at time t;pthe order of auto-regression;φ1,…,φpare the auto-regression coefficients;andεtis the white noise series.

    The discrete-time sequence of p order difference is equal to p order derivation of the continuous time series.According to Cramer decomposition theorem,certain information in the sample sequence{xt}can be sufficiently extracted from the p order difference.Taking first-order difference as an example

    This equation indicates that the essence of the first-order difference is an auto-regression process,that is,historical data{xt}after onephase delay are used as independent variables to explain the change in date value{xt-1}in the current phase.Thus

    whereBis the backward shift operator,BmXt=Xt-m,m the time span,▽the backward difference operator,Xt=Xt-Xt-1=(1-B)Xt,d the times of difference.The AR (P)model can be obtained through the deformation of Eq.(4).Under suitable difference order operation,certain formation contained in the data can be sufficiently extracted by applying Cramer decomposition theorem.

    2.2 Model analysis

    Random dynamic data in time sequence are arranged according to time order.According to before-after correlation of dynamic data,a convenient and feasible AR (P)(p-order auto regression model)model is used to establish the time sequence change-point model.Its descriptions are as follows:A sequence of observed values{xt},t=1,2,…,N meet the following auto regression model

    Ifф= (φ1,…,φp)τ≠ ф′=Eq.(6)is called the discrete auto-regression time sequence change-point model,wheremis the change point in the model,coefficientsф=(φ1,gression parameters,and residual error atis the white noise series.

    2.3 Estimation and inspection of change points

    (1)Roll investigated sample sequence

    First,the sample length n and the investigation interval length n0are determined.That is,the sample data sequence is set as{Xt},t=1,2,… ,N,the total data sequence length n is the length of the phase I sample,the interval n0(n0≤n≤N)is rolled to divide the total data sequence into several subsequences:The first phase {x1,x2,…,xn},the second phase {xn+1,xn+2,…,xn+n},…,the m-th phase {x(m-1)n+1,x(m-1)n+2,…,x(m-1)n+n};the″rolling″analysis is conducted on the subsequences.

    (2)Establish time sequence AR (k)model

    ① When k=1,2,…,m-1,k<n,parametersφk1,φk2,…,φkkof AR(k)model are calculated as follows

    In Eq.(7),pjis the autocorrelation function and is estimated through the samples as follows

    ②The residual sum of squares of the AR(k)model recurred:k=1,2,…,m

    ③ The amount of information BIC(k),k=1,2,…,m of the AR (k)model is calculated as follows

    The solved model is named AR (P),and its parameters areφp1,φp2,…,φpp.

    (3)Test judgment

    Difference test is conducted on neighboring models.If the orders are the same and the coefficients are approximate,then the difference is insignificant;otherwise,F(xiàn)statistical judgment will be used

    where A0and A1are the residual sums of squares corresponding to subsequences in two different phases(calculation is shown in Eq.(9)),s is the difference of numbers of subsequence parameters in two different phases,and r is the number of high-order model parameters.

    The confidence levelαis provided in advance.The Fαvalue,which satisfies Fα(P(F≥Fα)=α),is searched through theFdistribution table.When F>Fα,the subsequences of the two phases will be significantly different.

    We consider one single change point as an example.If the subsequences of two neighboring phases are significantly different,t0is the terminal point of the early-phase subsequence,and the moments in section[t0-n0,t0+n0]are taken as alternate change-point moments.When an alternative change-point moment is taken as the boundary,the total data sequence is divided into two segments for modeling.The statistical quantityFwill then be calculated,and then the place with the most significant before-after difference value will be taken as the change-point estimation.

    3 Model Application and Discussions

    3.1 Data source

    The data were provided by aparticular turbojet engine test.This experiment was used to detect electrostatic particles in engine exhaust.To avoid the destruction of engine structure,the electrostatic sensor was installed at the outer bracket of the engine tailpipe.This test bench was applicable to all life tests for turbojets,and mainly used for overall performance,applicability performance,long performance and lifespan,etc.The test bench consisted of a thrust test bench system,a fuel oil supply system,and an electric control system.This experimental engine started a 200hlifespan performance test in July 2011,and a 40htest was added later,resulting in a total 240htest).The interval of the test was 1h.Electrostatic monitoring started from the 100th phase of life test and ended in the 240th phase.The first hour was removed because collection line was connected at the ground and it effectively monitored 139phases.These data were collected on November 12,2011between 08:00a.m.—10:00a.m.,and the searching interval was 1 min.The sampling site was as shown in Fig.1.

    Fig.1 Schematic of actual sampling site

    (1)Background signals

    According to Refs.[11-12],there are two important feature parameters in engine electro-static signal analysis,namely,activity level and event rate,which are calculated as follows:

    ①Activity level(AL):The activity level reflects the quantity of small particles(such as soot particles and fraction-lets)that continuously appear within a period of time T,and it is a measurement of ratio-frequency components of signals.Activity level is defined as follows

    where N is the number of samples within time T,and its activity level is the root-mean-square value.

    ② Event rate(ER):The event rate is used to measure the number of abnormal particles in airflow within unit time.Typical events include abnormal large particles generated by component fault and large soot particles generated by incomplete combustion.Event rate is expressed as follows

    where M is the number of events within the time T,N the total number of samples within time T.The physical significance represented by the event rate is within a certain time interval(1s)of the electrostatic sensor.The percentage of the number of points exceeding K times of charge of current interval AL value in the total number of sampled points.

    In ignition phase after the experiment starts,a large quantity of positive and negative ions were generated inside the pipeline,resulting in a drastic change in the induced voltage on the sensor,as shown in Fig.2(a),whereArepresents the amplitude of original data.After approximately 5s,the combustion tends to stabilize,and so does the induced voltage on the sensor.

    Fig.2 Signal and its feature parameters in startup phase

    In Fig.2(b),when the engine starts in the ignition phase,large soot particles generated by incomplete combustion are contained in tail gas,resulting in a major change in the activity level in the first 5s.When the AL charge reaches 30pc,the signal event rate ER in Fig.2(c)ascends accordingly,and the largest proportion reaches 10%.When the engine is under normal operating status(after 5s),combustion generates soot particles with minimal size(nanometer level).These soot particles are the main components of garpath charged particles.Moreover,the combustion process in the combustion chamber of the engine under normal operation is very stable.Thus,the generated soot particles are relatively stable,and the corresponding activity level and event rate tend to be 0.In the analysis chart in this paper,the activity level parameters are uniformly expressed by red solid dots″·″,and event rates are expressed by blue solid square dots“■”.

    (3)Abnormal signal

    This paper uses typical data monitored from 8:00to 10:00AM on November 12,2011.The value on each sampled point represents the electrostatic signal of the tail gas that passes through the sensor in last 1min.The data after difference stationary processes are taken as an example to establish the time sequence AR (P)change-point model

    whereQis the tail-gas electrostatic induction signal detected by the sensor,wheremis the change point in the model,coefficientsф=represent auto-regression parame-ters,and the residual error atis the white noise series.The model significance is shown in Eq.(6).Fig.3shows the original data curves of the electrostatic signals.

    Fig.3 Original data curves acquired by sensor

    3.2 Stabilizations method

    After the first-order difference of the original time sequence data (Fig.3){Qt}of sensor in Fig.1recorded as {Qt},Qt= Qt- Qt-1,{Qt}is as shown in Fig.4.

    As shown in Figs.3,4,the original sequence Qthas linear ascending and descending tendencies,and sequence {Qt}after difference has been stablizied nearby a fixed value.

    Fig.4 Original data first-order difference

    3.3 Change-point searching algorithm flow

    The change-point searching algorithm in Section 3can rapidly and accurately detect the time position at which quantitative change of electrostatic data occurs.The specific searching steps are as shown in Fig.5.

    3.4 Test results

    The test level is set asα=0.05.The parameters are calculated according to Eqs.(7—12)and then used to test the existence of the change points.The calculation results are shown in Table 1.

    Fig.5 Change-point searching flowchart

    Table 1 Change-point searching results

    Change-point searching results show that change points appear five times at 8:11a.m.,8:26a.m.,8:48a.m.,9:17a.m.,and 9:41a.m.Meanwhile,the engine produces a loud,abnormal sound.Detection by test personnel after disassembly revealed that large-particle carbon deposits appear in the combustion chamber(Fig.6).The real-world scenario verifies that this paper can perform real-time monitoring of change status of gas-path charging level of the engine to provide early warning of the initial fault status.Fig.7 shows the data and signal features acquired at a typical change-point time 08:11a.m.

    Fig.6 Carbon deposit in fuel spray nozzle

    Fig.7 Electrostatic signals and features at typical change-point time

    Comparisons of Figs.2(b,c)and Figs.7(b,c)show that the activity level and event rate after the engine starts and stabilizes tend to be 0.However,when the change point occurs,a corresponding activity level AL is maintained at a stable level 0.5—0.8(nc),and the proportion of the corresponding event rate reaches 50%,which is far greater than the stable status under normal operation of the engine.Actual operation of the engine shows that normal background noise signals are at milli-volt levels,but obvious abnormal pulse amplitude appears within the period of the 216th—217th test run and even volt-level signals appear.

    4 Conclusions

    The time sequence change-point model established in this paper rapidly and effectively detects the time when quantitative change occurs.

    (1)Within 5sin the engine ignition phase,the induced voltage amplitude experiences obvious change;the corresponding activity level is 30pc and event rate is approximately 10%.After it stabilizes,both the activity level and event rate of the induced signals return to a value near 0.

    (2)The activity level at a typical changepoint time is maintained at 0.5—0.8 (nc)and the event rate reaches 50%,both of which are far greater than the level under stable working conditions.

    (3)Based on the above searching algorithm,results show that five change-point times,namely,8:11a.m.,8:26a.m.,8:48a.m.,9:17a.m.,and 9:41a.m.,are detected,and the corresponding jumping degrees are 0.020 189,0.014 452,0.083 381,0.147 074,and 0.099 978.Normal background noise signals of the engine are at millivolt level,but volt-level signals appear at changepoint time.This finding indicates that excess soot particles are present at change-point time,and these abnormalities change the charging level of the charged particles in the gas path.The engine disassembly report shows that large-particle carbon deposits can be found in the combustion chamber,and change-point results of electrostatic induction signals determine the corresponding fault reflection.

    (4)Difference method can concisely and effectively extract certain information.After the original data are processed by the first-order differential formula,linear trend terms of this data sequence are effectively eliminated,thereby facilitating the extraction of information while the sample sequence is smoothed.

    (5)As an advanced early fault detection method,the change-point model can reflect the working conditions of the engine.This model is beneficial to improving monitoring techniques and realizing fault prediction and health management.

    Acknowledgements

    The work is supported by the Initial Scientific Research Fund (No.2015QD02S),the Foundation Research Funds for the Central Universities (No.3122016A004,3122017027),which are highly appreciated by the authors.

    [1] GUO Y M,CAI X B,ZHANG B Z.Review of prognostics and health management technology[J].Computer Measurement & Control,2008,16(9):1213-1216.

    [2] ROEMER M J,KACPRZYNSKI G J,SCHOELLER M H.Improved diagnostic and prognostic assessments using health management information fusion[C]//2001IEEE Systems Readiness Technology Conference.Valley Forge,PA:IEEE,2001:365-377.

    [3] YU H,ZUO H F,HUANG C Q.Advanced endoscopy and fault testing of aeronautic engine[J].Aviation Engineerging & Mainienance,2002(2):20-22.

    [4] LI C Y,SHI H,YAO H Y.Research on borescope image properties[J].Testing Equipment & Trchnology,2006,239(5):38-40.

    [5] CHEN G,LI C G,WANG D Y.Nonlinear dynamic analysis and experiment verification of rubbing faults of rotor-ball bearing-support-stator coupling system for aero-engine [J].Journal of Aerospace Power,2008,23(7):1304-1311.

    [6] CHEN G.Vibration modeling and analysis for dualrotor aero-engine[J].Journal of Vibration Engineering,2011,24(6):619-632.

    [7] VODOPIANOV V,NIKITIN V.A new approach to GPA-system for gas turbine engine[C]//The 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Huntsville,Alabama:AIAA,2003:4986.

    [8] ROMESSIS C,MATHIOUDAKIS K.Bayesian network approach for gas path fault diagnosis[J].Journal of Engineering for Gas Turbines and Power,2006,128(1):64-72.

    [9] LI Y G.A gas turbine diagnostic approach with transient measurements[J].Proceedings of the Institution of Mechanical Engineers,Part A:Journal of Power and Energy,2003,217(2):169-177.

    [10]VATAZHIN A,STARIK A,KHOLSHCHEVNIKOVA E.Electric charging of soot particles in aircraft engine exhaust plumes[J].Fluid Dynamics,2004,39(3):384-392.

    [11]FISHER C.Data and information fusion for gas path debris monitoring [C]// Aerospace Conference,2001,IEEE Proceedings.[S.l.]:IEEE,2001:3017-3022.

    [12]POWRIE H,NOVIS A.Gas path debris monitoring for F-35Joint Strike Fighter propulsion system PHM[C]// Aerospace Conference.[S.l.]:IEEE,2006:8.

    [13]WILCOX M,RANSOM D,HENRY M,et al.Engine distress detection in gas turbines with electrostatic sensors[C]//ASME Turbo Expo 2010:Power for Land,Sea,and Air.Marine Glasgow,UK:[s.n.],2010:39-51.

    [14]ADDABBO T,F(xiàn)ORT A,MUGNAINI M,et al.Theoretical modeling of an electrostatic gas-path debris detection system with experimental validation[C]∥Proceedings of 2015IEEE Sensors Applications Symposium.Zadar,Croatia:[s.n.],2015:13-15.

    [15]ADDABBO T,F(xiàn)ORT A,GARGIN R,et al.Theoretical characterization of a gas path debris detection monitoring system based on electrostatic sensors and charge amplifiers[J].Measurement,2015,64:138-146.

    [16]WEN Z H,ZUO H F,LI Y H.Gas path debris electrostatic monitoring technology and experiment[J].Journal of Aerospace Power,2008,23(12):2321-2326.

    [17]WEN Z,MA X,ZUO H F.Characteristics analysis and experiment verification of electrostatic sensor for aero-engine exhaust gas monitoring [J].Measurement,2014,47(1):633-644.

    [18]FU Y,ZUO H F,LIU P P,et al.Gas path electrostatic sensors monitoring and comparison experiment on turbojet engine[J].Transactions of Nanjing University of Aeronautics & Astronautics,2013,30(4):361-365.

    [19]FU Y,YIN Y B,WANG H,et al.Study on detection for aero-engine abnormal condition based on permutation entropy of electrostatic signal[J].Automation&Instrumentation,2017(11):1-5,19.

    [20]YIN Y,CAI J,ZUO H,et al.Experimental investigation on electrostatic monitoring technology for civil turbofan engine [J].Journal of Vibroengineering,2017,19(2):967-987.

    [21]FU Y.Recognition for change-point of traffic flow binary linear regressions based on projective transform method [J].Journal of Computer Applications,2010,30(1):263-262.

    中文亚洲av片在线观看爽| 此物有八面人人有两片| 99热只有精品国产| 日日干狠狠操夜夜爽| 成人性生交大片免费视频hd| 精品久久久久久久久久久久久| 欧美日韩国产亚洲二区| 国产乱人视频| 久久人人爽人人爽人人片va| 精品久久久久久久末码| 国产v大片淫在线免费观看| 大又大粗又爽又黄少妇毛片口| 亚洲人成网站在线播放欧美日韩| 午夜福利18| 久久精品夜夜夜夜夜久久蜜豆| www.色视频.com| 国产国拍精品亚洲av在线观看| 免费大片18禁| 午夜福利在线观看吧| 一级av片app| 精品久久久噜噜| 老司机深夜福利视频在线观看| 永久网站在线| 最新中文字幕久久久久| 精品久久国产蜜桃| 村上凉子中文字幕在线| 美女黄网站色视频| 黄色视频,在线免费观看| 我要搜黄色片| 嫁个100分男人电影在线观看| 日韩亚洲欧美综合| 能在线免费观看的黄片| 夜夜夜夜夜久久久久| 日本三级黄在线观看| 熟女人妻精品中文字幕| 亚洲国产色片| 51国产日韩欧美| 久久久国产成人免费| 久久午夜亚洲精品久久| 亚洲av免费高清在线观看| 桃红色精品国产亚洲av| 亚洲最大成人手机在线| 国产亚洲精品久久久com| 给我免费播放毛片高清在线观看| 国产麻豆成人av免费视频| 婷婷丁香在线五月| 日本一本二区三区精品| 国产老妇女一区| 久久婷婷人人爽人人干人人爱| 亚洲欧美日韩卡通动漫| 欧洲精品卡2卡3卡4卡5卡区| .国产精品久久| 99久久精品热视频| 午夜福利在线观看吧| 色尼玛亚洲综合影院| 国语自产精品视频在线第100页| 日韩中字成人| 亚洲aⅴ乱码一区二区在线播放| 久久草成人影院| 欧美激情国产日韩精品一区| 97人妻精品一区二区三区麻豆| 欧美性感艳星| 亚洲欧美精品综合久久99| 内射极品少妇av片p| 无遮挡黄片免费观看| 亚洲最大成人av| 国产成人av教育| 午夜福利成人在线免费观看| 中文字幕高清在线视频| 日本黄色视频三级网站网址| 国产精品福利在线免费观看| 观看美女的网站| 成年女人毛片免费观看观看9| 久久久久久久久久成人| 五月伊人婷婷丁香| 欧美成人a在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产精品一区二区三区四区免费观看 | 欧美高清性xxxxhd video| 亚洲av五月六月丁香网| 99热网站在线观看| 久久九九热精品免费| 亚洲人成网站高清观看| 日韩欧美 国产精品| 在线免费观看的www视频| www.www免费av| 日本一本二区三区精品| 日本免费一区二区三区高清不卡| 亚洲性夜色夜夜综合| 干丝袜人妻中文字幕| 国产成人福利小说| 美女 人体艺术 gogo| 赤兔流量卡办理| av在线观看视频网站免费| 黄色视频,在线免费观看| 久久久国产成人精品二区| 不卡视频在线观看欧美| 在现免费观看毛片| 欧美高清性xxxxhd video| 又黄又爽又免费观看的视频| 搡女人真爽免费视频火全软件 | 18禁裸乳无遮挡免费网站照片| 精品人妻一区二区三区麻豆 | 1000部很黄的大片| a级毛片免费高清观看在线播放| 51国产日韩欧美| 午夜日韩欧美国产| 亚洲美女黄片视频| а√天堂www在线а√下载| 欧美另类亚洲清纯唯美| 国产高清不卡午夜福利| 亚洲熟妇中文字幕五十中出| 51国产日韩欧美| 国产亚洲精品av在线| 日本五十路高清| 听说在线观看完整版免费高清| 51国产日韩欧美| 在线观看舔阴道视频| 美女大奶头视频| 少妇猛男粗大的猛烈进出视频 | 人妻少妇偷人精品九色| 91狼人影院| 搡老岳熟女国产| 毛片一级片免费看久久久久 | 国产一区二区在线观看日韩| 久久久久国内视频| 国产精品野战在线观看| 国产精品福利在线免费观看| 性插视频无遮挡在线免费观看| 精品人妻一区二区三区麻豆 | 亚洲国产精品sss在线观看| 欧美激情在线99| 亚洲不卡免费看| 啦啦啦韩国在线观看视频| 国产精品一区二区三区四区免费观看 | 成人精品一区二区免费| 精品不卡国产一区二区三区| 久久婷婷人人爽人人干人人爱| 亚洲国产精品成人综合色| 老司机午夜福利在线观看视频| 熟妇人妻久久中文字幕3abv| 久久欧美精品欧美久久欧美| 亚洲精品国产成人久久av| 中亚洲国语对白在线视频| 性欧美人与动物交配| 可以在线观看毛片的网站| 波多野结衣高清无吗| 最近中文字幕高清免费大全6 | 国产精品久久久久久亚洲av鲁大| 久久6这里有精品| 高清在线国产一区| 日本免费一区二区三区高清不卡| 国产高清有码在线观看视频| 男女那种视频在线观看| 日本与韩国留学比较| 亚洲欧美日韩卡通动漫| 亚洲人成网站高清观看| 久久人人精品亚洲av| 99国产精品一区二区蜜桃av| 最近最新中文字幕大全电影3| 免费在线观看影片大全网站| 超碰av人人做人人爽久久| 国产精品久久电影中文字幕| 国产高清视频在线播放一区| 深爱激情五月婷婷| 九色国产91popny在线| 午夜福利高清视频| 国产高清有码在线观看视频| 成人综合一区亚洲| 搡老岳熟女国产| 亚洲欧美清纯卡通| 国产亚洲精品综合一区在线观看| 国产伦精品一区二区三区视频9| 给我免费播放毛片高清在线观看| 成人永久免费在线观看视频| 国产精品久久久久久精品电影| 麻豆国产av国片精品| 亚洲无线观看免费| 国产精品免费一区二区三区在线| 在线看三级毛片| 伦理电影大哥的女人| 精品午夜福利在线看| aaaaa片日本免费| 白带黄色成豆腐渣| 国产亚洲91精品色在线| 日本撒尿小便嘘嘘汇集6| 少妇高潮的动态图| 女生性感内裤真人,穿戴方法视频| 国产v大片淫在线免费观看| av.在线天堂| 99九九线精品视频在线观看视频| 天堂影院成人在线观看| av天堂在线播放| 性插视频无遮挡在线免费观看| 国产精品电影一区二区三区| 日韩欧美精品v在线| 一边摸一边抽搐一进一小说| 成人精品一区二区免费| 久久久久久久久大av| 一级黄片播放器| 国产精品1区2区在线观看.| 少妇的逼好多水| 久久草成人影院| 国产一区二区三区视频了| 免费大片18禁| 久久久久久久亚洲中文字幕| 亚洲国产精品sss在线观看| 国产精华一区二区三区| 老司机深夜福利视频在线观看| 久久久久久久久久黄片| 男人狂女人下面高潮的视频| 国产精品一区二区性色av| 日韩欧美免费精品| 国产又黄又爽又无遮挡在线| 少妇人妻一区二区三区视频| 最近在线观看免费完整版| 日本熟妇午夜| 色综合站精品国产| 日韩欧美国产在线观看| 美女大奶头视频| 好男人在线观看高清免费视频| 成人综合一区亚洲| 日本 av在线| 国产成人aa在线观看| 成人国产综合亚洲| 久久久精品欧美日韩精品| 亚洲第一电影网av| 亚洲美女黄片视频| 成人性生交大片免费视频hd| 成人国产综合亚洲| 久久久精品欧美日韩精品| 国产综合懂色| 黄片wwwwww| 午夜爱爱视频在线播放| 在线观看免费视频日本深夜| 18禁在线播放成人免费| 男女那种视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 狂野欧美白嫩少妇大欣赏| 亚洲色图av天堂| 国产精品爽爽va在线观看网站| 精品久久久久久久久久久久久| 最好的美女福利视频网| 夜夜爽天天搞| 韩国av一区二区三区四区| 色综合亚洲欧美另类图片| xxxwww97欧美| 人妻夜夜爽99麻豆av| 免费人成视频x8x8入口观看| 18+在线观看网站| 精品乱码久久久久久99久播| 桃红色精品国产亚洲av| 亚洲av不卡在线观看| 狂野欧美激情性xxxx在线观看| 18禁在线播放成人免费| 久久99热6这里只有精品| 亚洲av五月六月丁香网| 美女高潮喷水抽搐中文字幕| 日韩欧美精品免费久久| 国产激情偷乱视频一区二区| 大型黄色视频在线免费观看| 99九九线精品视频在线观看视频| 成年女人毛片免费观看观看9| 午夜日韩欧美国产| 男女啪啪激烈高潮av片| 亚洲av美国av| 成人特级av手机在线观看| 一本久久中文字幕| 亚洲第一电影网av| 亚洲午夜理论影院| 大型黄色视频在线免费观看| 精品国产三级普通话版| 女人十人毛片免费观看3o分钟| 热99re8久久精品国产| 国产色婷婷99| 欧美绝顶高潮抽搐喷水| 久久国产乱子免费精品| 观看美女的网站| 免费观看精品视频网站| 黄色女人牲交| 特大巨黑吊av在线直播| av在线观看视频网站免费| 成年人黄色毛片网站| 国产免费男女视频| 欧美性猛交黑人性爽| 天堂影院成人在线观看| 少妇被粗大猛烈的视频| 99热这里只有是精品在线观看| 国产一级毛片七仙女欲春2| 一夜夜www| 啦啦啦韩国在线观看视频| 九九久久精品国产亚洲av麻豆| 成年免费大片在线观看| 日韩一本色道免费dvd| 成人无遮挡网站| 久久精品国产亚洲av涩爱 | 国产精品乱码一区二三区的特点| 国产精品三级大全| 精品一区二区三区av网在线观看| 丰满的人妻完整版| 91精品国产九色| 日本免费一区二区三区高清不卡| 禁无遮挡网站| 国产老妇女一区| 欧美成人性av电影在线观看| 欧美日本视频| 久久精品综合一区二区三区| 久久久精品大字幕| 色吧在线观看| 欧美高清性xxxxhd video| 2021天堂中文幕一二区在线观| 国产亚洲精品久久久com| 白带黄色成豆腐渣| 69av精品久久久久久| a级一级毛片免费在线观看| 国产精品国产三级国产av玫瑰| 99热这里只有精品一区| 村上凉子中文字幕在线| 啦啦啦啦在线视频资源| 亚洲真实伦在线观看| 1024手机看黄色片| 小说图片视频综合网站| 国产精品久久视频播放| av天堂中文字幕网| 性插视频无遮挡在线免费观看| 日韩,欧美,国产一区二区三区 | 国产高清不卡午夜福利| 欧美xxxx黑人xx丫x性爽| 看免费成人av毛片| 天美传媒精品一区二区| 韩国av一区二区三区四区| 色综合站精品国产| 免费一级毛片在线播放高清视频| АⅤ资源中文在线天堂| 黄色欧美视频在线观看| 欧美精品国产亚洲| 日本一本二区三区精品| 亚洲国产欧洲综合997久久,| 人妻丰满熟妇av一区二区三区| 99久久中文字幕三级久久日本| 内地一区二区视频在线| 日本 av在线| 成熟少妇高潮喷水视频| 国产精品伦人一区二区| 12—13女人毛片做爰片一| 男人和女人高潮做爰伦理| 少妇高潮的动态图| 欧美性猛交黑人性爽| xxxwww97欧美| 国产高清有码在线观看视频| 成人鲁丝片一二三区免费| 波野结衣二区三区在线| 久久人人爽人人爽人人片va| 在线观看午夜福利视频| 国产在线精品亚洲第一网站| 麻豆久久精品国产亚洲av| 99久久精品热视频| 国产麻豆成人av免费视频| 级片在线观看| 22中文网久久字幕| 国产一区二区三区在线臀色熟女| 免费黄网站久久成人精品| 全区人妻精品视频| 嫩草影院精品99| 欧洲精品卡2卡3卡4卡5卡区| 色哟哟哟哟哟哟| 国产一区二区三区在线臀色熟女| 精品久久久久久成人av| 国产午夜福利久久久久久| 国产高清有码在线观看视频| 白带黄色成豆腐渣| 久久久久国内视频| 身体一侧抽搐| 51国产日韩欧美| 国产三级中文精品| 免费av观看视频| 九九热线精品视视频播放| 免费一级毛片在线播放高清视频| 国产精品日韩av在线免费观看| 联通29元200g的流量卡| 久久久久久国产a免费观看| 国产精品野战在线观看| 噜噜噜噜噜久久久久久91| 18+在线观看网站| 黄色视频,在线免费观看| 国产伦一二天堂av在线观看| 狠狠狠狠99中文字幕| 亚洲欧美日韩东京热| 亚洲七黄色美女视频| 国产精品一区二区三区四区免费观看 | 18禁黄网站禁片免费观看直播| 精品午夜福利视频在线观看一区| 婷婷六月久久综合丁香| 九色国产91popny在线| 国产成年人精品一区二区| 亚洲欧美日韩高清在线视频| 男女边吃奶边做爰视频| 小蜜桃在线观看免费完整版高清| 国产精品自产拍在线观看55亚洲| 国产精品亚洲美女久久久| 最近中文字幕高清免费大全6 | 亚洲精品粉嫩美女一区| 在线观看舔阴道视频| 我要搜黄色片| 国产乱人伦免费视频| 亚洲精品久久国产高清桃花| 我的老师免费观看完整版| 国产成人aa在线观看| 日日啪夜夜撸| 干丝袜人妻中文字幕| 日韩中字成人| 老师上课跳d突然被开到最大视频| 免费不卡的大黄色大毛片视频在线观看 | av专区在线播放| 国产av不卡久久| 中文字幕高清在线视频| 嫩草影院新地址| 老熟妇乱子伦视频在线观看| 男人的好看免费观看在线视频| 国产午夜福利久久久久久| 午夜精品久久久久久毛片777| 国产乱人视频| 亚洲精品456在线播放app | 联通29元200g的流量卡| 色综合站精品国产| 不卡视频在线观看欧美| 欧美成人一区二区免费高清观看| 精品一区二区三区人妻视频| 少妇人妻精品综合一区二区 | 亚洲欧美日韩东京热| 久久亚洲真实| 永久网站在线| 免费在线观看成人毛片| 欧美日韩精品成人综合77777| 亚洲国产精品久久男人天堂| 精品午夜福利在线看| 午夜视频国产福利| 精品免费久久久久久久清纯| 国产视频一区二区在线看| 日本欧美国产在线视频| 成人国产一区最新在线观看| 久久草成人影院| 国产蜜桃级精品一区二区三区| 亚洲av熟女| 婷婷亚洲欧美| 日本欧美国产在线视频| 日本五十路高清| 老司机福利观看| 久久婷婷人人爽人人干人人爱| 精品久久久久久久久久免费视频| 欧美日韩中文字幕国产精品一区二区三区| 国产精品99久久久久久久久| 毛片一级片免费看久久久久 | 毛片一级片免费看久久久久 | 欧美成人a在线观看| 欧美三级亚洲精品| 99热6这里只有精品| 国产真实伦视频高清在线观看 | 天堂√8在线中文| 亚洲国产日韩欧美精品在线观看| 亚洲国产精品成人综合色| av.在线天堂| 三级毛片av免费| 深夜a级毛片| 尤物成人国产欧美一区二区三区| 国产国拍精品亚洲av在线观看| 91在线观看av| 精品久久久久久久末码| 老熟妇仑乱视频hdxx| 性欧美人与动物交配| 久久这里只有精品中国| 日日夜夜操网爽| 欧美性感艳星| 又紧又爽又黄一区二区| 国产麻豆成人av免费视频| 一级a爱片免费观看的视频| 尤物成人国产欧美一区二区三区| 国产一区二区亚洲精品在线观看| 日本熟妇午夜| 日本欧美国产在线视频| 最好的美女福利视频网| 久久久久精品国产欧美久久久| 九色成人免费人妻av| 色5月婷婷丁香| 一区二区三区免费毛片| 国产乱人视频| 亚洲人成网站在线播| 亚州av有码| 91在线观看av| 一边摸一边抽搐一进一小说| 此物有八面人人有两片| 亚洲国产精品久久男人天堂| 男女边吃奶边做爰视频| 欧美不卡视频在线免费观看| 国产真实乱freesex| 亚洲成人精品中文字幕电影| 国产av一区在线观看免费| 国产精品三级大全| 99久久九九国产精品国产免费| 久久久色成人| 无遮挡黄片免费观看| 中文字幕人妻熟人妻熟丝袜美| 有码 亚洲区| 成人高潮视频无遮挡免费网站| 俺也久久电影网| 日日啪夜夜撸| 久久久久精品国产欧美久久久| 国产一区二区亚洲精品在线观看| 99久久九九国产精品国产免费| 最近在线观看免费完整版| 国产真实伦视频高清在线观看 | 亚洲狠狠婷婷综合久久图片| 变态另类成人亚洲欧美熟女| 非洲黑人性xxxx精品又粗又长| 日本 av在线| av专区在线播放| 69av精品久久久久久| 亚洲成人久久性| 干丝袜人妻中文字幕| 丰满人妻一区二区三区视频av| 欧美日本视频| a在线观看视频网站| 亚洲精品亚洲一区二区| 别揉我奶头 嗯啊视频| 欧美一区二区国产精品久久精品| 亚洲经典国产精华液单| 狂野欧美白嫩少妇大欣赏| 热99在线观看视频| 日日摸夜夜添夜夜添小说| 精品免费久久久久久久清纯| 精品一区二区三区人妻视频| 特大巨黑吊av在线直播| 国产精品国产三级国产av玫瑰| 亚洲在线观看片| 哪里可以看免费的av片| 日韩国内少妇激情av| 成年人黄色毛片网站| 午夜福利高清视频| 色视频www国产| 在线观看一区二区三区| 欧美潮喷喷水| 国产精品久久久久久av不卡| 嫩草影视91久久| 国内久久婷婷六月综合欲色啪| 久久久久久大精品| 国产精品1区2区在线观看.| 午夜激情福利司机影院| 草草在线视频免费看| 可以在线观看毛片的网站| 99久久无色码亚洲精品果冻| 国内少妇人妻偷人精品xxx网站| 国产精品久久电影中文字幕| 九九热线精品视视频播放| 一级黄色大片毛片| 国产亚洲欧美98| 亚洲精品色激情综合| 天天一区二区日本电影三级| 成人av在线播放网站| 热99在线观看视频| 国产亚洲精品综合一区在线观看| 俺也久久电影网| 国产精品无大码| 国产色婷婷99| 99久久无色码亚洲精品果冻| 久久欧美精品欧美久久欧美| 国产 一区 欧美 日韩| 一个人免费在线观看电影| 三级国产精品欧美在线观看| 极品教师在线视频| 国产精品日韩av在线免费观看| 变态另类成人亚洲欧美熟女| 色视频www国产| 十八禁网站免费在线| 亚洲最大成人中文| 一进一出抽搐动态| 久久久成人免费电影| 国产午夜精品论理片| 国产精品嫩草影院av在线观看 | 日本黄色片子视频| 欧美精品国产亚洲| 精品福利观看| 深夜精品福利| 99久久精品一区二区三区| 深爱激情五月婷婷| 国产免费一级a男人的天堂| 内地一区二区视频在线| 舔av片在线| 欧美日韩黄片免| 国产精品久久电影中文字幕| 噜噜噜噜噜久久久久久91| 成年女人看的毛片在线观看| 精品日产1卡2卡| 精品久久国产蜜桃| 欧美日韩综合久久久久久 | 男女啪啪激烈高潮av片| 国产aⅴ精品一区二区三区波| 嫩草影院新地址| 男女啪啪激烈高潮av片| 久久国产精品人妻蜜桃| 99国产精品一区二区蜜桃av| 91午夜精品亚洲一区二区三区 | 床上黄色一级片| 婷婷亚洲欧美| x7x7x7水蜜桃| 国产真实伦视频高清在线观看 | 亚洲欧美日韩卡通动漫| 日日啪夜夜撸| 国内精品久久久久精免费| 女人十人毛片免费观看3o分钟| 久久欧美精品欧美久久欧美| 国产在线精品亚洲第一网站| 亚洲黑人精品在线| 神马国产精品三级电影在线观看| 亚洲在线观看片| 色精品久久人妻99蜜桃|