• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Analysis of Dry Friction-Induced Vibration of Moving Slider-Elastic Annular Beam System

    2018-03-29 07:35:53,,2*

    ,,2*

    1.Department of Mechanics,Tianjin University,Tianjin 300350,P.R.China

    2.Tianjin Key Laboratory of Nonlinear Dynamics and Control,Tianjin 300350,P.R.China

    0 Introduction

    A friction system usually exists in the engineering such as braking system,where the friction-induced instable vibration has a negative influence on the braking system,especially the disc-pad system[1].Many researches have been carried out for this problem with analytical,computational and experimental techniques.Various models including the single-mode approximation,the beam model,the plate model[2]and the finite element model were established to investigate the brake system of rotating brake disc acted by fixed pads.The early achievements on disc brake system are attributed to the dry frictional stick-slip self-excited vibration[3-4]and unstable structural vibration[5-6].Stick-slip refers to a fluctuation of friction force or sliding velocity with time or sliding distance changing[7].

    In view of the stick-slip mechanism,the model of rigid body-rigid transmission belt has been widely used.In 2001,a dynamic system is presented by Galvanetto to get the mechanism of discontinuous bifurcations,where stick-slip vibration can be affected by the non-smooth bifurcations[8].Hereby,Stribeck-type coefficient is concluded to analyze the system stability and determine the critical speed of a dynamic model with two-degree-of-freedom[9].

    However,the use of rigid belt model ignores the interaction between the brake pad and disc in transverse direction.To overcome this shortage,elastic or flexible brake disc models are adopted in recent investigations.A braking system with a flexible thick plate for disc and two continuous beams for pads by using the Mindlin′s theory is established by Beloiu and Ibrahim to account for the influence of flexible belt on the braking behaviors.The braking noise and response in time and frequency domains are investigated analytical-ly and experimentally by considering the influence of non-linearity and randomness of contact forces[10].Nayfeh,Jilani and Manzione reduced the order of a circular flexible uniform thickness disk and analyzed its dynamical behavior analytically[11].Recently,an elastic annular disc model is adopted for a pre-loaded mass-damp-spring system with separation and reattachment by Li,Ouyang and Guan to investigate friction-induced vibration using the improved model[12].They found that separation often occurs in low speed,which is caused by friction during the unstable vibration.Larger in-plane stiffness and pre-load bring earlier separation and instability.In addition,the frequency of disc is increased with the effect of separation.However,the contact effect between the slider and disc and internal resonances were not considered.

    During braking process,the time-dependent nature of the contacting interface in the pad-disc system is important and must be considered even if lower relative speed[5].From the point of the rotating disc,its vibration is activated by the circumferentially moving action of the rigid pads.Influence of the moving force on brake stability attracts more and more attentions and the moving method is adopted in finite element method and experimental approaches.The deflection of a beam with moving force and the resonance velocity of the moving load are analyzed by Wayou,Tchoukuegno and Woafo[13].An approximation solution of moving oscillator was investigated by Pesterev and Bergman to describe the variation of displacement and shear force in a one-dimensional distributed system with an arbitrarily varying speed[14].Chen et al.analyzed a viscoelastic beam moving axially using the method of multiple scales.They found that the instability frequency intervals are influenced by the axial speed and the beam coefficient[15].Using the finite element method,unstable frequencies of a braking system inspired by moving loads can be obtained based on the system eigenvalue analysis[16].A linear complex-valued eigenvalue formulation for a disc with moving load is established by Cao et al.to calculate the stationary components of the disc brake[17].Based on the finite difference method and complex eigenvalue analysis,stability and uncertain parameters analyses[18]are carried out for disc-pad systems with moving-interactions.Accordingly,Ouyang investigated the instability of a brake disc by presenting the relationship between eigenvalue and disc′s rotating speed[15].

    However,up to now,the flexible coupling between the disc and pads and the moving interactions have not been considered simultaneously in one dynamical braking model.This paper deals with a rigid-flexible coupled braking system,and focuses attention mainly on motion of the pads moving on the elastic disc.The disc is simplified as an annular beam and the friction between the beam and pads are determined using a Stribecktype friction model.Then the 1st order Galerkin reduction is applied for the beam based on result of moving load simulation.Influence of acceleration of the disc rotation on the frictional instability of the pad is investigated.

    The values referred in this paper are shown in Table 1.

    1 Dynamic Modals

    1.1 Pads and disc

    During braking,the pads move circumferentially along the outer edge of the elastic disc.So the disc can be simplified as an annular beam which is supported on uniform and continuous flexible boundary(to simulate the distribution of flexible constraint effect from the inner part of disk)[19-20].The pad-disc coupling system is shown in Fig.1 (the boundary supporting is not included).The pads move at relative speedVand vibrate independently in horizontal directionsX1/X2and vertical directionsY1/Y2,and the rotational angles areΦ1/Φ2[21].For the disk,only its transverse displacementWdis considered,because it influences the pads′motion directly during braking contact.The contact stiffness involves the tangential onesKt1andKt2and the vertical oneKen.Parameters and their values of the system are listed in Table 1.

    Table 1 Parameters

    Fig.1 Pad-disc coupling system

    The equations of motion of the pad-disc coupling system are deduced as andσ=σ(T)represents the position of the loads varying with the time.

    1.2 Non-dimensional Form

    To rewrite the equations conveniently,introduce the dimensionless variables and parameters

    1.3 Friction

    Many models have been proposed to describe the friction properties,such as the coulomb friction(before occurrence of relative displacement between the contact parts),static friction(no relative velocity from static to relative motion)and-Stribeck effect,etc.

    The Stribeck effect refers to a phenomenon that the friction coefficient decreases.The negative slope in relation between the friction and relative velocity is known as the main reason of friction instability.The Stribeck-type friction coefficientμ(vr)can be expressed as

    wherefcandfsare the minimum and the maximum static friction coefficients respectively,vsis the Stribeck velocity,and vrthe relative velocity.Whenδ=1,Eq.(6)is also known as Tustin index model.The friction coefficient varies with relative velocity as shown in Fig.2.

    Fig.2 Static friction and Coulomb friction with Stribeck effect

    2 Moving Interaction and Galerkin Reduction

    2.1 Moving load simulation

    Considering a forcemoves along a straight beam.To analyze its response under the moving load,the beam is discretized intopelements.Let dtbe the unit time and dxthe unit space,the nodal forceis subsequently allocated in every unit time.

    For the moving load acted system,two conditions will be dealt with during calculation:

    (1)Cdx=vdt(Cis a positive integer).In this case,the load moves from one discrete point to theCth one after each time step dt.

    (2)dx=Cvdt(Cis a positive integer).In this case,after each time step dt,the load moves at a place between the discrete pointseande+1.Dividing the space step dxintoCequal subspaces,the load moves at the next sub-point after every time step dt.When the loadF槇 moves at theith one,(e+i/Cdx)wherei=1,2,…,C,the loadwill be resolved to the pointseande+1as=respectively,see Fig.3.

    Fig.3 Moving load simulation

    Corresponding to the moving load simulation mentioned above,the uniform and continuous flexible boundary of the beam should be discretized aspelastic springs with stiffnessk,as shown in Fig.4.kdepends on the material properties andp=50in the following analysis.Then the boundary and continual conditions can be expressed as

    where 1,iandLAare the leftmost,theith node and rightmost node in beam′s horizontal direction,respectively.jandj+1present thejth and(j+1)th time moment,respectively.

    Fig.4 Continuous flexible boundary discretized as p springs

    The disc partial differential Eq.(5)is solved by using the finite difference method and the ordinary differential Eq.(4)is solved by Runge-Kutta method,respectively.And the dynamical behavior of the braking system with moving actions between the parts can be simulated with the same time step dt=0.000 1and space step dx=0.02.The transverse response of disc solved by finite difference method is transferred to contact pressure and friction force items of pads,and then Eq.(4)can be solved.Takeσ珋=vt,then the transverse response of the beam is induced by successive change of the contact position between the pad and disc.LetKx=5.0×104kN/m,K=3.0×

    y104kN/m,v=2and 1,and simulation shows that both thexdirection response of the pad and the transverse response of the annular disc are periodic vibration as shown in Figs.5,6.The spectra of motions are also presented in the figures.It should be noted that except the difference of the equilibriums in velocity axis,the friction-induced dynamics of two pads are same with each other.So we present only the upper pad′s motion in this paper.

    Fig.5 Response of the system under moving interactions as relative-equilibrium occuring for the pad(v =2)

    Fig.6 Response of the system under moving interactions as friction-induced limit cycle occuring for the pad(v =1)

    Calculation shows that the natural frequencies areΩx=3.1Hz,Ωy=2.7Hz andΩφ=1.3Hz for horizontal,vertical and angle direction motions of the pads,and 1.25Hz(the first order)and 2.50Hz(the second order)for transverse motion of the disk,respectively.One finds that in spectrums under higher speed sustained moving interaction,sayv=2,motions of the pad and the disc in all directions are mixed with disc′s frequency in steady state,because the vibration frequencies are their natural frequencies and disc′s frequency in corresponding directions,respectively.However,as the moving speedvdecreases to 1,the friction-induced limit cycle vibration occurs for the pad,and common frequency 3.05Hz appears in all directions of the pad′s motion.It should be noted that even though the frictional instability has happened for the pad,the disc still vibrates in the first-order mode.So the equation of motion of the disc is discretized to the first-order mode by Galerkin model reduction in the following section.

    2.2 Approximate reduction equations

    Take the trial function(Eq.(8))to approximate the first-order transverse vibration of the disc.

    Substitute Eq.(8)into Eq.(5)and multiply the weighted function on both sides,then integrate it from 0toLinx,so the ordinary differential equation of transverse vibration of the disc is resulted as

    Approximation of first-order mode functionto the desired solution of transverse deflection of the disk at low speed.The time-varying function items included珋σ(t)in Eq.(9)reflect or interpret the fact that the space position of contacting load between the pads and disc varies with timet,after the vibration description for the beam is changed from a partial differential equation to an ordinary differential one.Because the stiffness value varies periodically with time,the natural frequency of the pad′s horizontal direction cannot keep in a fixed value but fluctuates periodically near 2.71Hz during integration,as shown in Fig.7.Accordingly,the system equilibrium positions will also fluctuate slightly(see the example of the angle equilibrium of pad in the vicinity of-2.678 6×10-6).

    Fig.7 Fluctuations

    Fig.8 Bifurcation of horizontal direction of pad

    Eqs.(4,5)are solved using the Runge-Kutta method,and the dynamical behavior of the braking system with moving interaction between parts can be investigated numerically.The complex eigenvalue analysis is carried out referred to Ref.[22]and the eigenvalues are 0.22+19.58iatv=1and-0.27+19.58iatv=2(assuming sign functions are positive).The bifurcation diagram in Fig.8reveals horizontal motion of the pad under braking process with the decrease of speedv.The points are sampled when the velocity of horizontal motion is zero.The instability of motion of the pad happens and the stick-slip limit cycle is resulted atv=1.25,which is also known as the critical speed.

    3 Numerical Analyses

    3.1 Non-internal resonances

    To reveal the variation of the coupling system dynamics during velocity decrease process,the time histories,spectra(Fig.5(a)and Fig.6(a)),and phase portraits(Fig.9)of the selected vibration characteristics of the upper pad are presented at the speedsv=2andv=1,respectively.Whenv=2,vibrations of pads will be damped,and a quasi-periodic motion occurs in this non-stationary case,which may be attributed to sustained oscillation of the contacting force resulted from the disc transverse deflection.The amplitude of upper pad inxdirection keeps vibrating with small amplitude,until changing to be an equilibrium at about 2.5×10-5.

    Whenvdecreases to 1,Stribeck-type friction effect induced by self-excited vibration (or stickslip)appears and limit cycles with rather large vibration amplitude for all parts of the system are resulted(see the presented horizontal vibration of the pad in Fig.9).

    3.2 Acceleration of disc rotation

    Fig.10shows the time histories of braking processes of the pads and disc at deceleration珔a=-0.005and珔a=-0.002,respectively.One finds that the higher the braking deceleration is,the faster the disc speed reaches to zero and the shorter the stick-slip vibration lasts.Obviously,the stick-slip vibration with high amplitude is more extensively at lower speed,where small"jitter"phenomena happens many times.As the speed approaches zero,the pads cannot stop vibration immediately.In fact,the vibration lasts for a short time under action of the relative friction force between the pads and disc.

    Fig.9 Phase portraits of the pad

    4 Conclusions

    Fig.10 Dynamic responses of the upper pad

    The disk-pads coupling braking system with-Stribeck-type frictional interaction with each other is investigated in this paper.The disk is simplified as an annular elastic beam and its vibration under action of moving loads is simulated using the finite difference method.Then Galerkin reduction is used for the disk vibration equation and numerical simulations are carried out for the 7-DOF equations.Conclusions are summarized in the following.

    (1)Mainly the first-order mode vibration of the annular beam can be induced by frictional moving loads.By using the Galerkin reduction,the first-order mode vibration equation of the disk is resulted with time-varying stiffness,which reflects the moving contact between the pads and disk.As a result,the system equilibrium positions and natural frequency of the disc will fluctu-ate periodically during time integration.

    (2)As the disc speed decreases below the critical one,the relative equilibrium of the pad in the disc loses its stability and stick-slip type vibration will be resulted in all directions′movements.As a counterpart of the pads,the disc vibrates also with large amplitude transversely.

    (3)During non-stationary braking process,braking deceleration shortens the period of stickslip vibration but enlarges the vibration amplitude.In addition,small"jitter"phenomena can happen many times during process.

    Acknowledgement

    This work is supported by the National Natural Science Foundation of China (Nos.51575378,11272228and 11332008).

    [1] KINKAID N M,O'REILLY O M,PAPACLOPOULOS P.Automotive disc brake squeal[J].Journal of Sound and Vibration,2003(267):105-166.

    [2] OUYANG H,MOTTERSHEAD J E,BOUNDED A.Region of disc-brake vibration instability[J].Journal of Vibration and Acoustics,2001(123):543.

    [3] CROWTHER A R,SINGH R.Analytical investigation of stick-slip motions in coupled brake-driveline systems[J].Nonlinear Dynamics,2007(50):463-481.

    [4] BERNARDO M D,KOWALCZYK P,NORDMARK A.Sliding bifurcations:A novel mechanism for the sudden onset of chaos in dry friction oscillators[J].International Journal of Bifurcation and Chaos,2003(13):2935-2948.

    [5] OUYANG H,MOTTERSHEAD J E,LI W.A moving-load model for disc-brake stability analysis[J].J Vib Acoust,2003(125):53-58.

    [6] HOCHLENERT D,HAGEDORN P.Control of disc brake squeal-modelling and experiments[J].Struct Control Hlth,2006(13):260-276.

    [7] KANG J.Finite element modeling for stick-slip pattern of squeal modes in disc brake[J].Journal of Mechanical Science and Technology,2014(28):4021-4026.

    [8] GALVANETTO U.Some discontinuous bifurcations in a two-block stick-slip system[J].Journal of Sound and Vibration,2001(248):653-669.

    [9] WANG Q,TANG J,CHEN S,et al.Dynamic analysis of chatter in a vehicle braking system with two degrees of freedom involving dry friction[J].Mechanical Science & Technology for Aerospace Engineering,2011(30):906-937.

    [10]BELOIU D M,IBRAHIM R A.Analytical and experimental investigations of disc brake noise using the frequency-time domain[J].Struct Control Hlth,2006(13):277-300.

    [11]NAYFEH A H,JILANI A,MANZIONE P.Transverse vibrations of a centrally clamped rotating circular disk[J].Nonlinear Dynamics,2001(26):163-178.

    [12]LI Z,OUYANG H,GUAN Z.Friction-induced vibration of an elastic disc and a moving slider with separation and reattachment[J].Nonlinear Dynamics,2016(87):1045-1067.

    [13]WAYOU A N Y,TCHOUKUEGNO R,WOAFO P.Non-linear dynamics of an elastic beam under moving loads[J].Journal of Sound and Vibration,2004(273):1101-1108.

    [14]PESTEREV A V,BERGMAN L A.An improved series expansion of the solution to the moving oscillator problem[J].J Vib Acoust,2000(122):54-61.

    [15]CHEN L Q,WU J,ZU J W.Asymptotic nonlinear behaviors in transverse vibration of an axially accelerating viscoelastic string[J].Nonlinear Dynamics,2004(35):347-360.

    [16]SOOBBARAYEN K,SINOU J J,BESSET S.Numerical study of friction-induced instability and acoustic radiation-Effect of ramp loading on the squeal propensity for a simplified brake model[J].Journal of Sound and Vibration,2014(333):5475-5493.

    [17]CAO Q,OUYANG H,F(xiàn)RISWELL M I,et al.Linear eigenvalue analysis of the disc-brake squeal problem[J].International Journal for Numerical Methods in Engineering,2004(61):1546-1563.

    [18]L H,SHANGGUAN W B,YU D J.An imprecise probability approach for squeal instability analysis based on evidence theory[J].Journal of Sound and Vibration,2017(387):96-113.

    [19]OBERST S,LAI J C S.Pad-mode-induced instantaneous mode instability for simple models of brake systems[J].Mechanical Systems and Signal Processing,2015(62/63):490-505.

    [20]JOE Y G,CHA B G,SIM H J,et al.Analysis of disc brake instability due to friction-induced vibration using a distributed parameter model[J].Int J Auto Tech-Kor,2008(9):161-171.

    [21]ZHAO Y,DING Q.Dynamic analysis of dry frictional disc brake system based on the rigid-flexible coupled model[J].International Journal of Applied Mechanics,2015(7):1550044.

    [22]DING Q,COOPER J E,LEUNG A Y T.Hopf bifurcation analysis of a rotor/seal system[J].Journal of Sound and Vibration,2002(252):817-833.

    人妻一区二区av| 男插女下体视频免费在线播放| 在线观看美女被高潮喷水网站| 欧美性猛交╳xxx乱大交人| 日韩中字成人| av免费在线看不卡| av免费在线看不卡| 欧美一区二区亚洲| 色播亚洲综合网| 精品久久久久久久末码| 亚洲av一区综合| 色哟哟·www| 激情五月婷婷亚洲| av在线天堂中文字幕| 啦啦啦中文免费视频观看日本| 卡戴珊不雅视频在线播放| 美女内射精品一级片tv| 久久久色成人| 欧美丝袜亚洲另类| 麻豆精品久久久久久蜜桃| 美女高潮的动态| 久热久热在线精品观看| 一级黄片播放器| 亚洲精品456在线播放app| 久久精品国产亚洲av天美| av黄色大香蕉| 高清视频免费观看一区二区| 人体艺术视频欧美日本| 日产精品乱码卡一卡2卡三| 欧美日韩精品成人综合77777| 日本wwww免费看| 亚洲国产精品成人综合色| av国产久精品久网站免费入址| 在线 av 中文字幕| 国产69精品久久久久777片| 午夜精品国产一区二区电影 | 国产毛片在线视频| 国产精品一区二区三区四区免费观看| 亚洲欧美一区二区三区国产| 亚洲av日韩在线播放| 97超碰精品成人国产| 少妇熟女欧美另类| 成人漫画全彩无遮挡| 成人国产麻豆网| 国产乱人视频| 精品少妇黑人巨大在线播放| videos熟女内射| 女人十人毛片免费观看3o分钟| 欧美精品一区二区大全| 极品少妇高潮喷水抽搐| 毛片女人毛片| 亚洲欧美日韩另类电影网站 | 日本色播在线视频| 一级片'在线观看视频| 久久久久久久午夜电影| 一级毛片我不卡| 人妻系列 视频| 熟妇人妻不卡中文字幕| 欧美高清成人免费视频www| 大香蕉久久网| 亚洲精品日韩在线中文字幕| 26uuu在线亚洲综合色| 亚洲精品色激情综合| 大码成人一级视频| 亚洲伊人久久精品综合| 亚洲欧美日韩无卡精品| 久久久久久伊人网av| 久久精品综合一区二区三区| 欧美性感艳星| 99久久精品国产国产毛片| 韩国av在线不卡| 别揉我奶头 嗯啊视频| 97在线人人人人妻| 蜜桃久久精品国产亚洲av| 80岁老熟妇乱子伦牲交| 熟女电影av网| 久久国产乱子免费精品| av免费观看日本| 午夜激情久久久久久久| 欧美成人a在线观看| 免费黄色在线免费观看| 国产高清三级在线| 夫妻性生交免费视频一级片| 亚洲精品成人久久久久久| 欧美精品国产亚洲| 亚洲va在线va天堂va国产| 精品久久久精品久久久| 国产人妻一区二区三区在| 国产91av在线免费观看| 国产伦理片在线播放av一区| av网站免费在线观看视频| 搡女人真爽免费视频火全软件| 欧美少妇被猛烈插入视频| 69av精品久久久久久| 精品人妻熟女av久视频| 欧美一级a爱片免费观看看| 日本熟妇午夜| 日本黄大片高清| 三级国产精品欧美在线观看| 九九久久精品国产亚洲av麻豆| 欧美少妇被猛烈插入视频| videossex国产| 99热6这里只有精品| 国产乱人偷精品视频| 丝袜喷水一区| 白带黄色成豆腐渣| 26uuu在线亚洲综合色| 精品一区在线观看国产| 大香蕉97超碰在线| av线在线观看网站| 99re6热这里在线精品视频| 亚洲第一区二区三区不卡| 欧美日韩视频精品一区| 男女国产视频网站| 熟女人妻精品中文字幕| 在线观看一区二区三区激情| 夫妻性生交免费视频一级片| 久久99热这里只有精品18| 亚洲精品国产色婷婷电影| 春色校园在线视频观看| 亚洲不卡免费看| 中国美白少妇内射xxxbb| 你懂的网址亚洲精品在线观看| 国产一区亚洲一区在线观看| 人妻少妇偷人精品九色| 伦精品一区二区三区| 成人毛片60女人毛片免费| 国产精品三级大全| 51国产日韩欧美| 观看免费一级毛片| 色网站视频免费| 免费观看a级毛片全部| 日韩av免费高清视频| 日本猛色少妇xxxxx猛交久久| 国产精品久久久久久av不卡| 18禁动态无遮挡网站| 人人妻人人看人人澡| 在线a可以看的网站| 国产黄片美女视频| 日韩国内少妇激情av| 交换朋友夫妻互换小说| 免费电影在线观看免费观看| 欧美性感艳星| 国产精品三级大全| 国产爽快片一区二区三区| 亚洲av在线观看美女高潮| 国产人妻一区二区三区在| av在线播放精品| 一个人观看的视频www高清免费观看| 噜噜噜噜噜久久久久久91| 国产视频首页在线观看| 精品久久久久久久久av| 男女下面进入的视频免费午夜| 一区二区三区精品91| 成人毛片a级毛片在线播放| 成人亚洲欧美一区二区av| 国产精品麻豆人妻色哟哟久久| 中文字幕免费在线视频6| 水蜜桃什么品种好| 欧美激情在线99| 久久99热这里只频精品6学生| 国产欧美另类精品又又久久亚洲欧美| 爱豆传媒免费全集在线观看| 99九九线精品视频在线观看视频| 亚洲国产精品成人久久小说| 一级毛片aaaaaa免费看小| 老司机影院毛片| 美女主播在线视频| 卡戴珊不雅视频在线播放| 亚洲精品第二区| 久久99热6这里只有精品| 午夜爱爱视频在线播放| 一级毛片aaaaaa免费看小| 深夜a级毛片| 国产免费一区二区三区四区乱码| 高清在线视频一区二区三区| av天堂中文字幕网| 99久久中文字幕三级久久日本| 国产黄片视频在线免费观看| 又爽又黄无遮挡网站| 日韩一区二区视频免费看| av福利片在线观看| 精品国产乱码久久久久久小说| 国产视频首页在线观看| 国产黄色视频一区二区在线观看| 国产淫语在线视频| 在线观看av片永久免费下载| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲成色77777| 2022亚洲国产成人精品| 色视频在线一区二区三区| 天堂俺去俺来也www色官网| 天堂网av新在线| av天堂中文字幕网| 日韩制服骚丝袜av| 18禁在线无遮挡免费观看视频| 亚洲精品成人av观看孕妇| 日韩一区二区视频免费看| 国内精品美女久久久久久| 高清日韩中文字幕在线| 大香蕉97超碰在线| 日本一本二区三区精品| 欧美精品人与动牲交sv欧美| 嫩草影院精品99| 日韩亚洲欧美综合| 国产在线一区二区三区精| 亚洲,欧美,日韩| 中国美白少妇内射xxxbb| 久久精品人妻少妇| 一级毛片久久久久久久久女| 性色av一级| 欧美老熟妇乱子伦牲交| 国产一区二区三区av在线| 久久ye,这里只有精品| 51国产日韩欧美| 内地一区二区视频在线| 久久久久国产网址| 我的女老师完整版在线观看| 国产精品久久久久久av不卡| 国产日韩欧美在线精品| 在线看a的网站| 99久久中文字幕三级久久日本| videossex国产| 久久精品国产鲁丝片午夜精品| 黄色一级大片看看| 婷婷色综合大香蕉| 欧美成人一区二区免费高清观看| 99热6这里只有精品| 国产在线男女| 国产精品成人在线| 国产综合精华液| 成年免费大片在线观看| 少妇高潮的动态图| 久久久成人免费电影| 亚洲欧美日韩卡通动漫| 欧美成人午夜免费资源| 99精国产麻豆久久婷婷| 亚州av有码| 禁无遮挡网站| 成人综合一区亚洲| 寂寞人妻少妇视频99o| 97超视频在线观看视频| 热99国产精品久久久久久7| tube8黄色片| 国产免费福利视频在线观看| 亚洲欧洲日产国产| 97精品久久久久久久久久精品| 乱码一卡2卡4卡精品| 最近最新中文字幕大全电影3| 久热这里只有精品99| 亚洲av日韩在线播放| 国产一区亚洲一区在线观看| 久久久久性生活片| 亚洲欧美成人精品一区二区| 日韩欧美精品v在线| 免费观看性生交大片5| 蜜桃亚洲精品一区二区三区| 色5月婷婷丁香| 欧美精品人与动牲交sv欧美| 91久久精品国产一区二区三区| 亚洲欧美一区二区三区国产| 久久久精品免费免费高清| 免费看a级黄色片| 亚洲av电影在线观看一区二区三区 | 精品人妻视频免费看| 日本爱情动作片www.在线观看| 亚洲国产精品成人久久小说| 97在线人人人人妻| 国内精品美女久久久久久| 一级a做视频免费观看| 亚洲精品成人av观看孕妇| 97超碰精品成人国产| 2022亚洲国产成人精品| 亚洲av一区综合| 国产片特级美女逼逼视频| 成人综合一区亚洲| 午夜福利高清视频| 嫩草影院精品99| 美女视频免费永久观看网站| av黄色大香蕉| 久久热精品热| 听说在线观看完整版免费高清| 久久99热6这里只有精品| 亚洲在久久综合| 久久久午夜欧美精品| 综合色丁香网| 中文字幕制服av| 亚洲色图av天堂| 男女啪啪激烈高潮av片| 男女边吃奶边做爰视频| 啦啦啦啦在线视频资源| 色5月婷婷丁香| 精品久久久久久久久亚洲| 91久久精品国产一区二区成人| 蜜桃亚洲精品一区二区三区| 女人久久www免费人成看片| 国产伦精品一区二区三区视频9| 嫩草影院入口| 观看免费一级毛片| 高清视频免费观看一区二区| 成人毛片a级毛片在线播放| 国产成人精品婷婷| 国产免费一区二区三区四区乱码| 亚洲天堂av无毛| 欧美丝袜亚洲另类| 亚洲成人精品中文字幕电影| 少妇人妻 视频| 国产精品无大码| 美女主播在线视频| 美女cb高潮喷水在线观看| 日韩亚洲欧美综合| 欧美日韩亚洲高清精品| 九九爱精品视频在线观看| 国产在线一区二区三区精| 久久久久久久大尺度免费视频| 亚洲人成网站高清观看| 黄色欧美视频在线观看| 亚洲,欧美,日韩| 亚洲欧美精品自产自拍| 亚洲精品久久久久久婷婷小说| 亚洲丝袜综合中文字幕| 亚洲色图av天堂| 1000部很黄的大片| 久久国产乱子免费精品| 啦啦啦在线观看免费高清www| 午夜亚洲福利在线播放| 高清欧美精品videossex| 热re99久久精品国产66热6| 一级爰片在线观看| 99热这里只有是精品50| 国产毛片a区久久久久| 日本与韩国留学比较| 国产精品三级大全| 一二三四中文在线观看免费高清| 97在线人人人人妻| 欧美精品人与动牲交sv欧美| 色视频在线一区二区三区| 国产乱人偷精品视频| 在线a可以看的网站| av一本久久久久| 一级av片app| 真实男女啪啪啪动态图| 国产永久视频网站| 少妇的逼好多水| 国产黄色视频一区二区在线观看| 日本熟妇午夜| 3wmmmm亚洲av在线观看| 最后的刺客免费高清国语| 久久久欧美国产精品| 神马国产精品三级电影在线观看| 亚洲国产欧美在线一区| 99热全是精品| 大香蕉久久网| xxx大片免费视频| 久久人人爽人人片av| 女人久久www免费人成看片| 各种免费的搞黄视频| 乱系列少妇在线播放| 欧美+日韩+精品| 菩萨蛮人人尽说江南好唐韦庄| 男插女下体视频免费在线播放| 丝袜喷水一区| 亚洲精品自拍成人| av在线播放精品| 欧美一级a爱片免费观看看| 男人舔奶头视频| 校园人妻丝袜中文字幕| 一级av片app| 国产高清不卡午夜福利| 国产成人精品婷婷| 在线 av 中文字幕| 人妻 亚洲 视频| 久久久午夜欧美精品| 在线观看免费高清a一片| 免费人成在线观看视频色| 久久久午夜欧美精品| 亚洲国产最新在线播放| 人人妻人人看人人澡| 哪个播放器可以免费观看大片| 亚洲aⅴ乱码一区二区在线播放| 国产视频内射| 黄色配什么色好看| 久久人人爽人人爽人人片va| 成人欧美大片| av一本久久久久| 日韩在线高清观看一区二区三区| av在线天堂中文字幕| 欧美人与善性xxx| 国产国拍精品亚洲av在线观看| 亚洲精品456在线播放app| 交换朋友夫妻互换小说| 黄色视频在线播放观看不卡| 女人久久www免费人成看片| 激情五月婷婷亚洲| 精品人妻一区二区三区麻豆| 日韩一本色道免费dvd| 亚洲,一卡二卡三卡| 久久精品熟女亚洲av麻豆精品| 少妇人妻一区二区三区视频| 亚洲国产最新在线播放| 人妻 亚洲 视频| 亚洲av男天堂| 亚洲av免费高清在线观看| 岛国毛片在线播放| 久久久久久国产a免费观看| 亚洲av不卡在线观看| 交换朋友夫妻互换小说| 丝袜美腿在线中文| 香蕉精品网在线| 欧美三级亚洲精品| 深夜a级毛片| 水蜜桃什么品种好| 成人亚洲精品一区在线观看 | 最近的中文字幕免费完整| 人体艺术视频欧美日本| 精品久久久久久电影网| 国产黄色视频一区二区在线观看| av福利片在线观看| 青春草亚洲视频在线观看| 久久久a久久爽久久v久久| 一区二区三区精品91| 毛片女人毛片| 黄色配什么色好看| 欧美另类一区| 丝瓜视频免费看黄片| 制服丝袜香蕉在线| 大片免费播放器 马上看| 在线播放无遮挡| 日日撸夜夜添| 一级黄片播放器| 黄色日韩在线| 搡老乐熟女国产| 在线亚洲精品国产二区图片欧美 | 狠狠精品人妻久久久久久综合| 免费av不卡在线播放| 最近中文字幕高清免费大全6| 国产色婷婷99| 观看免费一级毛片| 国产黄频视频在线观看| 国产人妻一区二区三区在| 成人免费观看视频高清| av在线天堂中文字幕| 韩国高清视频一区二区三区| 男的添女的下面高潮视频| 国模一区二区三区四区视频| 久久亚洲国产成人精品v| 国产成年人精品一区二区| 丝瓜视频免费看黄片| 欧美xxⅹ黑人| 亚洲aⅴ乱码一区二区在线播放| 欧美97在线视频| av在线观看视频网站免费| 国产人妻一区二区三区在| 美女脱内裤让男人舔精品视频| 少妇裸体淫交视频免费看高清| 精品视频人人做人人爽| 菩萨蛮人人尽说江南好唐韦庄| 国产一级毛片在线| 天天一区二区日本电影三级| 国产男女内射视频| 中文在线观看免费www的网站| 日产精品乱码卡一卡2卡三| 亚洲精品国产av成人精品| 国产欧美日韩精品一区二区| 国产黄频视频在线观看| 搡老乐熟女国产| 秋霞伦理黄片| 亚洲精品日韩av片在线观看| 国产成人aa在线观看| 国产精品.久久久| 观看美女的网站| 赤兔流量卡办理| 大码成人一级视频| 别揉我奶头 嗯啊视频| 3wmmmm亚洲av在线观看| 国产亚洲精品久久久com| 国产毛片a区久久久久| 精品少妇久久久久久888优播| 看黄色毛片网站| 少妇的逼好多水| 欧美日韩一区二区视频在线观看视频在线 | 伊人久久国产一区二区| 又大又黄又爽视频免费| 亚洲av不卡在线观看| 欧美精品一区二区大全| 日韩免费高清中文字幕av| av黄色大香蕉| 亚洲欧美精品专区久久| 简卡轻食公司| 国产精品人妻久久久久久| 国产成人免费观看mmmm| 成年av动漫网址| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久久精品电影小说 | 亚洲av福利一区| 真实男女啪啪啪动态图| 国产成人免费观看mmmm| 国产老妇女一区| 国产亚洲最大av| 欧美高清性xxxxhd video| 只有这里有精品99| 建设人人有责人人尽责人人享有的 | 国产av不卡久久| 蜜桃久久精品国产亚洲av| .国产精品久久| 中文字幕av成人在线电影| 亚洲最大成人手机在线| 蜜桃久久精品国产亚洲av| 国产一区二区在线观看日韩| 午夜激情福利司机影院| 身体一侧抽搐| 大片免费播放器 马上看| 国产探花在线观看一区二区| 亚洲av.av天堂| 中文字幕人妻熟人妻熟丝袜美| 国产一区二区在线观看日韩| 如何舔出高潮| 久久久久国产网址| 久久97久久精品| 欧美+日韩+精品| 少妇裸体淫交视频免费看高清| 亚洲国产精品999| 日韩av免费高清视频| 亚洲精品一区蜜桃| 亚洲av.av天堂| 国产美女午夜福利| 男的添女的下面高潮视频| 一本一本综合久久| 夜夜看夜夜爽夜夜摸| 男男h啪啪无遮挡| 日本黄大片高清| 欧美丝袜亚洲另类| 中国三级夫妇交换| 日韩成人伦理影院| 精品久久久精品久久久| 久久99蜜桃精品久久| 国产高清三级在线| 一级毛片久久久久久久久女| 国产午夜福利久久久久久| 成人二区视频| 午夜激情久久久久久久| 国产毛片a区久久久久| 亚洲欧美中文字幕日韩二区| 亚洲精品成人久久久久久| 精品一区二区三卡| 免费观看性生交大片5| 纵有疾风起免费观看全集完整版| 国产91av在线免费观看| 欧美少妇被猛烈插入视频| 女人久久www免费人成看片| 亚洲人与动物交配视频| 亚洲综合色惰| 伦精品一区二区三区| 99久国产av精品国产电影| 亚洲自拍偷在线| 欧美一级a爱片免费观看看| 国产高清有码在线观看视频| 国产爱豆传媒在线观看| 精品99又大又爽又粗少妇毛片| 国产一区二区亚洲精品在线观看| 国产白丝娇喘喷水9色精品| 国产精品一区www在线观看| 欧美bdsm另类| 青春草视频在线免费观看| 少妇猛男粗大的猛烈进出视频 | 天堂俺去俺来也www色官网| 亚州av有码| 久久久久国产网址| 狂野欧美白嫩少妇大欣赏| 草草在线视频免费看| 91精品一卡2卡3卡4卡| 99久久精品国产国产毛片| 五月伊人婷婷丁香| 欧美潮喷喷水| 国产精品久久久久久av不卡| 亚洲真实伦在线观看| 在线观看一区二区三区激情| 久久久久久久精品精品| 22中文网久久字幕| 日日啪夜夜爽| 一级二级三级毛片免费看| 亚洲av日韩在线播放| 成年av动漫网址| 我要看日韩黄色一级片| 久久久久久久久久久免费av| 午夜激情福利司机影院| 亚洲精品乱久久久久久| 不卡视频在线观看欧美| 亚洲国产精品成人久久小说| 免费播放大片免费观看视频在线观看| 日韩在线高清观看一区二区三区| 国内精品宾馆在线| 视频区图区小说| 久久久欧美国产精品| 大香蕉97超碰在线| 精品国产三级普通话版| 91狼人影院| 五月天丁香电影| 亚洲国产av新网站| 在线看a的网站| 建设人人有责人人尽责人人享有的 | 男女下面进入的视频免费午夜| 久久久欧美国产精品| 国内精品宾馆在线| 国产精品av视频在线免费观看| 亚洲性久久影院| 黄色视频在线播放观看不卡| 我的女老师完整版在线观看| 国产欧美亚洲国产| 国产精品99久久99久久久不卡 | 亚洲无线观看免费| 国产淫片久久久久久久久| 美女国产视频在线观看| av在线亚洲专区| 免费观看性生交大片5|