• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-target Collaborative Combat Decision-Making by Improved Particle Swarm Optimizer

    2018-03-29 07:36:08DingYongfeiYangLiuqingHouJianyongJinGutingZhenZiyang

    Ding Yongfei ,Yang Liuqing,Hou Jianyong,Jin Guting,Zhen Ziyang

    1.Science and Technology on Avionics Integration Laboratory,Shanghai 200233,P.R.China;

    2.College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    3.China National Aeronautical Radio Electronics Research Institute,Shanghai 200233,P.R.China

    0 Introduction

    Modern fighters have the ability to attack multiple targets and carry long range air-to-air missiles.Beyond visual range(BVR)air combat has been the mainstream with the development of modern fighters,where fighters are required to exchange information and attack multiple targets cooperatively[1-2].To complete cooperative multiple target attack (CMTA),decision-making(DM)is necessary for fighters to allot targets and missiles according to the shared information[3-4].Thus,the missile-target assignment (MTA)problem is the main part of DM when it comes to CMTA.

    There are many algorithms applied to DM problem in CMTA,such as particle swarm optimization(PSO),genetic algorithm (GA)and ant colony optimization (ACO)[5-7].A heuristic algorithm is introduced to adaptive genetic algorithm in Ref.[8]and improves local search capability.Adaptive pseudo-parallel genetic algorithm is also considered to deal with air combat DM problem beyond visual range[9].However,GA is not a real-time algorithm and may not work sometimes.Some intelligent algorithms are also used to solve DM problems[10-12].In Ref.[13],fuzzy neural network is applied to assign missiles according to the threat of enemy fighters and the bomb load of our fighters.However,it is hard to obtain practical and complex air situation data for neural network training.Considering the uncertain information in the MTA problem,grey system theory is introduced in DM problem[14].

    In this paper,an improved particle swarm optimizer(IPSO)is deduced to handle with the DM problem for CMTA in the air combat.The IPSO algorithm has stronger global searching capability by designing a new velocity learning strategy.

    1 DM Problem in CMTA

    1.1 Air combat situation

    Air combat decision-making is based on the air combat situation.To establish the model of air combat situation,it is assumed that there areMour fighters which are marked in blue andNenemy fighters which are marked in red.Denote our fighter setB=Bi,i=1,2,…,M{

    }and enemy fighter setR= {Rj,j=1,2,3,…,N}.In an air combat,the situation between our fighters and enemy fighters can be illustrated in Fig.1,where LOS is the line of sight andDijthe distance betweenBiandRj.xBiandVBiare the position and velocity ofBi,respectively.εijis the bore of sight(BOS)angle ofRjtoBi.xRjandVRjare the position and velocity ofRj,respectively.εjiis the BOS angle ofBitoRj.

    Fig.1 The situation between Biand Rj

    Distance,BOS angle and velocity are taken into consideration as threat factors when constructing the threat function[15].The threat function is described as a composite of all its threat factors,namely

    whereis the distance threat factor,the BOS angle threat factor,the velocity threat factor,andω1,ω2are non-negative weight coefficients and satisfy

    Moreover,the value range of all the threat factor functions is [0,1].Thus,there isthij∈

    The distance threat factor can be constructed as

    whereRaBis the maximum effective striking distance of missiles carried by our fighters andTrBthe maximum radar tracking distance of our fight-

    whereλ1,λ2are the positive constants.Better attack angle results in better attack effect.

    The velocity threat function can be constructed as

    1.2 MTA model

    Multi-fighter cooperative attack problem is aimed at optimizing target assignment for missiles carried by our fighters.According to the threat function known,multiple target assignment develops a proposal where there are more attack success and less fighter casualties.

    Assume that our fighterBicarriesLimissiles to attack enemy fighter targets.Thus,there areZ

    1.3 Analysis on coordinated attack tactics

    When our fighters attack enemy fighter targets,assignment rules need to be determined for our fighters.The assignment rules work so that our fighters get more benefit when attacking.

    It is supposed that each missile of our fighters can attack only one enemy fighter target.One enemy fighter is attacked by two missiles at most.It is essential to declare constraints onXrj

    There is optimal attack effect when one of the assigned value is much larger than the other.

    Then,the MTA problem is to find a solution πto minimize the equation above and accord with coordinated attack tactics.

    2 Improved Particle Swarm Optimization

    In the PSO algorithm,each particle is treated as a potential solution inD-dimensional space.The position of theith particle is represented by aD-dimensional vector Xi= (xi1,xi2,…,xiD),and the velocity of theith particle can also be represented by aD-dimensional vector Vi=(vi1,vi2,…,viD).

    In the PSO algorithm,the updating formulae of the velocity and the position of each particle are given by

    wherekis a pseudo-time increment and represents iterations;Pi=(pi1,pi2,…,piD)is the local optimal position of theith particle;Pg=(pg1,pg2,…,pgD)represents the global optimal position in the swarm,heregis the index of the best particle among all the particles in the population;c1andc2are called the cognitive and the social coefficients,respectively;rand1and rand2are two random numbers in range[0,1].

    Based on the PSO algorithm above,an improved PSO (IPSO)is presented,in which a new learning strategy is introduced in the particle velocity update equation,described as

    where rand1and rand2are the random numbers in range[0,1].χis the constriction coefficient;Pb=[pb1,…,pbD]the particle position with better performance which is selected randomly;jthe arrangement number according to the performance,here the smallerjcorresponds to the better performance of thejth particle;nthe whole number of the particles in the population.

    IPSO algorithm with fewer parameters not only keeps the diversity of the velocities but also does not alleviate the certainty of directing to the destination.The particles with better performance will increase their inertia movements,which expands the searching space and improves the searching speed.The particles with worse performance will increase their learning steps,which reduces the differences among the population and improves the whole performance of the population.

    Thus,the IPSO algorithm flow can be described in Fig.2.

    Fig.2 IPSO algorithm flow

    3 Realization of IPSO for Multi-target Collaborative Combat Decision-Making

    Every possible optimal solution is seen as a particle in PSO.The adaptive value of particle needs to be calculated in every position.It is reasonable for the adaptive value to be defined as objective optimization function to get the updating velocity and direction for every particle.Based on the MTA model established above,a set of missile-target assignment is dealt with as partial swarm after updating.moptimal MTA proposals correspond tomparticles in the particle swarm.Every particle is in the searching space ofZdimension.The position vector of thekth particle in the current iteration is defined as

    wherek=1,2,…,m,Zthe sum of missiles,andckrthe position of thekth particle in therth dimension.ckrbelongs to 1N_red[

    ]andN_red is the sum of enemy fighter target.

    The velocity of thekth particle is given by

    wherevkrsatisfiesvkr∈ [-1+NN-1].

    If thekth particle has the best fitness in the current iteration,it is defined as the local optimal solution and noted as

    If all of the particle have the best fitness in the current iteration,it is defined as the global optimal solution and noted as

    The updating formulae of the velocity and the position of each particle based on IPSO are given by

    If the position valueckr(t+1)isbiggerthan thetargetnumber,it is restricted in the last target.If the position valueckr(t+1)is less than 1,it is restricted in the first target.Otherwise,all the position values are rounded down to make sure the whole positions are integer within the range.

    It is essential to restrict velocity vector in a certain range to make sure that position vector is not updated too fast

    According to the coordinated attack tactics above,more constraint conditions are taken into consideration.Each missile can only attack one enemy fighter target.Each target is attacked twice at most.The Boolean value of the missile is constrained as

    This series of constraints are used to check the solution of MTA problem and make some adjustments if necessary.The steps are as follows:

    Step 1Denote a setAwhich includes all the values need to be changed.If the same position value exists in the position vectorπkmore than twice,two of them are chosen randomly and others are saved in setA.

    Step 2Denote two setsS0andS1.S0includes targets in set [1N_red]whichhavenot appearedinthesolutionbefore.S1includes targets in set [1N_red]that have appeared in the solution only once.

    Step 3Make some adjustments to setA.Assume that the value of the positionckrneeds to be changed and the updated position value iscsc.sshould belongs to {S0S1}.The principle of choosing targets is given by

    whered(csckr)is the distance betweenckrandcs.Then,the elementckris removed from setA.

    Step 4Update the two setsS0andS1.If there iscs∈S0,cswould be saved inS1and re-moved fromS0.If there iscs∈S1,the elements inS0andS1would not be changed.

    Step 5Repeat Steps 3,4until setAbecomes a null set.

    4 Simulation Experiment of IPSO for CMTA

    Assume that our fightersBand enemy fightersRare in a BVR air combat.Our fightersBadopt CMTA strategy.In this simulation,there are four our fighters and each fighter has four missiles.Thus,the number of the missiles to attack the enemy fighter targets is 16.The velocity of our fighters is 300m/s.The effective striking distance of missiles carried by our fighters is 70km.The maximum tracking range of our fighters is 120km.There are fourteen enemy fighter targets.The velocity of enemy fighters is 300 m/s.The effective striking distance of missiles carried by our fighters is the same as that carried by the enemy fighters.The maximum tracking range of our fighters is the same as that of the enemy fighters.In a random scenario,our fighters and enemy fighters aviate face to face.The air combat situation is shown in Fig.3.

    Fig.3 The air combat situation

    Then,the IPSO algorithm designed above is used to present a DM proposal of MTA problem in CMTA.The traditional PSO algorithm is also simulated here to compare with the IPSO algorithm.The constriction coefficientχis set to be 1.The assignment of all the missiles is

    Fig.4illustrates the DM proposal of MTA problem.Based on the IPSO algorithm,the missiles carried by our fighter 1attack enemy fighters 2,8,7and 3.The missiles carried by our fighter 2attack enemy fighters 5,6,1and 5.The missiles carried by our fighter 3attack enemy fighters 13,10,12and 10.The missiles carried by our fighter 4attack enemy fighters 1,13,14 and 13.The repeated numbers imply that these enemy fighters threaten our fighters too much and are attacked twice as a result.Some enemy fighters are not attacked because their threat values do not reach the threat threshold value.With the traditional PSO algorithm employed,the missiles carried by our fighter 1attack enemy fighters 2,3,3and 7.The missiles carried by our fighter 2attack enemy fighters 1,1,14and 5.The missiles carried by our fighter 3attack enemy fighters 13,13,8and 8.The missiles carried by our fighter 4attack enemy fighters 10,10,5and 6.The IPSO algorithm based DM proposal of MTA problem makes full use of the missiles and destroys more threats.

    Fig.4 Results of DM for MTA

    Fig.5shows the fitness of iteration process.The fitness can decreased to 4.391 5when using the IPSO algorithm,while the fitness is 4.568 8 with the traditional PSO algorithm. What′s more,the DM proposal with the IPSO algorithm is faster than that with the PSO algorithm due to the less iterations when using the IPSO algorithm.

    Fig.5 Fitness of iteration process

    5 Conclusions

    DM problem for MTA in an air combat is solved by a new improved PSO algorithm which is parametric simple but effective and efficient.The IPSO algorithm is used to minimize fitness function constructed by threat value.Coordinated attack tactics is considered to adjust DM proposal to reach better strike effect.It exhibits better performance to CMTA in an air combat with the IPSO algorithm compared with the traditional PSO algorithm.

    Acknowledgement

    This work was jointly granted by the Science and Technology on Avionics Integration Laboratory and the Aeronautical Science Foundation of China (No.2016ZC15008).

    [1] AKBARI S,MENHAJM B.A new framework support system for air to air tasks[C]∥IEEE Proceedings of the International Conference on SMC.Nashville,TN,USA:[s.n.],2000,3:2019-2022.

    [2] SECAREA V V,KRIKORIAN H F.Adaptive multiple target attack planning in dynamically changing hostile environments[C]∥IEEE Proceedings of the National Aerospace and Electronics Conference.Dayton,OH,USA:[s.n.],1990,3:29-34.

    [3] LUO D L,WU W H,SHEN C L.A survey on deci-sion-making for multi-target attacking in air combat[J].Electronic Optics and Control,2005,12(4):4-8.

    [4] ZHOU S Y,WU W H,ZHANG N,et al.Overview of autonomous air combat maneuver decision [J].Aeronautical Computing Technique,2012,42(1):27-31.

    [5] HUANG H Q,WANG Y,ZHOU H,et al.Multi-UCAV cooperative autonomous attack path planning method under uncertain environment [C]∥ Advanced Information Management,Communicates,E-lectronic and Automation Control Conference (IMCEC).Xi′an:IEEE,2016:573-579.

    [6] ZHANG Y,LI C.Coordinated attack strategy of network sub-munitions based on particle swarm optimization[J].Journal of Detection and Control,2015,37(1):99-103.

    [7] LI Z W,CHANG Y Z,SUN Y Y,et al.A decisionmaking for multiple target attack based on characteristic of future long-range cooperative air combat[J].Fire Control and Command Control,2016,47(2):36-40.

    [8] LUO D L,SHEN C L,WANG B,et al.Air combat decision-making for cooperative multiple target attack using heuristic adaptive genetic algorithm[C]∥Proceedings of the Fourth International Conference on Machine Learning and Cybernetics.Guangzhou:IEEE,2005:473-478.

    [9] ZHANG T,YU L,WEI X Z,et al.Decision-making for cooperative multiple target attack based on adaptive pseudo-parallel genetic algorithm [J].Fire Control and Command Control,2013,38(5):137-140.

    [10]LI Linsen,TONG Mingan.Air combat decision of cooperative multi-target attack and its neural net realization[J].Acta Aeronautic et Astronautic Sinica,1999,20(4):309-312.(in Chinese)

    [11]LI L S,YU H X,HAN Z G,et al.Application of a type of associated neural network in cooperative air to air combat analysis[J].Flight Dynamics,2000,18(1):81-84.

    [12]GENG Y L,JING C S,LI W H.Multi-fighter coordinated multi-target attack system [J].Transactions of Nanjing University of Aeronautics and Astronautics,2004,21(1):18-23.

    [13]ROGER W S,ALAN E B.Neural network models of air combat maneuvering [D].New Mexico:New Mexico State University,1992.

    [14]SONG X G,JIANG J,XU H Y.Application of improved simulated annealing genetic algorithm in cooperative ari combat[J].Journal of Harbin Engineering University,2017,38(11):1762-1768.

    [15]AUSTIN F.Game theory for automated maneuvering during air to air combat[J].Guidance,1990,13(6):1143-1147.

    欧美人与善性xxx| 日本av手机在线免费观看| 少妇人妻一区二区三区视频| 成人毛片a级毛片在线播放| 国产伦一二天堂av在线观看| 国产探花在线观看一区二区| 啦啦啦韩国在线观看视频| 伊人久久精品亚洲午夜| 亚洲成人av在线免费| 边亲边吃奶的免费视频| freevideosex欧美| 亚洲真实伦在线观看| 岛国毛片在线播放| 亚洲最大成人av| 亚洲一级一片aⅴ在线观看| 肉色欧美久久久久久久蜜桃 | 亚洲一区高清亚洲精品| 色视频www国产| 日本欧美国产在线视频| 久久韩国三级中文字幕| 日日干狠狠操夜夜爽| 成人午夜高清在线视频| 欧美日韩视频高清一区二区三区二| 日本午夜av视频| 51国产日韩欧美| 婷婷色综合www| 18禁裸乳无遮挡免费网站照片| 搡老乐熟女国产| 男女国产视频网站| 精品一区在线观看国产| 国产精品av视频在线免费观看| 亚洲成色77777| 免费av观看视频| 欧美潮喷喷水| 亚洲av中文字字幕乱码综合| 午夜免费男女啪啪视频观看| 午夜久久久久精精品| 欧美成人一区二区免费高清观看| 欧美激情国产日韩精品一区| 亚洲成色77777| 麻豆久久精品国产亚洲av| 99视频精品全部免费 在线| 精品熟女少妇av免费看| 男女边摸边吃奶| 午夜福利在线观看免费完整高清在| 天堂中文最新版在线下载 | 三级毛片av免费| 一个人免费在线观看电影| 99久久九九国产精品国产免费| 少妇的逼水好多| 亚洲人成网站高清观看| 美女被艹到高潮喷水动态| 伊人久久精品亚洲午夜| 人妻一区二区av| 99re6热这里在线精品视频| 秋霞伦理黄片| 久久精品综合一区二区三区| 免费观看a级毛片全部| 在线观看一区二区三区| 亚洲精品久久久久久婷婷小说| 欧美bdsm另类| 成人特级av手机在线观看| 99久久精品国产国产毛片| 国产在线一区二区三区精| 精品少妇黑人巨大在线播放| 边亲边吃奶的免费视频| 久久精品久久久久久噜噜老黄| 一级毛片电影观看| 婷婷色综合www| 中文字幕制服av| 国产精品人妻久久久久久| 国产老妇女一区| 精品不卡国产一区二区三区| 精品不卡国产一区二区三区| 日韩一本色道免费dvd| 三级经典国产精品| 国产成人午夜福利电影在线观看| 精品国内亚洲2022精品成人| 又爽又黄无遮挡网站| 晚上一个人看的免费电影| 日本三级黄在线观看| 国产v大片淫在线免费观看| 赤兔流量卡办理| 黄色一级大片看看| 两个人的视频大全免费| 国产精品av视频在线免费观看| 国产成人精品婷婷| 午夜亚洲福利在线播放| 欧美日韩国产mv在线观看视频 | 国产69精品久久久久777片| 激情五月婷婷亚洲| 黄色配什么色好看| 免费看光身美女| 一级毛片黄色毛片免费观看视频| 中文天堂在线官网| 国产有黄有色有爽视频| 婷婷色麻豆天堂久久| 国产黄a三级三级三级人| 久久精品久久精品一区二区三区| 成年免费大片在线观看| 可以在线观看毛片的网站| 我的老师免费观看完整版| 26uuu在线亚洲综合色| 国产一区亚洲一区在线观看| 久久99热这里只频精品6学生| 成人性生交大片免费视频hd| 久久久久久久亚洲中文字幕| 91狼人影院| 永久网站在线| 亚洲精品日韩av片在线观看| av一本久久久久| 欧美xxxx黑人xx丫x性爽| 成年免费大片在线观看| 亚洲在线观看片| 日韩成人伦理影院| 久久久久久久久中文| 91久久精品国产一区二区成人| 深爱激情五月婷婷| 亚洲av日韩在线播放| 久久精品人妻少妇| www.色视频.com| 久久久久久久久久黄片| 欧美性猛交╳xxx乱大交人| 亚洲va在线va天堂va国产| 国产精品熟女久久久久浪| 亚洲精品第二区| 夫妻性生交免费视频一级片| 在线播放无遮挡| 国产成人精品福利久久| 少妇的逼水好多| 女人久久www免费人成看片| 天堂中文最新版在线下载 | 女人被狂操c到高潮| 色视频www国产| 精品一区二区三卡| 午夜福利在线观看免费完整高清在| 2021天堂中文幕一二区在线观| 少妇丰满av| 亚洲av成人av| 欧美性猛交╳xxx乱大交人| 好男人视频免费观看在线| 韩国av在线不卡| 日韩一区二区视频免费看| 男人狂女人下面高潮的视频| 一二三四中文在线观看免费高清| 一本久久精品| 99热这里只有是精品在线观看| 欧美高清性xxxxhd video| 久久久欧美国产精品| 少妇高潮的动态图| 久久久久国产网址| 亚洲欧美一区二区三区国产| 熟女人妻精品中文字幕| 久久精品国产鲁丝片午夜精品| 丝袜喷水一区| 不卡视频在线观看欧美| .国产精品久久| 肉色欧美久久久久久久蜜桃 | 亚洲成人中文字幕在线播放| 国产一区二区亚洲精品在线观看| 能在线免费看毛片的网站| 麻豆成人午夜福利视频| 国产一区有黄有色的免费视频 | eeuss影院久久| 久久久久久国产a免费观看| 91在线精品国自产拍蜜月| 国产精品蜜桃在线观看| 亚洲,欧美,日韩| 少妇被粗大猛烈的视频| 日韩成人av中文字幕在线观看| 六月丁香七月| 最近的中文字幕免费完整| 丝瓜视频免费看黄片| 蜜桃亚洲精品一区二区三区| 熟妇人妻不卡中文字幕| 中文字幕人妻熟人妻熟丝袜美| 少妇的逼水好多| 91久久精品电影网| 爱豆传媒免费全集在线观看| 久久国内精品自在自线图片| 观看免费一级毛片| 国产老妇女一区| 亚洲av成人精品一二三区| 一区二区三区四区激情视频| 成人性生交大片免费视频hd| 精品午夜福利在线看| 777米奇影视久久| 丰满乱子伦码专区| 亚洲国产精品成人综合色| 久久草成人影院| 黄色一级大片看看| 久久久久久伊人网av| 亚洲精品国产av成人精品| 亚洲精品一区蜜桃| 日韩一区二区视频免费看| 一个人看的www免费观看视频| 日韩av在线免费看完整版不卡| 成人国产麻豆网| 日日干狠狠操夜夜爽| 精品一区二区三区视频在线| 直男gayav资源| 国产熟女欧美一区二区| 一级片'在线观看视频| 午夜老司机福利剧场| 午夜福利成人在线免费观看| 久久久欧美国产精品| 三级国产精品欧美在线观看| 色哟哟·www| 欧美xxxx性猛交bbbb| 观看免费一级毛片| 亚洲成色77777| 中文欧美无线码| 亚洲精品,欧美精品| 日本熟妇午夜| 寂寞人妻少妇视频99o| 九九久久精品国产亚洲av麻豆| 欧美激情在线99| 伊人久久国产一区二区| 亚洲欧美日韩东京热| 国产av在哪里看| 床上黄色一级片| 99久国产av精品国产电影| 亚洲精品中文字幕在线视频 | 国产在视频线精品| 国产亚洲av片在线观看秒播厂 | 极品教师在线视频| 色综合色国产| 亚洲欧洲国产日韩| 国产综合精华液| 国国产精品蜜臀av免费| 六月丁香七月| 尤物成人国产欧美一区二区三区| 免费看光身美女| 国产精品一区二区性色av| 亚洲熟妇中文字幕五十中出| 国产中年淑女户外野战色| 久久精品久久久久久久性| 成人欧美大片| 国产精品一区二区性色av| 丰满人妻一区二区三区视频av| 丝袜美腿在线中文| 国产69精品久久久久777片| 午夜视频国产福利| 全区人妻精品视频| 2018国产大陆天天弄谢| 99热全是精品| 免费看不卡的av| 91aial.com中文字幕在线观看| 少妇猛男粗大的猛烈进出视频 | 中文字幕亚洲精品专区| 波野结衣二区三区在线| 成人国产麻豆网| 性色avwww在线观看| 成人欧美大片| 日本色播在线视频| av在线播放精品| 国产乱人偷精品视频| 99视频精品全部免费 在线| xxx大片免费视频| av在线播放精品| 国产麻豆成人av免费视频| 国产在视频线在精品| 国产毛片a区久久久久| 亚洲欧洲国产日韩| 大香蕉97超碰在线| 午夜精品一区二区三区免费看| 亚洲成人av在线免费| 高清日韩中文字幕在线| 亚洲高清免费不卡视频| 日本三级黄在线观看| 白带黄色成豆腐渣| 欧美日韩精品成人综合77777| 两个人视频免费观看高清| av女优亚洲男人天堂| 国产精品人妻久久久影院| 最近中文字幕高清免费大全6| 成年免费大片在线观看| 久久久久免费精品人妻一区二区| 日本与韩国留学比较| 国产黄色小视频在线观看| 国产在视频线在精品| av网站免费在线观看视频 | 乱人视频在线观看| 天堂俺去俺来也www色官网 | 国产免费一级a男人的天堂| 我的女老师完整版在线观看| 成人无遮挡网站| 日本一本二区三区精品| freevideosex欧美| 国产成人a∨麻豆精品| 真实男女啪啪啪动态图| 国产乱人视频| 一夜夜www| 亚洲精品456在线播放app| 国产精品1区2区在线观看.| 高清日韩中文字幕在线| 人妻少妇偷人精品九色| 伊人久久精品亚洲午夜| 高清日韩中文字幕在线| 麻豆乱淫一区二区| 国产免费福利视频在线观看| 99九九线精品视频在线观看视频| 高清毛片免费看| 纵有疾风起免费观看全集完整版 | 一级av片app| 高清午夜精品一区二区三区| 少妇的逼好多水| 国产亚洲一区二区精品| av天堂中文字幕网| 夫妻午夜视频| 精品久久久久久成人av| ponron亚洲| 丝袜美腿在线中文| 可以在线观看毛片的网站| 26uuu在线亚洲综合色| 久久久久网色| 国产探花极品一区二区| 国产男人的电影天堂91| 国产探花在线观看一区二区| 一边亲一边摸免费视频| 青春草视频在线免费观看| 亚洲av.av天堂| 亚洲人成网站在线播| 亚洲欧美精品专区久久| 男人狂女人下面高潮的视频| 免费观看a级毛片全部| 人妻系列 视频| 午夜福利高清视频| 乱系列少妇在线播放| 永久网站在线| 国产淫片久久久久久久久| 国产老妇女一区| 国产精品久久视频播放| 一个人看的www免费观看视频| 两个人视频免费观看高清| 久久久久久久久久成人| 乱人视频在线观看| 亚洲,欧美,日韩| 中国国产av一级| 久久久欧美国产精品| 国产亚洲午夜精品一区二区久久 | 边亲边吃奶的免费视频| 五月天丁香电影| 日本-黄色视频高清免费观看| 97热精品久久久久久| .国产精品久久| 六月丁香七月| 国产有黄有色有爽视频| 日本一二三区视频观看| 国产精品一区二区性色av| 99久久精品国产国产毛片| 精品国产露脸久久av麻豆 | 国产毛片a区久久久久| 国产黄片视频在线免费观看| 久久鲁丝午夜福利片| 超碰av人人做人人爽久久| 尾随美女入室| 啦啦啦中文免费视频观看日本| 十八禁网站网址无遮挡 | 精品国产一区二区三区久久久樱花 | 中文字幕人妻熟人妻熟丝袜美| 99久久精品热视频| 丝袜喷水一区| 床上黄色一级片| 国产欧美日韩精品一区二区| 亚洲综合色惰| 一级av片app| 久久久色成人| 免费观看精品视频网站| 久久精品人妻少妇| 成人漫画全彩无遮挡| 免费黄网站久久成人精品| 国产精品一区二区性色av| 欧美zozozo另类| 久久久精品免费免费高清| 最新中文字幕久久久久| 最近的中文字幕免费完整| 国产精品人妻久久久影院| 国产视频内射| 肉色欧美久久久久久久蜜桃 | 久久久久久国产a免费观看| 精品亚洲乱码少妇综合久久| 22中文网久久字幕| 天天躁日日操中文字幕| 中国美白少妇内射xxxbb| 国产国拍精品亚洲av在线观看| 极品少妇高潮喷水抽搐| 亚洲乱码一区二区免费版| 午夜老司机福利剧场| 国产成人精品一,二区| 日韩欧美精品v在线| 老司机影院成人| 国产成人精品久久久久久| 国产精品熟女久久久久浪| 成人毛片60女人毛片免费| 久久久久精品性色| 久久99精品国语久久久| 99热这里只有是精品在线观看| 久久99蜜桃精品久久| 久热久热在线精品观看| 国产精品av视频在线免费观看| 天堂影院成人在线观看| 国产成人精品婷婷| 97超碰精品成人国产| 一级毛片久久久久久久久女| 网址你懂的国产日韩在线| 一级毛片我不卡| 亚洲国产高清在线一区二区三| 五月天丁香电影| 天天躁夜夜躁狠狠久久av| 麻豆乱淫一区二区| 美女主播在线视频| 国产在线一区二区三区精| 国产成人91sexporn| 国产成人精品一,二区| 麻豆国产97在线/欧美| 免费av观看视频| 一个人免费在线观看电影| 大香蕉久久网| 18禁裸乳无遮挡免费网站照片| 身体一侧抽搐| 国产精品国产三级国产专区5o| 国产 一区精品| 亚洲av电影不卡..在线观看| 色吧在线观看| 波多野结衣巨乳人妻| 舔av片在线| 国产探花极品一区二区| 能在线免费看毛片的网站| 国内精品美女久久久久久| 欧美xxxx性猛交bbbb| 91aial.com中文字幕在线观看| 久久久久久久国产电影| 日韩三级伦理在线观看| 看黄色毛片网站| 天美传媒精品一区二区| 欧美日韩综合久久久久久| 日韩亚洲欧美综合| 两个人的视频大全免费| 麻豆av噜噜一区二区三区| 男人舔女人下体高潮全视频| 国产在视频线在精品| 又粗又硬又长又爽又黄的视频| 亚洲人成网站在线观看播放| 国产高清有码在线观看视频| 亚洲国产高清在线一区二区三| 国产成人aa在线观看| 国产午夜精品久久久久久一区二区三区| 午夜精品国产一区二区电影 | 亚洲最大成人av| 不卡视频在线观看欧美| 插阴视频在线观看视频| 中文天堂在线官网| 国产一级毛片在线| 亚洲伊人久久精品综合| 青春草视频在线免费观看| 国产亚洲最大av| 日韩国内少妇激情av| 嫩草影院入口| 国产精品综合久久久久久久免费| 亚洲精品中文字幕在线视频 | 欧美成人精品欧美一级黄| 菩萨蛮人人尽说江南好唐韦庄| 成人综合一区亚洲| 99九九线精品视频在线观看视频| 波野结衣二区三区在线| 能在线免费观看的黄片| 亚洲精品成人久久久久久| 国产大屁股一区二区在线视频| 有码 亚洲区| 久久精品熟女亚洲av麻豆精品 | 丰满乱子伦码专区| 最近中文字幕高清免费大全6| 秋霞伦理黄片| 欧美精品国产亚洲| 久久久久久久久久久丰满| 日韩中字成人| 久久精品久久久久久久性| 亚洲精品日韩在线中文字幕| 男人爽女人下面视频在线观看| 国产黄片美女视频| 色播亚洲综合网| 大香蕉久久网| 日日摸夜夜添夜夜爱| 人妻制服诱惑在线中文字幕| 国产黄片视频在线免费观看| 伊人久久精品亚洲午夜| 91精品伊人久久大香线蕉| 色综合色国产| 欧美zozozo另类| 国产成人精品福利久久| 国产淫片久久久久久久久| 深夜a级毛片| av黄色大香蕉| 一边亲一边摸免费视频| 精品少妇黑人巨大在线播放| 99久久精品国产国产毛片| 神马国产精品三级电影在线观看| 久久久久久久国产电影| 九色成人免费人妻av| 欧美变态另类bdsm刘玥| 91精品伊人久久大香线蕉| 欧美精品一区二区大全| 女人被狂操c到高潮| 七月丁香在线播放| 国产激情偷乱视频一区二区| 国产免费视频播放在线视频 | 午夜激情福利司机影院| 亚洲怡红院男人天堂| 日韩欧美一区视频在线观看 | 精品不卡国产一区二区三区| 99热6这里只有精品| 国产精品av视频在线免费观看| 欧美潮喷喷水| 国精品久久久久久国模美| 大话2 男鬼变身卡| 极品教师在线视频| 2018国产大陆天天弄谢| 黄色一级大片看看| 人妻少妇偷人精品九色| 亚洲欧洲国产日韩| 赤兔流量卡办理| 天天躁日日操中文字幕| 男人舔奶头视频| 直男gayav资源| 91久久精品国产一区二区三区| 亚洲成色77777| 久久久久九九精品影院| 永久网站在线| 国产黄色小视频在线观看| 插阴视频在线观看视频| 亚洲经典国产精华液单| 丝袜美腿在线中文| 色综合色国产| 日本免费a在线| 欧美激情国产日韩精品一区| 欧美性感艳星| 久久精品国产亚洲av涩爱| 免费观看性生交大片5| 看免费成人av毛片| 丝袜美腿在线中文| 亚洲经典国产精华液单| 能在线免费看毛片的网站| 全区人妻精品视频| 好男人在线观看高清免费视频| av网站免费在线观看视频 | 又爽又黄a免费视频| 日韩三级伦理在线观看| 联通29元200g的流量卡| 国产黄a三级三级三级人| 午夜免费男女啪啪视频观看| 99九九线精品视频在线观看视频| 伊人久久精品亚洲午夜| 久久韩国三级中文字幕| 欧美区成人在线视频| 国产片特级美女逼逼视频| 日韩av不卡免费在线播放| 天堂俺去俺来也www色官网 | 亚洲av免费在线观看| 日日摸夜夜添夜夜添av毛片| 亚洲va在线va天堂va国产| 国产精品无大码| 亚洲三级黄色毛片| 男女视频在线观看网站免费| 日韩av在线免费看完整版不卡| 尤物成人国产欧美一区二区三区| 99九九线精品视频在线观看视频| 亚洲欧美一区二区三区黑人 | 亚洲欧洲日产国产| 国产男女超爽视频在线观看| 欧美丝袜亚洲另类| 久久久久久久久大av| 欧美人与善性xxx| 亚洲国产色片| 菩萨蛮人人尽说江南好唐韦庄| 尾随美女入室| 国产老妇伦熟女老妇高清| 成人国产麻豆网| 91精品一卡2卡3卡4卡| 亚洲最大成人手机在线| 26uuu在线亚洲综合色| 国产又色又爽无遮挡免| 免费观看的影片在线观看| 少妇被粗大猛烈的视频| 国产又色又爽无遮挡免| 久久国内精品自在自线图片| 国产不卡一卡二| 国产精品人妻久久久久久| 国产亚洲精品久久久com| 少妇丰满av| 国产精品不卡视频一区二区| 亚洲av免费高清在线观看| 久久久久精品久久久久真实原创| 人人妻人人看人人澡| 亚洲四区av| 日韩精品有码人妻一区| 免费av观看视频| 在现免费观看毛片| 日本wwww免费看| 欧美人与善性xxx| 乱系列少妇在线播放| 色吧在线观看| 国产毛片a区久久久久| 麻豆乱淫一区二区| 又粗又硬又长又爽又黄的视频| 成人亚洲精品一区在线观看 | 亚洲欧美日韩卡通动漫| 婷婷色麻豆天堂久久| 欧美一级a爱片免费观看看| 六月丁香七月| 少妇人妻一区二区三区视频| 欧美变态另类bdsm刘玥| 99久国产av精品国产电影| 久久这里只有精品中国| 99re6热这里在线精品视频|