• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    All-Electric Aircraft Nose Wheel Steering System with Two Worm Gears

    2018-03-29 07:36:07,,,
    關(guān)鍵詞:出力遺傳算法風(fēng)機

    ,,,

    1.Key Laboratory of Fundamental Science for National Defense-Advanced Design Technology of Flight Vehicle,Nanjing University of Aeronautics & Astronautics,Nanjing 210016,P.R.China;

    2.Shanghai Aircraft Design and Research Institute,Shanghai 201210,P.R.China;

    3.Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration,Nanjing 211106,P.R.China

    0 Introduction

    More and more electric aircraft takes electric power system as its second power by using it to replace the original hydraulic,pneumatic and mechanical system[1,2].As a result,it has the characteristics of simple structure,light weight,high reliability and high ratio of performance to price[3-5].For the insurmountable and inherent defects of the hybrid system in current aircraft,the aircraft maintenance caused by such relevant systems accounts for more than 50%of the total aircraft maintenance[3].Since all-electric system has high reliability,high maintainability,low security and operating cost,and many other inherent advantages,the nose wheel steering system would be developed in the all-electric direction[6].The realization of all-electric aircraft depends on whether the aircraft function subsystem can be developed using the electric power as its power.The realization of the all-electric nose wheel steering system would perfect the overall aircraft performance,and speed up the all-electrification process of aircraft.

    To date,the electric power systems used for flight control,environmental control,brake,fuel and engine starting system have been verified[6].European scholars began to investigate the allelectric nose wheel steering system[7,8],they predict that the all-electrification would increase the levels of reliability and availability significantly.Besides,the coordination and cooperation between the all-electric nose wheel steering system and automatic ground navigation system would increase the efficiency of air transport system.Refs.[9,10]describe the design and testing of a dual-lane electric drive for the operation of a prototype,electromechanically actuated,nose wheel steering system for a commercial aircraft.The drive features two fully independent motor controllers,each operating one half of a three-phase motor to produce an actuator capable of full operation in the event of an electrical fault.

    Ref.[11]introduces the system architecture and redundance function principle and the design of peripheral interface circuit and the software of the digital skidpoof brake integrated controller.To prevent the similar redundant system occurring common fault avalanche damage,the dissimilar dual redundancy digital steering control box is designed in Ref.[12].A nose wheel steering servo system composed of electromechanism actuator,controller and displacement sensor is introduced in Ref.[13].The electromechanical actuator adopts the crew-slider-fork design to realize the requirement of miniaturization and high load.

    For both civil aircraft and military aircraft,the realization of all-electric nose wheel steering system is significant to the improvement of ground operating performance.

    An all-electric aircraft nose wheel steering system composed of a nose wheel steering mechanism of two worm gear and a control servo system of fly-by-wire having both steering and antishimmy function is designed here first.Then the simulation model of the system is established to simulate the dynamics for the verification of its steering function.Moreover,the prototypes of the steering mechanism and control system are built and tested to validate the design,and the steering test bench is prepared to test the work perform of the proposed system.The test results,such as steer angle,steer torque are analyzed in details and compared with the theoretical results.

    1 Design of Nose Wheel Steering System

    1.1 The overall scheme design

    The nose wheel steering system belongs to the electromechanical actuator system,which is the general name for the position servo control system in aviation and aerospace,military,transportation,agricultural and industrial machinery and equipment,and controls the movement of its load directly or indirectly through controlling the operation of motor[14].As shown in Fig.1,it is composed of two main parts:The actuator module and the electric control unit.

    Fig.1 Structure block of nose wheel steering system

    The actuator module is responsible for converting electrical energy into mechanical energy and feeding back the mechanical transmission to control system.The diagram of the steering system is shown in Fig.2,encompassing a motor,a torque limiter,a clutch,a reducer,a damper,a worm gear and sensors.In the process of aircraft steering on ground,the controller would firstly control the motor rotation according to the input signal.Then the motor would transmit its torque to the torque limiter,reducer and clutch successively.Consequently,the worm gear begins to rotate to realize the aircraft nose wheel steering.Its main components are described as follows:

    Fig.2 Single redundant channel in steering system

    Motor—According to the design require-ments of the aircraft nose wheel steering operating system,the friction torque loading in the nose wheel steering system is large,so the rare earth permanent magnet Direct Current(DC)motor with high power density and operating efficiency is selected by the system.

    Clutch—The friction type clutch is selected by the system to control its status by control current.Once a fault occurs,the system would isolate the fault channel by controlling its clutch to disconnect.

    Damper—To prevent the oscillation phenomenon,the damper is required to provide a damping for the nose wheel steering system.The damper does not work in system steering mode,however,it is activated by the main controller in system anti-shimmy mode.

    Worm gear—The rated output torque provided by current motor is too small relative to the steering torque of the nose wheel steering system.As a result,larger transmission ratio should be provided by the machine transmission system.So the worm gear with inherent large transmission ratio is selected to be the system actuator.

    The electronic control unit is responsible for position servo control and completing the closed loop of the nose wheel steering system,consisting of the main controller and the motor controller.

    The main controller can realize the following three functions mainly:

    (1)Be able to receive and process the sensor signals accurately,so as to achieve the servo control of the nose wheel steering system and load limiting of the torque limiter.

    (2)Controlling the auxiliary equipment(such as clutch,damper and so on).

    (3)Recording the fault information and detection data in fault points synchronously to support the next maintenance work.

    The motor controller is mainly used for the amplification of control signal and control the steering direction and speed of the motor.The system uses DC pulse width modulation(PWM)converter to control the motor input voltage.

    The assumption diagram of the controller is available,as shown in Fig.4.As shown in Fig.4,the main controller adopts similar dual redundancy design,and two channels communicate with each other through the dual port of random-access memory(RAM)and detect faults through cross supervision and self-supervision.In the process of nose wheel steering,the main controller would firstly judge whether the system is in a hand wheel operating mode or a pedal rudder operating mode based on digital signals.Then the main controller would acquire such analog signals as command signal,feedback signal and the aircraft ground speed,and thus conduct data processing by a certain control algorithm with reference to the control rate.Finally,the nose wheel steering servo control would be released.

    To prevent the phenomenon of the non-coordination motion between the two worm gear of the system happening in the process of actual aircraft ground maneuver,the nose wheel steering system would feed back the worm gear steering angle in addition to the output torque of the two worm gear to the main controller.Then the difference between the system angle input and the worm gear wheel angle feedback,and the difference between the output torque of the two worm gear would be carried on a certain processing to be the output of the main controller to control the motor through adjusting the relationship between the two differences to ensure the steering process accurate and fluent.Fig.3shows the cross-supervision and self-supervision functions.

    1.2 Main design parameters of the transmission component

    Based on the aircraft nose wheel steering system design index,under 24VDC,the maximum steering torque,the maximum steering angle,and the maximum steering speed provided by the nose wheel steering system are set as 1 000N·m,80°and 20°/s,respectively.

    Fig.3 Design diagram of the controller

    Considering the commonly used motor speed,reducer transmission ratio range and worm gear transmission ratio range,refer to the relevant design handbook,the motor model,the transmission ratio of the reducer and worm gear can be obtained,respectively.Then the main transmission components of the nose wheel steering system are designed concretely according to the handbook of mechanical and electric design.Finally,the main parameters of these transmission components are obtained,as shown in Table 1.

    Table 1 Main parameters of transmission component

    1.3 Preliminary design of damper

    Fig.4 Schematic of damper

    The relationship between the damping torque T and the rotor rotational speed n in the damper is as follows[15]

    where B represents the magnetic induction intensity,δthe gap length,l the length of stator,εthe rotor cup thickness,D the rotor diameter,k the ratio ofπ/τ,τthe electrode gap,p the number of pole-pairs,ρthe rotor resistance,L the length of the rotor cup,ωthe angular frequency,andα=μ0ε/ρδ,β=k2+iωα.

    The functional relationship between the damping torque and the rotor rotational speed is nonlinear,so the damper with large value of p/D is selected in this system for simplifying the relationship into linear function.The ratio between the torque and speed is the damping coefficient K.

    where r is the correction factor.

    Considering the ground impact load and tire aligning stiffness in the process of aircraft taxiing,landing gear′s moment of inertia and the design requirements of nose wheel steering system,the damping coefficient can be obtained by establishing simulation model to simulate the antishimmy process of the nose wheel under the ground impact load.Finally,parameters of the damper can be obtained accordingly.

    1.4 Layout and installation design of the system

    Based on the main parameters of the system and the related design handbook,the layout and installation design of the system can be completed.As shown in Figs.5,6,being the diagram of the nose wheel steering system installed on landing gear and the transverse sectional view of the nose wheel steering system.In the nose landing gear of aircraft,the first housing of the nose wheel steering system is fixed in the strut cylinder sleeve through screws.On the left side of the nose wheel steering system,the first motor and the first reducer located within the second housing,the first clutch is fixed in the second housing by screws and connected with the first reducer through the general flat key.Besides,the first motor and the first reducer fixed axially through the second housing.The first housing and second housing are fixed by bolt connection.One end of the first worm gear in first housing is connected with the first clutch through general flat key,and the other end is axially fixed through the first tapered roller bearing and the first end cap.The first cylindrical roller bearing and the first tapered roller bearing are installed on both ends of the first worm gear,respectively.The first cylindrical roller bearing is axially fixed through the shaft shoulder on the first worm and the first circlip for hole.The first tapered roller bearing is axially fixed through the first nut and the shaft shoulder on the first worm.The first end cap is fixedly connected with the first housing through bolts and contacts with the outer ring of the first tapered roller bearing.The installation of the right side nose wheel steering system is the same with the left side′s.

    目前,含風(fēng)電機組的配電網(wǎng)無功優(yōu)化已引起廣大學(xué)者的重視。文獻(xiàn)[5]建立了以有功能耗為目標(biāo)的單目標(biāo)優(yōu)化模型,在不同風(fēng)機出力下應(yīng)用遺傳算法確定各狀態(tài)下SVC補償容量。文獻(xiàn)[6]考慮了有功網(wǎng)損和電壓穩(wěn)定裕度指標(biāo),提出了一種基于場景發(fā)生概率的無功優(yōu)化指標(biāo)。文獻(xiàn)[7]建立了成本效益比、靜態(tài)電壓穩(wěn)定指標(biāo)模型,采用多場景分析風(fēng)機出力,并應(yīng)用粒子群算法求解。文獻(xiàn)[8]采用多目標(biāo)的遺傳算法求解在電力系統(tǒng)最大負(fù)荷運行方式下多目標(biāo)無功優(yōu)化問題。

    Fig.5 Nose wheel steering system installed on landing gear

    Fig.6 Transverse sectional view of the nose wheel steering system

    2 Simulation of All-electric Nose Wheel Steering System

    2.1 Construction of all-electric nose wheel simulation model

    Based on the afore-mentioned nose wheel steering system and the speed governing system of DC motor,the simulation model of all-electric nose wheel steering system has been established by using the AMESim software,as shown in Fig.7.

    The motor module of this model is created according to the speed governing system of DC motor,and is encapsulated.The clutch model consists of a piecewise linear function module and a free-rotation Coulomb friction module,which functions as a clutch and a torque limiter.Meanwhile,the clutch also sets a maximum Coulomb friction torque for the motor.

    Fig.7 Simulation model of nose wheel steering system

    The damper module in this model is comprised of an angular velocity sensor,a coulomb friction module with one end fixed,a coupling module,and a function module.So the damper can become operational.The reducer module of AMESim is suitable for the reducer in this model.The reduction ratio should be chosen as 74.

    The turbine worm mechanism module is made up of a running clearance module,a moment of inertia module,a moment sensor module,a turbine worm module,a Coulomb friction module with one end fixed,a coupling module,and one function module.Thus,the entire module is operational.Running clearance module is added to the model and grants better accuracy because clearance exists in practical situations inevitably.

    2.2 Optimization on the model and relevant analysis

    In practical engineering applications,PID parameters are adjusted manually so as to guarantee the dynamic performance of the control system.However,it is usually not the ideal state for the dynamic performance.Currently the performance index,integrated time and absolute error(ITAE),has been widely used to assess the dynamic performance of a system,which equals to time multiplied by absolute value of error and integrated over time.The index ITAE poses both practical and selective in engineering applications.The ITAE module adopted in the simulation system is shown in Fig.8.

    Fig.8 ITAE module of the nose wheel steering system

    Considering nose wheel steering system in the steering state,where electromagnetic damper is disabled and landing impact load is ignored.Ground load is 1 000N·m fixed damping torque.In the beginning,nose wheel is situated in the middle.After one second,signal the nose wheel to ensure that the wheel rotates at 20°/s in the direction of one side until it reaches its extreme position.Afterwards,the wheel keeps working for a while.Finally,the wheel rotates back to its initial position at the same rate.

    For achieving optimized PID parameters,proportionality coefficient,integral coefficient,and differential coefficient are selected as optimizing variables.The ITAE is used as the target function of optimization.By means of non-linear programming by quadratic Lagrangian(NLPQL)algorithm module integrated in the AMESim software,the minimum value of target function becomes accessible.Finally,optimal PID parameters are available:207as the proportionality coefficient,0.002as the integral coefficient and 29.5 as the differential coefficient.Two curves of nose wheel yaw angle over time are concluded by batching and comparing with the manually adjusted results.

    As shown in Fig.9, manually-adjusted curve′s yaw angle overshoot is 2.7%with a small amount of settling time.Thus it meets the requirements of practical engineering.Yet after performing the optimization on PID parameters,overshoot of yaw angle output reaches almost ze-ro,settling time is also reduced by 0.5s.The dynamic performance of the entire system is considerably improved.

    Fig.9 Manually adjusted curve and optimized curve of yaw angle over time

    Fig.10demonstrates curves of optimized nose wheel steering input and output over time.It is evident that output curve lags behind the input curve all along the process.The reason for this situation is that during practical application,rotor′s moment of inertia along with the clearance and friction in the motor lead to a small period of time when the motor reaches its rated speed from state of rest.Afterwards the system input maintains the maximum rotation speed until reaching extreme position,so input signal is not able to keep up with output signal,which is fairly normal.The output curve has the same trend as the input curve,where the lag is no more than 0.5s.This symbolizes a remarkable follow performance that fulfills actual engineering practice.

    Fig.10 Input and output curves over time of nose wheel steering system

    During the steering process,load simulation system applies consistent load.Load is applied by the mechanism installed on the end of the steering system which generates friction against steering.Therefore,friction maintains an invariant value just as shown in Fig.11.

    Fig.11 Simulated load torque

    The DC motor′s torque and rotating speed curves over time are shown in Fig.12.It is obvious that it takes 0.5for the motor to accelerate to rated speed 5 990r/min from zero during the steering process,which is why input curve lags behind output curve.Since then motor maintains its speed until nose wheel reaches the yaw angle of 80°,where the steering system,as well as the motor,cease to function.In the process of the nose wheel returning to its initial position,the rotating speed of motor remains the same value as previous but in opposite direction.The working torque of the motor during steering is 0.395N·m,which is similar to rated torque.This guarantees long time of work and exploiting performance better.

    Fig.12 DC motor′s torque and rotating speed curves over time

    Since the simulation process is relatively ideal,two servo motors share the same status of motion when their parameters are configured identically.Therefore,one parameter is modified manually in order to test the speed configuring module.

    Fig.13 Motor rotate speed before configuration

    Fig.14 Motor rotate speed after configuration

    By comparing Fig.13and Fig.14,the following conclusion is drawn:Before speed configuring module works,two motors differ in speed.While the module is operational,two motors remain almost the same rotate speed.

    3 Test Verification

    The main objective of nose gear steering mechanism test verification is to analyze the feasibility of entire steering mechanism design and the accuracy of control system.The experiment requires the entire system to simulate the actual steering process,which calls for the whole nose gear entity and its control system.Moreover,the steering test verification system must provide steering angle,rotate speed of motor and commands from control system during steering process for further analysis on the feasibility.

    3.1 Basic theory and control system of the experiment

    Landing gear steering experiment system consists of two systems:control system and measure system.The control system exerts control over the steering system while the measure system gauges rotate speed of nose gear and motor,as well as feeds all the data back to the control system.Thus it is guaranteed that steering mechanism stays the same working condition in practice.To make it convenient to install and configure the entire landing gear,one end of the mechanism is fixed,while the other end is free for further load simulation as shown in Fig.15.

    Fig.15 Image of the steering mechanism

    (1)Controller

    The control system has been integrated to a control box whose user interface can be easily modified and designed.DSP control unit is applied for the experiment,which grants swift process and accurate control.

    Fig.16 DSP control unit

    DSP control unit integrates assorted sensors for switching anti-shimmy modes,measuring displacements of steering system and load applied on the landing gear,along with modules connecting servo motors.As a result,clutching device,servo motor and sensors have to be connected to the control unit accordingly.

    Fig.17shows the wire map of control unit,components of the steering system are linked to the DSP control unit respectively.Corresponding components can be manipulated by internal commands from the control system,thus the steering mechanism is able to function properly.

    Fig.17 Wire map of DSP control unit loop

    (2)Control method of servo motor

    There are three methods for servo motor control strategies:Torque control,position control and speed control.Speed control strategy is adopted due to the experiment requirement that speed has to be maintained during test.Analogue parameters can be harnessed to control the rotate speed.Furthermore,speed control strategy is capable of accurate positioning with the outer loop PID control along with upper control device,which reduces error during transmission and adds to the accuracy of positioning for the whole system.

    Control strategy for servo motor is displayed as Fig.18.By means of outputting correspondent analogue signals to manipulate rotate speed of motor.Meanwhile,analogue offset and auxiliary input signals to ensure the precision of any command.

    Fig.18 Control theory of motor

    3.2 Results and analysis of the experiment

    Real-time monitoring of rotate speed of servo motor has been performed by sensors during rotation.The rotate speed has been recorded and manipulated by presetting DSP control signals.

    Recording of working status of servo motor is conducted by Motion Monitor software as Fig.19presents.Both actual rotate speed and preset speed are accumulated,along with current fluctuation and actual displacement of motor.

    Fig.19 Recorded data

    Fig.20represents the command of speed and control signal.It is apparent that DSP voltage keeps up with the operation of motor consistently.In the beginning servo motor holds still,when DSP voltage rises,Servo motor′s rotate speed increases proportionally.Motor′s rotate speed follows voltage very well,therefore DSP control unit plays an outstanding role for the experiment.

    Fig.20 Command speed and control signal

    Fig.21shows a good consistency between command speed and actual speed,which indicates aproper set of parameters.

    Fig.21 Command speed and actual rotate speed

    In the process of steering,respective measurements are applied to the servo motors as shown in Fig.22.Two motors remain basically the same rotate speed.As a result,it is evident that excess energy dissipation of the system caused by nonsynchronous movement of two worms.

    Fig.23shows the displacement curve of steering mechanism.When given proper input signals,the mechanism starts working until reaches the designated angle,where the system ceases to function.Afterwards,steering mechanism returns to its initial position on corresponding command.

    Fig.22 Rotate speed of two motors

    Fig.23 Rotation displacement of servo motor

    4 Conclusions

    The design method of all-electric nose wheel steering system is addressed,including the machanical design and control strategy design.Then the simulation method is used to determine the design parameters and the prototype test is used to verify the design reasonableness.

    (1)Two DC motors,two worms and one worm wheel are designed to improve the steering torque.Nose wheel steering system under 24V DC can provide 1 000N·m steering torque,80°steer angle and 20°/s steering angular velocity.

    (2)The main controller feeds back the worm gear steering angle in addition to the output torque of the two worm gear to make them rotate synchronously.The simulation annlysis is conducted to verify the property.PID parameters are adjusted to improve the steering performance.

    (3)The prototypes of the steering mechanism and control system are researched to validate the design and the steering test bench is prepared to test the system working.The test results,such as steer angle,rotation speed of motor are analyzed in details and compared with the theoretical results.The test results indicate that all-electric nose wheel steering system with two worm gears is qualified for an intact steering mechanism.

    Acknowledgement

    This work was supported partly by the Aeronautical Science Foundation of China(No.20142852025).

    [1] LIU Ming,HUANG Chunzhou,Li Qin.Subsystems development on more-electric aircraft[J].Astronautical Science and Technology,2005(6):10-13.(in Chinese)

    [2] ZHU Xinyu,PENG Weidong.The application of more-electric aircraft and its technology[J].Journal of Civil Aviation Flight University of China,2007,18(6):8-11.(in Chinese)

    [3] JONES R I.The more electric aircraft-assessing the benefits[J].Journal of Aerospace Engineering,2002,216(5):259-269.

    [4] LESTER F.Beyond the more electric aircraft[J].Aerospace America,2005,9:35-40.

    [5] WEIMER J.Past,present &future of aircraft electrical power systems:AIAA 2001-1147[R].USA:AIAA,2001:1-9.

    [6] YU Liming.The improvement and development in the technical analysis of all-electric aircraft[J].Aircraft Design,1999,9(3):1-2.(in Chinese)

    [7] DRESS.Distributed and redundant electro-mechanical nose wheel steering system[R].Paris Air Show:DRESS Early Achievements Presentation,2009.

    [8] LISCOUET J,MARE C,BUDINGER M.An integrated methodology for the preliminary design of highly reliable electromechanical actuators:Search for architecture solutions[J].Aerospace Science and Technology,2012,22(1):9-18.

    [9] BENNETT J W.Fault tolerant electromechanical actuators for aircraft[D].England:Newcastle University,2010.

    [10]BENNETT J W,MECROW B C,ATKINSON D J,et al.A fault tolerant electric drive for an aircraft nose wheel steering actuator[J].IET Electrical Systems in Transportation,2011,1(3):117-125.

    [11]HUI Xiaoqiang,ZHOU Bo,ZHANG Lei,et al.Design of digital skidproof brake integrated controller in airplane[J].Aeronautical Computing Technique,2010,40(5):126-130.(in Chinese)

    [12]ZHAN Xiang.A design of dissimilar dual redundancy digital steering control box based on FPGA and DSP[J].Journal of Xihua University:Natural Science,2015,34(4):32-36.(in Chinese)

    [13]WANG Aping,WU Hao,CAO Sijia,et al.Research on a miniaturized and high load nose wheel steering servo system for aircraft[J].Aviation Precision Manufacturing Technology,2017,53(2):38-41.(in Chinese)

    [14]GUO Hong,XING Wei.Development of electromechanical Actuators[J].Acta Aeronoutica et Astronautica Sinica,2007,28(3):620-627.(in Chinese)

    [15]WANG Youlin,LIU Jinglin.Designing electromagnetic damper used in space rendezvous[J].Journal of Northwestern Polytechnical University,2006,24(3):358-362.(in Chinese)

    猜你喜歡
    出力遺傳算法風(fēng)機
    風(fēng)機折翼“倒春寒”
    能源(2018年5期)2018-06-15 08:56:02
    基于自適應(yīng)遺傳算法的CSAMT一維反演
    風(fēng)機倒塔事故為何頻發(fā)?
    能源(2017年9期)2017-10-18 00:48:27
    一種基于遺傳算法的聚類分析方法在DNA序列比較中的應(yīng)用
    基于遺傳算法和LS-SVM的財務(wù)危機預(yù)測
    節(jié)能技術(shù)EPU在AV71風(fēng)機上的應(yīng)用
    風(fēng)電場有功出力的EEMD特性分析
    要爭做出力出彩的黨員干部
    河南電力(2016年5期)2016-02-06 02:11:35
    基于改進(jìn)的遺傳算法的模糊聚類算法
    TS3000系統(tǒng)防喘振控制在 AV80-14風(fēng)機中的應(yīng)用
    99久久精品一区二区三区| 国产精品久久电影中文字幕| 国产老妇女一区| 搞女人的毛片| 特级一级黄色大片| 大又大粗又爽又黄少妇毛片口| 色av中文字幕| 级片在线观看| 亚洲不卡免费看| 特大巨黑吊av在线直播| 国内揄拍国产精品人妻在线| 看片在线看免费视频| 97超碰精品成人国产| 国产精品久久久久久久久免| 1024手机看黄色片| 亚洲欧美日韩卡通动漫| 天天躁日日操中文字幕| 给我免费播放毛片高清在线观看| 99riav亚洲国产免费| 亚洲欧美清纯卡通| 毛片女人毛片| 人妻少妇偷人精品九色| 国产精品美女特级片免费视频播放器| 午夜激情欧美在线| 91精品国产九色| 69人妻影院| 午夜a级毛片| 国国产精品蜜臀av免费| 日本爱情动作片www.在线观看 | 天美传媒精品一区二区| 成人午夜高清在线视频| 校园人妻丝袜中文字幕| 久久久久国内视频| 亚洲四区av| av中文乱码字幕在线| 精品人妻视频免费看| 精品人妻偷拍中文字幕| 日本色播在线视频| 久久久久久伊人网av| 九九久久精品国产亚洲av麻豆| 少妇的逼好多水| 亚州av有码| 高清日韩中文字幕在线| 欧美+日韩+精品| 欧美激情国产日韩精品一区| 丰满人妻一区二区三区视频av| 国产亚洲欧美98| 少妇人妻精品综合一区二区 | 韩国av在线不卡| 少妇的逼好多水| 久久综合国产亚洲精品| 亚洲在线观看片| 美女cb高潮喷水在线观看| 午夜福利高清视频| 一边摸一边抽搐一进一小说| 男人和女人高潮做爰伦理| 一进一出好大好爽视频| 在线观看免费视频日本深夜| 一边摸一边抽搐一进一小说| 亚洲最大成人中文| 久久久久久久久中文| 色综合色国产| 午夜老司机福利剧场| 精品无人区乱码1区二区| 99在线视频只有这里精品首页| 国产黄片美女视频| 九九爱精品视频在线观看| 午夜老司机福利剧场| 精品一区二区三区人妻视频| 3wmmmm亚洲av在线观看| 综合色丁香网| 国产高清不卡午夜福利| 看片在线看免费视频| 精品99又大又爽又粗少妇毛片| 国产蜜桃级精品一区二区三区| 一区福利在线观看| 色综合站精品国产| 久久韩国三级中文字幕| av中文乱码字幕在线| 九九热线精品视视频播放| 亚洲精品影视一区二区三区av| 成人美女网站在线观看视频| 欧美区成人在线视频| 欧美日本视频| 国产毛片a区久久久久| 自拍偷自拍亚洲精品老妇| 级片在线观看| 国产乱人偷精品视频| 欧美极品一区二区三区四区| 性插视频无遮挡在线免费观看| 免费看光身美女| 看免费成人av毛片| 亚洲性久久影院| 久久久欧美国产精品| 黄色日韩在线| 国产三级中文精品| 亚洲av.av天堂| 国产精品爽爽va在线观看网站| 亚洲高清免费不卡视频| 能在线免费观看的黄片| 男人狂女人下面高潮的视频| 久久久a久久爽久久v久久| 日日摸夜夜添夜夜添小说| 黄色一级大片看看| 精品人妻偷拍中文字幕| 亚洲av.av天堂| 18禁在线播放成人免费| 亚洲欧美清纯卡通| 老司机午夜福利在线观看视频| 精品久久久久久久久久免费视频| 日本熟妇午夜| 亚洲色图av天堂| 男女做爰动态图高潮gif福利片| 国产成人a∨麻豆精品| 亚洲美女搞黄在线观看 | 18禁在线播放成人免费| 亚洲精品乱码久久久v下载方式| 变态另类成人亚洲欧美熟女| 国产黄a三级三级三级人| 国内精品宾馆在线| 亚洲av成人精品一区久久| 亚洲欧美精品自产自拍| 乱人视频在线观看| 亚洲第一电影网av| 国产精品99久久久久久久久| 亚洲精品亚洲一区二区| 超碰av人人做人人爽久久| 国产单亲对白刺激| 99久久九九国产精品国产免费| 日本-黄色视频高清免费观看| 国产一区亚洲一区在线观看| 俺也久久电影网| 男人狂女人下面高潮的视频| 亚洲人成网站在线播放欧美日韩| 精品久久久久久久久av| 久久精品国产99精品国产亚洲性色| 天天一区二区日本电影三级| 久久中文看片网| 国产亚洲精品久久久com| 欧美一级a爱片免费观看看| 一进一出抽搐gif免费好疼| 色哟哟·www| 亚洲va在线va天堂va国产| 给我免费播放毛片高清在线观看| 国产成人a区在线观看| 久久久久性生活片| 日本在线视频免费播放| 午夜精品一区二区三区免费看| 久久久精品大字幕| 国产大屁股一区二区在线视频| 国产大屁股一区二区在线视频| a级毛色黄片| 天天躁日日操中文字幕| 97在线视频观看| 欧美日本亚洲视频在线播放| 欧美成人一区二区免费高清观看| 简卡轻食公司| 麻豆乱淫一区二区| 成人美女网站在线观看视频| 欧美绝顶高潮抽搐喷水| 91av网一区二区| 99热只有精品国产| 在现免费观看毛片| 亚洲中文日韩欧美视频| 三级国产精品欧美在线观看| 床上黄色一级片| 久久久色成人| 免费一级毛片在线播放高清视频| 大又大粗又爽又黄少妇毛片口| 国产精品一区二区性色av| 深夜精品福利| 国产亚洲av嫩草精品影院| 真实男女啪啪啪动态图| 校园春色视频在线观看| 国产中年淑女户外野战色| 美女高潮的动态| 国产高潮美女av| 午夜久久久久精精品| 久久久久久久久久成人| 日韩欧美 国产精品| 国产精品,欧美在线| 国产精品久久视频播放| 精品久久久久久成人av| 天堂av国产一区二区熟女人妻| 国产伦在线观看视频一区| 国产精品国产高清国产av| 成人三级黄色视频| 久久久精品94久久精品| 亚洲国产色片| 国产成人a区在线观看| 国产视频一区二区在线看| 国产不卡一卡二| 免费观看人在逋| 欧美色欧美亚洲另类二区| 亚洲三级黄色毛片| 国产极品精品免费视频能看的| 婷婷六月久久综合丁香| 日日摸夜夜添夜夜爱| 干丝袜人妻中文字幕| 国产精品不卡视频一区二区| 日本五十路高清| av在线天堂中文字幕| av女优亚洲男人天堂| 精品久久久久久久久久免费视频| 国产亚洲精品久久久久久毛片| 国产伦精品一区二区三区视频9| 欧美在线一区亚洲| 欧美另类亚洲清纯唯美| 亚洲欧美日韩东京热| 亚洲欧美日韩无卡精品| 欧美性感艳星| 中出人妻视频一区二区| 人人妻人人澡欧美一区二区| 国产男人的电影天堂91| 国产精品福利在线免费观看| 亚洲综合色惰| 亚洲欧美清纯卡通| a级一级毛片免费在线观看| 人人妻,人人澡人人爽秒播| 淫秽高清视频在线观看| 岛国在线免费视频观看| 美女 人体艺术 gogo| 国产成人影院久久av| 桃色一区二区三区在线观看| 人人妻人人看人人澡| 一进一出抽搐gif免费好疼| 久久精品国产清高在天天线| 男女边吃奶边做爰视频| 欧美zozozo另类| 老司机福利观看| 欧美不卡视频在线免费观看| 人人妻人人澡欧美一区二区| 超碰av人人做人人爽久久| 干丝袜人妻中文字幕| 伊人久久精品亚洲午夜| 一a级毛片在线观看| 99国产精品一区二区蜜桃av| 蜜桃亚洲精品一区二区三区| 久久久a久久爽久久v久久| 小蜜桃在线观看免费完整版高清| 啦啦啦啦在线视频资源| 伦理电影大哥的女人| 日本与韩国留学比较| 日本免费a在线| 亚洲av五月六月丁香网| 亚洲真实伦在线观看| 亚洲综合色惰| 老熟妇仑乱视频hdxx| 嫩草影院入口| 乱系列少妇在线播放| 亚洲在线自拍视频| 老师上课跳d突然被开到最大视频| 亚洲电影在线观看av| 草草在线视频免费看| 亚洲高清免费不卡视频| 亚洲人成网站在线观看播放| avwww免费| 最后的刺客免费高清国语| 国产av一区在线观看免费| 亚洲成人久久性| 99在线人妻在线中文字幕| 欧美3d第一页| 国产精品国产高清国产av| www.色视频.com| 亚洲高清免费不卡视频| 国产久久久一区二区三区| 免费在线观看影片大全网站| 久久人人爽人人爽人人片va| 亚洲国产欧洲综合997久久,| 麻豆国产97在线/欧美| 禁无遮挡网站| 六月丁香七月| 看免费成人av毛片| 欧美在线一区亚洲| 国产黄色视频一区二区在线观看 | 一区福利在线观看| 美女免费视频网站| 国产高清视频在线播放一区| 一级黄色大片毛片| 久久热精品热| 变态另类成人亚洲欧美熟女| 麻豆一二三区av精品| 一本精品99久久精品77| 99热这里只有精品一区| 69av精品久久久久久| 亚洲无线在线观看| a级毛片a级免费在线| 深夜精品福利| 丰满乱子伦码专区| 一区福利在线观看| 亚洲色图av天堂| 国产精品女同一区二区软件| 亚洲自偷自拍三级| 国产成人一区二区在线| 国产v大片淫在线免费观看| 成人特级av手机在线观看| 97超视频在线观看视频| 国产av在哪里看| 精品一区二区三区视频在线观看免费| 在线播放无遮挡| 欧美日韩国产亚洲二区| 亚洲av成人精品一区久久| 老司机午夜福利在线观看视频| 午夜老司机福利剧场| 欧美性感艳星| 国产精品一区二区三区四区久久| 九九久久精品国产亚洲av麻豆| 亚洲真实伦在线观看| 日韩av不卡免费在线播放| 黄色一级大片看看| 国产av麻豆久久久久久久| 最近的中文字幕免费完整| 在线看三级毛片| 一级黄片播放器| 美女高潮的动态| 中文字幕人妻熟人妻熟丝袜美| 尤物成人国产欧美一区二区三区| av专区在线播放| 内地一区二区视频在线| 一本久久中文字幕| 午夜福利视频1000在线观看| 男人和女人高潮做爰伦理| 亚洲精品影视一区二区三区av| 中国美女看黄片| 校园人妻丝袜中文字幕| 美女xxoo啪啪120秒动态图| 男女边吃奶边做爰视频| 亚州av有码| 国产精品久久久久久亚洲av鲁大| 欧美三级亚洲精品| 一区二区三区高清视频在线| 在线天堂最新版资源| 大型黄色视频在线免费观看| 国产熟女欧美一区二区| 你懂的网址亚洲精品在线观看 | 搡老熟女国产l中国老女人| 国产精品久久电影中文字幕| 中文字幕人妻熟人妻熟丝袜美| videossex国产| 欧美激情在线99| 精品久久久久久久末码| 国产精品一区二区三区四区久久| 高清日韩中文字幕在线| 免费av毛片视频| 日韩欧美一区二区三区在线观看| 我的女老师完整版在线观看| 在线观看一区二区三区| 日韩三级伦理在线观看| 国产一区二区在线观看日韩| 国产 一区精品| 丰满人妻一区二区三区视频av| 97超视频在线观看视频| 少妇的逼好多水| 免费搜索国产男女视频| а√天堂www在线а√下载| 亚洲性夜色夜夜综合| 91久久精品国产一区二区三区| 国产精品女同一区二区软件| 国产一区二区三区在线臀色熟女| 深爱激情五月婷婷| 长腿黑丝高跟| 深夜精品福利| 亚洲内射少妇av| 精品久久久久久久久av| 国国产精品蜜臀av免费| 久久午夜福利片| 国产片特级美女逼逼视频| 久久九九热精品免费| 可以在线观看的亚洲视频| 69av精品久久久久久| 日韩av不卡免费在线播放| h日本视频在线播放| 黄色日韩在线| 国产av在哪里看| 看非洲黑人一级黄片| 久久亚洲精品不卡| 五月玫瑰六月丁香| 一个人观看的视频www高清免费观看| 99久国产av精品国产电影| 美女内射精品一级片tv| 色播亚洲综合网| 搡老妇女老女人老熟妇| 国产成人aa在线观看| 久久精品国产亚洲网站| 99热这里只有精品一区| 别揉我奶头 嗯啊视频| 免费看日本二区| 国产aⅴ精品一区二区三区波| 精品日产1卡2卡| 又黄又爽又刺激的免费视频.| 看片在线看免费视频| 久久鲁丝午夜福利片| 久久中文看片网| 美女内射精品一级片tv| 尤物成人国产欧美一区二区三区| 日韩一本色道免费dvd| 国产精品久久久久久av不卡| 国产日本99.免费观看| 国产老妇女一区| 午夜影院日韩av| 美女内射精品一级片tv| 久久精品夜色国产| 精品久久久久久久人妻蜜臀av| 欧美bdsm另类| 日韩强制内射视频| 亚洲欧美精品综合久久99| av天堂中文字幕网| 精品久久久久久久久av| 亚洲最大成人手机在线| 免费av观看视频| 欧美日本亚洲视频在线播放| 性插视频无遮挡在线免费观看| 男人狂女人下面高潮的视频| 永久网站在线| 日韩制服骚丝袜av| 好男人在线观看高清免费视频| 又黄又爽又刺激的免费视频.| 亚洲乱码一区二区免费版| 国产精品女同一区二区软件| 国产大屁股一区二区在线视频| 国产成人精品久久久久久| 亚洲国产精品sss在线观看| 国产亚洲精品久久久com| 国产精品永久免费网站| 欧美日韩一区二区视频在线观看视频在线 | АⅤ资源中文在线天堂| 午夜免费激情av| 午夜久久久久精精品| 插逼视频在线观看| 丰满的人妻完整版| 亚洲四区av| 国产乱人偷精品视频| 日产精品乱码卡一卡2卡三| 女人十人毛片免费观看3o分钟| 91精品国产九色| 国产成人精品久久久久久| 精品久久国产蜜桃| 国产中年淑女户外野战色| 亚洲欧美日韩高清在线视频| 永久网站在线| 亚洲精品粉嫩美女一区| 欧美xxxx性猛交bbbb| 中文字幕av在线有码专区| 亚洲成人中文字幕在线播放| 久久午夜福利片| 国产大屁股一区二区在线视频| 精品无人区乱码1区二区| 国产高清不卡午夜福利| 日韩欧美一区二区三区在线观看| 亚洲人成网站在线观看播放| 欧美3d第一页| 欧美激情久久久久久爽电影| 日韩欧美一区二区三区在线观看| 一本久久中文字幕| 亚洲欧美日韩东京热| 五月伊人婷婷丁香| av视频在线观看入口| 色尼玛亚洲综合影院| 村上凉子中文字幕在线| 一区二区三区四区激情视频 | a级毛片a级免费在线| 少妇人妻精品综合一区二区 | 最近2019中文字幕mv第一页| 一级毛片aaaaaa免费看小| 神马国产精品三级电影在线观看| 哪里可以看免费的av片| 国产成人a∨麻豆精品| 最近最新中文字幕大全电影3| 夜夜看夜夜爽夜夜摸| 69人妻影院| 久久久久久久亚洲中文字幕| 欧美一区二区精品小视频在线| 性插视频无遮挡在线免费观看| 国产av一区在线观看免费| 国产精品无大码| 最后的刺客免费高清国语| 日韩大尺度精品在线看网址| 日韩制服骚丝袜av| 国产美女午夜福利| 伦理电影大哥的女人| 深爱激情五月婷婷| 国产色爽女视频免费观看| 午夜福利高清视频| 国内精品宾馆在线| 又爽又黄a免费视频| 国内精品美女久久久久久| 一级毛片我不卡| 亚洲成av人片在线播放无| 国产不卡一卡二| 免费黄网站久久成人精品| 日韩欧美精品v在线| 美女内射精品一级片tv| 免费看光身美女| 日本爱情动作片www.在线观看 | 久久欧美精品欧美久久欧美| 一个人免费在线观看电影| 99久久精品一区二区三区| 自拍偷自拍亚洲精品老妇| 午夜激情欧美在线| 国产一级毛片七仙女欲春2| 国产午夜精品久久久久久一区二区三区 | 波多野结衣高清作品| 欧美激情在线99| 亚洲在线自拍视频| 亚洲激情五月婷婷啪啪| 婷婷六月久久综合丁香| 国产精品久久视频播放| 国产在线精品亚洲第一网站| 菩萨蛮人人尽说江南好唐韦庄 | 狂野欧美白嫩少妇大欣赏| av在线亚洲专区| av中文乱码字幕在线| 久久99热6这里只有精品| 不卡一级毛片| 久久九九热精品免费| 青春草视频在线免费观看| 国产高清视频在线观看网站| 精品日产1卡2卡| 日韩精品有码人妻一区| 最近2019中文字幕mv第一页| 欧美+亚洲+日韩+国产| 亚洲国产精品成人综合色| 国产精品乱码一区二三区的特点| 在线观看一区二区三区| 老司机福利观看| 欧美+亚洲+日韩+国产| 麻豆乱淫一区二区| 99视频精品全部免费 在线| 18禁在线无遮挡免费观看视频 | 久久人人爽人人爽人人片va| 如何舔出高潮| 97碰自拍视频| 午夜激情欧美在线| 色哟哟哟哟哟哟| 别揉我奶头~嗯~啊~动态视频| 日韩人妻高清精品专区| 一区二区三区四区激情视频 | 岛国在线免费视频观看| 人妻制服诱惑在线中文字幕| 亚洲成人精品中文字幕电影| 精品午夜福利在线看| 久久久国产成人精品二区| 国产一区二区三区av在线 | 国产精品女同一区二区软件| 亚洲无线观看免费| 热99在线观看视频| 最近在线观看免费完整版| 亚洲成人久久性| 91久久精品国产一区二区成人| 网址你懂的国产日韩在线| 免费人成视频x8x8入口观看| 国产av麻豆久久久久久久| 色综合站精品国产| 可以在线观看毛片的网站| 国产精品久久久久久精品电影| 国产av一区在线观看免费| 免费电影在线观看免费观看| 可以在线观看的亚洲视频| 日产精品乱码卡一卡2卡三| 色视频www国产| 国产午夜福利久久久久久| 亚洲精品国产av成人精品 | 长腿黑丝高跟| 1024手机看黄色片| 1000部很黄的大片| 麻豆成人午夜福利视频| 国产精品久久电影中文字幕| 搡女人真爽免费视频火全软件 | 精品日产1卡2卡| 久久精品91蜜桃| 久久韩国三级中文字幕| 尾随美女入室| 在线观看美女被高潮喷水网站| 国产精品野战在线观看| 狂野欧美激情性xxxx在线观看| 国产久久久一区二区三区| 久久这里只有精品中国| 亚洲欧美清纯卡通| a级一级毛片免费在线观看| 亚洲美女视频黄频| 一卡2卡三卡四卡精品乱码亚洲| 日韩人妻高清精品专区| 国模一区二区三区四区视频| 亚洲人成网站在线播放欧美日韩| 欧美激情在线99| 亚洲成人av在线免费| 久久久久久大精品| 成人永久免费在线观看视频| 国产成年人精品一区二区| 中文字幕久久专区| 日日撸夜夜添| 色播亚洲综合网| 国产免费男女视频| 夜夜爽天天搞| 内射极品少妇av片p| 色播亚洲综合网| 亚洲,欧美,日韩| 免费观看人在逋| 大又大粗又爽又黄少妇毛片口| 国产免费一级a男人的天堂| 一进一出抽搐动态| 成人特级黄色片久久久久久久| 国产精品嫩草影院av在线观看| 内射极品少妇av片p| 亚洲七黄色美女视频| 麻豆一二三区av精品| 免费看美女性在线毛片视频| 亚洲精品乱码久久久v下载方式| 美女黄网站色视频| 国产av一区在线观看免费| 日本精品一区二区三区蜜桃| 内地一区二区视频在线| 丰满人妻一区二区三区视频av| 欧洲精品卡2卡3卡4卡5卡区| 免费电影在线观看免费观看|