• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Countermeasure Against Regenerative and Forced Chatter of Flexible Workpieces in Milling Processs Using Bi-directional Excitation

    2018-03-29 07:35:43,,,
    關(guān)鍵詞:鉀肥趨勢(shì)用量

    ,,,

    1.Department of Mechanical Engineering,School of Engineering,Tokyo Institute of Technology,Tokyo 152-8552,Japan;

    2.Department of Mechanical Sciences and Engineering,Graduate School of Science and Engineering,Tokyo Institute of Technology,Tokyo 152-8552,Japan

    0 Introduction

    Chatter is an undesired instability phenomenon that occurs during the machining process which drastically reduces machining efficiency,limits obtaining the required surface quality and adversely affects tool life.Since the late 1950s,prediction of chatter has been a main research interest.Tobias[1]introduced the″stability lobes diagram (SLD)″,where the axial depth of cut is plotted against the spindle speed,representing the threshold of the chatter,or the stability limit.The concept was to predict the two optimal parameters of stable machining in advance,to achieve the maximum″material removal rate(MRR)″.In 1995,Altintas et al.[2]proposed a semi-analytical frequency domain method for the prediction of chatter in milling,which for most cases is a fast estimation.

    Prior investigations[3,4]mainly focused on chatter suppression of the tool,instead of the workpiece,as chatter easily occurs on the tool when manufacturing sufficiently stiff workpieces.However,recently,manufacture of lighter and more flexible components is in high demand,especially by the aeronautical and aerospace industries.Machining of such components and thinwalled structures such as turbine blades and impellers generally causes chatter in the workpiece instead of the tool.These flexible workpieces typ-ically have lower stability limits(resulting in lower MRR),which makes it difficult to avoid chatter only by using SLDs.Therefore,it is necessary to take countermeasures against the chatter of the workpiece and consequently increase the stability limit.

    There are several chatter suppression approaches for machining of flexible workpieces.There are passive strategies[3-6]such as application of a variable helix tool[7]and a variable pitch cutter[8],tuned mass dampers[9].However,in the case of machining of thin-walled flexible workpieces,vibrational characteristics can rapidly vary with material removal from the workpiece.Therefore,active strategies[10-13]are more popular and industrially appealing approaches for machining of flexible workpieces[14].Prior work[15-17]by Sallese et al.has investigated chatter suppression by implementing an actuation stage(also referred to as an″active workpiece holder(AWH)″or″active fixture holder(AFH)″)controlled by piezoelectric actuators.The investigations were mainly focused on tool chatter.

    Further,the resonance due to the intermittent cutting forces acting on the workpiece,can easily cause forced chatter on the workpiece.Therefore,countermeasures should be taken to suppress not only the regenerative chatter,but also the forced chatter.

    The regenerative and forced chatter suppression of flexible workpieces by exciting the workpiece in two orthogonal directions with the application of AWH focus on the up-cut milling process as chatter vibration can be easily arisen.Although,the vibrational characteristics can vary due to the material removal from the workpiece,the present investigation was conducted where the change of the vibrational characteristics is negligible.The method can be applied even when the vibrational characteristics are changing,if the vibrational characteristics can be identified and consequently optimizing the excitation parameters in real time.Additionally,the results are compared with the conventional one-directional excitation method reported by the authors[18].Our findings suggest that the proposed excitation method has a remarkable vibration reduction effect for both the regenerative chatter and forced chatter vibrations.

    1 The Proposed Excitation Method

    In this section,AWH which is designed to execute bi-directional excitations,is briefly explained.In the analysis,the workpiece,AWH system,is modelled as a lumped-mass model.Consequently,the governing equations of motion required for the numerical simulations are derived.Further,the modal parameters are identified and the proposed excitation method is described.

    1.1 Active workpiece holder design

    The literature reports different mechanical designs for the AWH design which allow two directional excitations[19].The monolithic nested architecture designed with flexure hinges as shown in Fig.1(a)is more appealing,because it theoretically allows the AWH to have decoupled motion in two orthogonal directions[17].A thin layer of thickness of 1mm was removed from the backside of the AWH as shown in Fig.1(b),permitting the intermediate stages of the AWH to move freely without any frictional interference.Hereinafter,we set the coordinate system,such thatxrepresents the feed direction andyrepresents the cross-feed direction.

    Fig.1 Active workpiece holder[20]

    The stage is made from stainless steel(SUS304).Figs.2 (a,b)show the dominant modes for the AWH by FEM analysis.We obtained 1 024Hz along the feed direction(xdirection)and 779Hz along the cross-feed direction(ydirection),as the dominant modes without the workpiece mounted.

    Fig.2 Dominant modes obtained by FEM analysis for the AWH

    The AWH fixed to the machining center(Hitachi-Seiki VK45)is shown in Fig.3.The workpiece was intentionally made more flexible than the designed AWH in the cross-feed direction by mounting the workpiece on two leaf springs.Thus,the chatter vibration occurs easily.The end mill(OSG EDS6)with a diameter of 6 mm,2flutes and a helix angle of 30°was utilized.Free-cutting brass C3713Pwas used as the workpiece material for easy identification of the chatter marks.

    Fig.3 AWH with workpiece fixed to the machining center

    1.2 Equation of motion

    The workpiece-AWH system can be modelled as two degrees of freedom subsystems in each direction(i.e.feed directionxand cross-feed directiony)as shown in Fig.4.For the sake of simplicity,the AWH is assumed to be a lumped mass system.The AWH is capable of producing movements inxandydirections independently.Thus,the equations of motion can be derived as

    where

    Fig.4 Simplified model of the workpiece-AWH model

    Here,the modal mass,the modal damping coefficient and the modal stiffness are denoted bym,c,k,respectively.Additionally,the subscript notations″xs,xw,ys,yw″imply thexdirection of the stage (AWH),xdirection of the workpiece,ydirection of the stage(AWH),ydirection of the workpiece,respectively.FexandFeyare the external excitation forces andFx,F(xiàn)yare the cutting forces inxandydirections,respectively.Further,xs,xware the coordinates of the stage and workpiece inxdirection,andys,yware the coordinates of the stage and workpiece inydirection,respectively.

    外施鉀肥處理中, Chla、Chlb和Chl(a+b)值均隨鉀肥用量的增加呈遞增趨勢(shì),K2、K1處理下Chla含量分別比CK高27.82%和7.56%,Chlb高44.7%和22.17%,而Chl(a+b)分別是CK的1.33和1.12倍;但各處理Car含量無(wú)顯著差異(P > 0.05)。 CK處理時(shí)Chla/Chlb顯著高于K1、K2處理,而兩者間無(wú)顯著差異(圖6)。

    1.3 Hammering test

    Hammering test on a workpiece mounted on the AWH was performed to identify the modal parameters of the system.The AWH was fixed to the machining table of the machining center.Then,the frequency response functions of the stage and the workpiece were obtained.Finally,curve fitting was performed using Matlab.Consequently,the modal parameters were identified(Table 1).Additionally,the hammering test was performed for the tool and the first mode natural frequency of the tool was obtained as 11.27kHz.Thus,the vibrations in the tool can be assumed to be negligible.

    Table 1 Identified modal parameters by the hammering test

    1.4 Excitation method

    The cutting forces(Fx,F(xiàn)y)in Eq.(1)are estimated by considering multi-regenerative effect and air-cutting conditions by a tool run-out[18].In this subsection,the external forced excitations(Fex,F(xiàn)ey)are mathematically expressed.In the feed direction,the workpiece is subject to sinusoidal periodic force in order to disrupt the regenerative effect[18].The intermittent cutting forces acting on the workpiece causes forced chatter,thus resulting in resonance.It is necessary to minimize not only the regenerative chatter but also the forced chatter.Thus,to minimize forced chatter effect,an excitation force with the magnitude of the estimated cutting force(Fsy)is applied in the opposite direction of the cross-feed direction (i.e.ydirection).It should be noted that this cutting force is merely an estimation,assuming the chip generation is purely by the static chip thickness and the dynamic chip thickness is neglected

    where

    wherefe,Ae,ψare the excitation frequency,the excitation amplitude,phase shift in the feed direction,respectively.Kgainis a multiplier.Moreover,in the experiments we adjusted the gain by applying a voltage 100Vcloser to the maximum operable values,due to the amplitude limitations of the piezoelectric actuators.Here,the effect of the phase difference of the sinusoidal signal in the feed direction,ψis not investigated and set to zero.

    The coefficients in Eq.(4),Kt,Kr,ap,stare the cutting coefficients in the tangential and the radial directions[2],axial depth of cut,feed rate,respectively.Further,g(·)is a unit step function to evaluate whether thejth cutting edge is engaged with the workpiece or not,γ(·)is a unit step function which determines the air cutting of the tool,andφjrepresents the angle of immersion of the toothj.In this study,a new parameterαis introduced.It denotes the phase shift between the cutting force and the actuation force.

    We investigated how the suppression effect deviates with this parameter,and explained it in Chapter 2.Referring to the prior work[15],the actuation frequency (fe)for the feed direction is determined by

    whereftprepresents the tooth passing frequency.However,in this paper,the optimal actuation frequency is selected to be the closest value to the natural frequency of the stage and it is considered to be independent of the number of flutes of the tool.

    2 Numerical Simulation Results

    2.1 Time history analysis without excitation

    Time history analysis was performed for the equations of motion using Runge-Kutta method[21].The multiple regenerative effect[18]count was taken up to 4counts.The simulations are performed with 1 000intervals per tooth passing period (i.e.1 000NΩ/π;whereΩ denotes the spindle speed in rad/s andNdenotes the number of flutes).

    The stability limit was determined by identifying the chatter frequency component of the Fourier spectrum and using a dedicated algorithm(Fig.5).The machining process is a linear system for any chatter-free cutting condition.Therefore,unless chatter vibration occurs,the dominant peak of the Fourier spectrum shows a linear increment for any linear increment of the axial depth,at any given spindle speed.Time history analysis is performed for depth of cut atith step,ai.Then,F(xiàn)FT is performed for the time history displacement data and the dominant peakPiis obtained.Consequently,the parametersΔ2,1,Δ1,0are calculated (i.e.Δ2,1=Pi-2-Pi-1,Δ1,0=Pi-1-Pi)fori>2.IfΔ2,1,Δ1,0are within a preset tolerance range,the system is assumed to be linear.The critical axial depth of cutalimis defined as the first axial depth of cut value,which goes beyond the tolerance range.In this paper,the tolerance range was set to±1%.This stability criterion procedure was performed with an increment of an axial depth of cut,Δa=0.02mm and over the spindle speed range of 1 400—2 600r/min with an increment of 10r/min.The numerical simulations were validated by comparing the results with the zeroth order approximation(ZOA)method proposed by Altintas et al.[2,22]and the cutting tests without the excitation.Fig.6 shows an excellent agreement with ZOA method and the cutting tests.

    Fig.5 Flowchart for the algorithm used in determining stability limit from time history analysis

    Nonetheless,the stability lobe diagram obtained by the numerical solutions are deviated at some spindle speed domains,due to the resonance caused by forced chatter.

    Fig.6 Stability lobe diagram comparison without excitation for 1 400—2 600r/min

    2.2 Time history analysis with excitation

    The numerical simulations were performed with excitation for both the local minima of SLD(Case-A),where the regenerative chatter is dominant(Figs.7(a,b))and the local maxima of SLD(Case-B)where the forced chatter is dominant(Figs.7(c,d)).The parameters used for the simulation are listed in Table 2.

    Fig.7 Simulation results

    Fig.7shows the vibration displacements of the cross-feed direction and their Fourier spectrafor a chatter occurring condition at the local minima and local maxima.The results obtained by the proposed bi-directional excitation method(Blue)are compared with the conventional onedirectional(i.e.feed direction only)excitation method (Red)[18].It can be evaluated that the proposed method has a better suppression effect for the local minima of the stability lobe.Furthermore,significantly larger suppression can be observed at the local maxima of the stability lobe,where the forced vibrations acting on the workpiece are dominant.The proposed method has a significant impact on not only regenerative chatter but also the forced vibration suppression which results in a major amplitude reduction (Figs.7(c,d)).The proposed bi-directional excitation method provides chatter-free machining conditions for both Case-A and Case-B.Although,the same periodic excitation force is applied in the feed direction,the axial depth of cut for the local maxima is two times that of local minima,implying twice MRR in the proposed method for the local maxima.

    Table 2 Parameters used for numerical simulations

    Further,the vibration amplitude suppression can be verified by the Fourier spectra(Figs.7(b,d)).The amplitudes without the excitation(Black),have been reduced by one-directional excitation method (Red)and significantly reduced by the proposed bi-directional excitation method(Blue).

    2.3 Effect of phase shift

    The phase shiftαin Eq.(4)between the cutting force and excitation force in the cross-feed direction can significantly affect the suppression effect,especially for the local maxima.Thus,the relationship between the phase shift and the displacement has been numerically investigated for the local maxima (Fig.8).The minimum and maximum values(Blue)and the root mean square values(Red)of the displacement in the cross-feed direction,the maximum peak value(Yellow)of the Fourier spectrum of the cross-feed directional displacement after the bi-directional excitation method applied was computed numerically.The aforementioned numerical results were normalized by the displacements without the excitation and plotted over the normalized phase shift,which is the phase shift,αnormalized by the pitch angle(i.e.pitch angle for 2flute end-mill is 180°).The analysis was performed for each 2.5°over one complete pitch angle.

    Fig.8 Relationship between the normalized phase shift and the displacement normalized by displacements without excitation for Case B

    The minimum displacement/amplitude or the maximum suppression effect has been achieved at phase shifts,α=0°andα=180°.Fig.8shows that the normalized displacements vary over the phase shift.The proposed method has improved suppression effect for the phase shifts where the normalized displacement is less than 1.

    3 Experimental Apparatus and Experimental Results

    Fig.9shows a schematic representation of the experiment apparatus.

    For the signal processing and control purposes,the CompactRIO platform by National Instruments with a maximum clock speed of 400 MHz and powered by an onboard field programming gate array(FPGA)was utilized along with the I/O modules(NI 9411,NI 9263).A laser proximity sensor(Keyence LV-N10)was implemented at the tool holder to estimate the starting angle of immersion,using the rotational pulse signal input.A tri-axial accelerometer(Ono-Sokki NP3572,maximum measurable acceleration=4 000m/s2)was fixed to the stage and two single-axial accelerometers (Ono-Sokki NP2106,maximum measurable acceleration=100 000m/s2)were fixed to the jig located just below the workpiece as shown in Fig.9.The data acquisition was performed by using the FFT Analyzer(Ono-Sokki DS-3200)with an integrated 24bit resolution A/D converter.

    Fig.9 Schematic representation of the experiment apparatus

    Fig.10shows the experimental data for the local minima(1 900r/min)where the axial depth of cut is 2.2mm.Figs.10(a,c)show the time-h(huán)istory for the one-directional and the proposed bidirectional excitation methods,respectively.Similarly,F(xiàn)igs.10(b,d)show the Fourier spectra for the one-directional and the proposed bi-directional excitation methods,respectively.The proposed bi-directional excitation method (Blue)demonstrates larger suppression effect compared to the one-directional method(Red)in the local minima even at an axial depth of cut which is larger than critical depth of cut.

    It can be seen before the excitation for both one-directional and the bi-directional excitation methods had similar dominant peak amplitude of nearly 60μm at 387—389Hz.With one-dimensional method,the peak was reduced to 25μm,on the other hand,for the bi-directional excitation method,the dominant peak appears at 382Hz which is about 5μm.It should be noted that the 982Hz (i.e.63.3Hz×15.5)was the excitation frequency for the feed direction.

    Fig.10 Experimental results for local-minima(1 900r/min,ap= 2.2mm)

    Next,in order to evaluate the effectiveness of the forced chatter suppression at the local maxima,axial depth of cut was set to 1.2mm,slightly above from the critical depth of cut at 2 040r/min.Fig.11shows experiment data for the local maxima,where the forced chatter is dominant.The subfigure notations,(a),(b),(c),(d)are similar to those of Fig.10.For both cases,it can be observed that the dominant frequency,410Hz is the forced chatter component which represents the natural frequency of the workpiece.The frequency component of 376Hz is the regenerative chatter frequency.The optimum excitation frequency in the feed direction 986Hz(i.e.14.5×68.0Hz )can be seen in Fig.11.

    Fig.11 Experimental results for local-minima(2 040r/min,ap= 1.2mm)

    Although,significant suppression of the vibration amplitudes (Figs.11(a,c))in the time history results was not visible,the Fourier spectrum for the proposed bi-directional excitation method (Fig.11(d))shows a larger suppression effect for the dominant peak at 410Hz,than the Fourier spectrum for the one-directional excitation method(Fig.11(b)).Our results suggest 20.7%reduction of the dominant peak for the one-directional excitation method and 47.3%of reduc-tion of the dominant peak for the proposed bi-directional excitation method.

    In the analysis,phase shiftαwas set to zero.However,in the experiment,the phase shiftα could not be zero due to the estimation error of the starting angle of the cutting edge immersion estimated by using the rotational pulse signal.The deviation of the phase shiftαcan affect suppression effect significantly,as explained in Fig.8.Thus,the experimental accuracy depends on the accuracy of the phase shift estimation.

    4 Conclusions

    The effectiveness of the regenerative and the forced chatter suppression using bi-directional external excitations applied to the workpiece is investigated.The proposed method is effective for the local minima of the stability lobe,where the regenerative chatter is dominant.Furthermore,the numerical simulations showed a remarkable vibrational amplitude reduction for the local maxima of the stability lobe,where the forced chatter is dominant.Our experiment results also confirmed of a qualitative agreement with the simulation results.

    Future work is recognized as achieving higher excitation amplitudes by modifying the AWH.Additionally,it is necessary to perform wider range of experimental investigations for different combinations of spindle speeds and axial depth of cuts,including end-mills with higher number of flutes,for further validation.

    Acknowledgement

    This work was supported by JSPS KAKENHI(No.JP15K05856).

    [1] TOBIAS S A,F(xiàn)ISHWICK W.Theory of regenerative machine tool chatter[J].The Engineer,1958:205.

    [2] ALTINTAS Y,BUDAK E.Analytical prediction of stability lobes in milling[J].Annals of the CIRP,1995,44(1):357-362.

    [3] MUNOA J,BEUDAERT X,DOMBOVARI Z,et al.Chatter suppression techniques in metal cutting[J].CIRP Annals-Manufacturing Technology,2016,65:785-808.

    [4] QUINTANA G,CIURANA J.Chatter in machining process:A review[J].International Journal of Machine Tools and Manufacture,2011,51:363-376.

    [5] HAHN R S.Design of Lanchester damper for elimination of metal-cutting chatter[J].Journal of Engineering Theories,1951,73(3):331-335.

    [6] FEI J,LIN B,YAN S,et al.Chatter mitigation using moving damper[J].Journal of Sound and Vibration,2017,410:49-63.

    [7] YUSOFF A R,SIMS N D.Optimisation of variable helix tool geometry for regenerative chatter mitigation[J].International Journal of Machine Tools and Manufacture,2011,51:133-141.

    [8] COMAK A,BUDAK E.Modeling dynamics and stability of variable pitch and helix milling tools for development of a design method to maximize chatter stability[J].Precision Engineering,2017,47:459-468.

    [9] NAKANO Y,TAKAHARA H,KONDO E.Countermeasure against chatter in end milling operations using multiple dynamic absorbers[J].Journal of Sound and Vibration,2013,332:1626-1638.

    [10]LONG X,JIANG H,MENG G.Active vibration control for peripheral milling processes[J].Journal of Materials Processing Technology,2013,213(5):660-670.

    [11]MONNIN J,KUSTER F,WEGENER K.Optimal control for chatter mitigation in milling—Part 1:Modeling and control design[J].Control Engineering Practice,2014,24:156-166.

    [12]RASHID A,MIHAI NICOLESCU C.Active vibration control in palletized work holding system for milling[J].International Journal of Machine Tools and Manufacture,2006,46:1626-1636.

    [13]WANG C,ZHANG X,LIU Y,et al.Stiffness variation method for milling chatter suppression via piezoelectric stack actuators[J].International Journal of Machine Tools and Manufacture,2018,124:53-66.

    [14]BRECHER C,MANOHARAN D,LADRA U,et al.Chatter suppression with an active workpiece holder[M].German Academic Society for Production Engineering,2010.

    [15]SALLESE L,GROSSI N,SCIPPA A,et al.Numerical investigation of chatter suppression in milling using active fixtures in open-loop control[J].Journal of Vibration Control, 2016, doi:10.1177/1077546316668686.

    [16]SALLESE L,GROSSI N,TSAHALIS J,et al.Intelligent fixtures for active chatter control in miling[J].Procedia CIRP,2016,55:176-181.

    [17]SALLESE L,INNOCENTI G,GROSSI N,et al.Mitigation of chatter instabilities in milling using an active fixture with a novel control strategy[J].International Journal of Advanced Manufacturing Technology,2017,89(9/10/11/12):2771-2787.

    [18]NAKANO Y,TAKAHARA H,AKIYAMA Y.Improvement of workpiece chatter stability in end-milling process by workpiece excitation[C]∥The 22nd International Congress on Sound and Vibration.Florence,Italy:[s.n.],2015.

    [19]CAMPATELLI G,SALLESE L,SCIPPA A.Design of an active workpiece holder[C]∥9th International Conference on Axiomatic Design.Florence,Italy:Elsevier Procedia,2015.

    [20]NAKANO Y,TAKAHARA H,AKIYAMA Y.The effect of time delay variation induced by workpiece excitation on regenerative chatter in milling[C]∥The 24th International Congress on Sound and Vibration.London,England:[s.n.],2017.

    [21]NIU J,DING Y,ZHU L,et al.Runge-Kutta methods for a semi-analytical prediction of milling stability[J].Nonlinear Dynamics,2014,76:289-304.

    [22]ALTINTAS Y,STEPHAN G,MERDOL D,et al.Chatter stability of milling in frequency and discrete time domain[J].CIRP Journal of Manufacturing Science and Technology,2008,1:35-44.

    猜你喜歡
    鉀肥趨勢(shì)用量
    2021年日本鈦加工材在各個(gè)領(lǐng)域用量統(tǒng)計(jì)
    我國(guó)在境外首個(gè)百萬(wàn)噸級(jí)鉀肥項(xiàng)目竣工
    釋放鉀肥儲(chǔ)備正當(dāng)時(shí)
    趨勢(shì)
    大豆種植意向增加16.4%化肥用量或?qū)p少
    鉀肥迎來(lái)零關(guān)稅
    初秋唇妝趨勢(shì)
    Coco薇(2017年9期)2017-09-07 21:23:49
    Side force controlon slender body by self-excited oscillation flag
    姍姍來(lái)遲的鉀肥大合同
    SPINEXPO?2017春夏流行趨勢(shì)
    国产在视频线精品| 久久久精品区二区三区| 精品国产一区二区三区四区第35| 亚洲av电影在线进入| 又大又爽又粗| 搡老乐熟女国产| 超碰成人久久| 少妇粗大呻吟视频| 老汉色av国产亚洲站长工具| 久久精品亚洲av国产电影网| 久久久久精品国产欧美久久久| av不卡在线播放| 好男人电影高清在线观看| 一区二区日韩欧美中文字幕| 亚洲精品中文字幕一二三四区| 亚洲熟女精品中文字幕| 国内久久婷婷六月综合欲色啪| 欧美 亚洲 国产 日韩一| 中文字幕制服av| 亚洲av美国av| 波多野结衣一区麻豆| 成人影院久久| 黄色视频不卡| 国产精品一区二区在线观看99| 欧美乱妇无乱码| 男女高潮啪啪啪动态图| 一边摸一边做爽爽视频免费| 在线永久观看黄色视频| 电影成人av| 少妇的丰满在线观看| 色播在线永久视频| av中文乱码字幕在线| 国产一区二区激情短视频| 成人手机av| 高清av免费在线| 一区在线观看完整版| 欧美在线一区亚洲| 国产成人免费观看mmmm| 好看av亚洲va欧美ⅴa在| 身体一侧抽搐| 亚洲精品国产精品久久久不卡| 高清毛片免费观看视频网站 | 免费在线观看亚洲国产| 99国产精品99久久久久| 国产深夜福利视频在线观看| 叶爱在线成人免费视频播放| 狂野欧美激情性xxxx| 午夜91福利影院| 999久久久国产精品视频| 深夜精品福利| 欧美日韩一级在线毛片| 日日爽夜夜爽网站| 久久久久久人人人人人| 视频区欧美日本亚洲| 黑丝袜美女国产一区| 中文欧美无线码| 久久人妻av系列| 侵犯人妻中文字幕一二三四区| 日韩 欧美 亚洲 中文字幕| 香蕉丝袜av| e午夜精品久久久久久久| 热re99久久国产66热| 女人被躁到高潮嗷嗷叫费观| 色94色欧美一区二区| 免费在线观看黄色视频的| 免费观看精品视频网站| ponron亚洲| 在线天堂中文资源库| 如日韩欧美国产精品一区二区三区| 正在播放国产对白刺激| 精品国产亚洲在线| 十八禁网站免费在线| 亚洲五月婷婷丁香| 日日爽夜夜爽网站| 久久国产乱子伦精品免费另类| 99精国产麻豆久久婷婷| 国产区一区二久久| 水蜜桃什么品种好| 午夜免费观看网址| 99热国产这里只有精品6| 欧美最黄视频在线播放免费 | 人人妻,人人澡人人爽秒播| videosex国产| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲自偷自拍图片 自拍| tube8黄色片| 亚洲欧美一区二区三区黑人| 法律面前人人平等表现在哪些方面| 曰老女人黄片| 美女高潮喷水抽搐中文字幕| 国产麻豆69| 看黄色毛片网站| 嫩草影视91久久| 色94色欧美一区二区| 色婷婷av一区二区三区视频| 欧美乱码精品一区二区三区| 久久精品熟女亚洲av麻豆精品| 69av精品久久久久久| 欧美中文综合在线视频| 黄色成人免费大全| 成年人免费黄色播放视频| 69精品国产乱码久久久| 亚洲专区字幕在线| 精品国产美女av久久久久小说| 在线观看午夜福利视频| 国产精品一区二区免费欧美| 亚洲精品中文字幕在线视频| 俄罗斯特黄特色一大片| 成人18禁在线播放| 亚洲专区中文字幕在线| 免费观看人在逋| 老司机午夜福利在线观看视频| 超碰成人久久| 国产不卡av网站在线观看| 超色免费av| 怎么达到女性高潮| 午夜福利视频在线观看免费| 免费人成视频x8x8入口观看| 亚洲情色 制服丝袜| 不卡一级毛片| 欧美激情高清一区二区三区| 夫妻午夜视频| 中文字幕制服av| 免费高清在线观看日韩| 亚洲国产中文字幕在线视频| 亚洲国产欧美日韩在线播放| videosex国产| 多毛熟女@视频| 久久香蕉精品热| 欧美激情 高清一区二区三区| 两性夫妻黄色片| 亚洲精品av麻豆狂野| 日韩欧美国产一区二区入口| 老鸭窝网址在线观看| 搡老乐熟女国产| 欧美 日韩 精品 国产| 国产免费现黄频在线看| 午夜久久久在线观看| 国产精品1区2区在线观看. | 免费久久久久久久精品成人欧美视频| 精品一区二区三区视频在线观看免费 | 日本撒尿小便嘘嘘汇集6| 一本大道久久a久久精品| 国产不卡一卡二| 久久精品成人免费网站| 国产成人免费无遮挡视频| 韩国精品一区二区三区| 最近最新免费中文字幕在线| 丝袜美足系列| 久久精品国产亚洲av香蕉五月 | 久久久久久久国产电影| 天堂中文最新版在线下载| 国产精品 欧美亚洲| 成人特级黄色片久久久久久久| 五月开心婷婷网| 久久久国产成人精品二区 | 久久狼人影院| 欧美色视频一区免费| 午夜日韩欧美国产| 亚洲精品久久成人aⅴ小说| 久久九九热精品免费| 精品一区二区三区av网在线观看| 男人舔女人的私密视频| 大型av网站在线播放| 国产精品一区二区在线不卡| 精品人妻1区二区| 久久99一区二区三区| 成人影院久久| 亚洲全国av大片| 精品国产乱码久久久久久男人| 亚洲avbb在线观看| 中文亚洲av片在线观看爽 | 国产在视频线精品| 国产精品国产av在线观看| 午夜精品在线福利| 欧美日韩瑟瑟在线播放| 欧美日本中文国产一区发布| www.精华液| 精品国产亚洲在线| 久久香蕉国产精品| 国产精品成人在线| 免费在线观看亚洲国产| 大型av网站在线播放| 美女 人体艺术 gogo| 在线播放国产精品三级| 女性被躁到高潮视频| av线在线观看网站| 亚洲久久久国产精品| 中亚洲国语对白在线视频| 精品午夜福利视频在线观看一区| 黑人操中国人逼视频| 久久久久久久国产电影| 亚洲久久久国产精品| 最新的欧美精品一区二区| 校园春色视频在线观看| 韩国av一区二区三区四区| 久久久久久人人人人人| 欧美黑人欧美精品刺激| 国产黄色免费在线视频| 高清在线国产一区| 在线十欧美十亚洲十日本专区| 久久精品熟女亚洲av麻豆精品| 后天国语完整版免费观看| 久久精品国产综合久久久| 在线观看免费视频网站a站| 亚洲熟女精品中文字幕| 手机成人av网站| 欧美日本中文国产一区发布| 黑人猛操日本美女一级片| 一进一出抽搐gif免费好疼 | 国产熟女午夜一区二区三区| 国产免费男女视频| 国产欧美亚洲国产| 国产成人啪精品午夜网站| 亚洲国产欧美日韩在线播放| 一级,二级,三级黄色视频| 91精品国产国语对白视频| 国产又爽黄色视频| 国产麻豆69| 久久国产精品影院| 香蕉丝袜av| 精品第一国产精品| 免费少妇av软件| 两性夫妻黄色片| 亚洲自偷自拍图片 自拍| 美女高潮喷水抽搐中文字幕| 亚洲成国产人片在线观看| 黄网站色视频无遮挡免费观看| 大陆偷拍与自拍| 黄色丝袜av网址大全| 国产精品影院久久| 后天国语完整版免费观看| 99国产精品一区二区三区| 亚洲成av片中文字幕在线观看| 国产成人欧美在线观看 | 亚洲人成伊人成综合网2020| 侵犯人妻中文字幕一二三四区| 国产一区二区三区在线臀色熟女 | 一本大道久久a久久精品| 国产一卡二卡三卡精品| 99久久综合精品五月天人人| av线在线观看网站| 超色免费av| 高清欧美精品videossex| 天堂动漫精品| 久久ye,这里只有精品| 女人高潮潮喷娇喘18禁视频| 亚洲五月婷婷丁香| av免费在线观看网站| 欧美日韩中文字幕国产精品一区二区三区 | 在线观看一区二区三区激情| 亚洲熟女精品中文字幕| 黄色成人免费大全| 久久人妻熟女aⅴ| 亚洲精品久久午夜乱码| 久久天堂一区二区三区四区| 亚洲avbb在线观看| 国产精品影院久久| 在线观看日韩欧美| 国产无遮挡羞羞视频在线观看| 国产亚洲精品久久久久5区| 精品第一国产精品| 另类亚洲欧美激情| 欧美成人免费av一区二区三区 | 老鸭窝网址在线观看| 中文字幕高清在线视频| 亚洲av成人av| 亚洲精品国产色婷婷电影| 新久久久久国产一级毛片| 欧美精品一区二区免费开放| 欧美激情久久久久久爽电影 | 人人妻人人爽人人添夜夜欢视频| 欧美中文综合在线视频| 国产一区有黄有色的免费视频| 欧美日韩一级在线毛片| 国产无遮挡羞羞视频在线观看| 高清黄色对白视频在线免费看| 91精品国产国语对白视频| 日韩精品免费视频一区二区三区| 视频在线观看一区二区三区| 最近最新中文字幕大全电影3 | 亚洲成人免费电影在线观看| 精品人妻熟女毛片av久久网站| 男人操女人黄网站| 成人精品一区二区免费| 一进一出抽搐gif免费好疼 | 国产三级黄色录像| 国产麻豆69| 欧美性长视频在线观看| 啦啦啦免费观看视频1| 露出奶头的视频| 夜夜夜夜夜久久久久| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品在线美女| 天堂√8在线中文| 国产精品国产高清国产av | tocl精华| 国产1区2区3区精品| 嫩草影视91久久| 中文字幕人妻丝袜制服| 亚洲综合色网址| 黄色成人免费大全| 一本一本久久a久久精品综合妖精| a在线观看视频网站| 精品一区二区三区av网在线观看| ponron亚洲| 国内毛片毛片毛片毛片毛片| 老司机午夜福利在线观看视频| 国产精品98久久久久久宅男小说| 深夜精品福利| 很黄的视频免费| 午夜激情av网站| 捣出白浆h1v1| 99热网站在线观看| 手机成人av网站| 精品乱码久久久久久99久播| 国产极品粉嫩免费观看在线| 怎么达到女性高潮| 午夜免费成人在线视频| 亚洲七黄色美女视频| 午夜成年电影在线免费观看| 精品国产超薄肉色丝袜足j| 十八禁网站免费在线| 国产欧美日韩综合在线一区二区| 一级毛片精品| 国产在线一区二区三区精| 亚洲av第一区精品v没综合| 成人影院久久| 中文字幕制服av| 午夜亚洲福利在线播放| 国内久久婷婷六月综合欲色啪| 少妇粗大呻吟视频| 国内毛片毛片毛片毛片毛片| 国内久久婷婷六月综合欲色啪| 国产高清视频在线播放一区| 精品久久久久久久毛片微露脸| 老司机福利观看| 国产成人欧美| 性色av乱码一区二区三区2| 久久午夜综合久久蜜桃| 精品电影一区二区在线| 男女之事视频高清在线观看| 国产日韩一区二区三区精品不卡| 日本五十路高清| 久久精品91无色码中文字幕| 窝窝影院91人妻| 亚洲欧美色中文字幕在线| 一级,二级,三级黄色视频| 免费观看精品视频网站| 亚洲国产毛片av蜜桃av| 99riav亚洲国产免费| 女人爽到高潮嗷嗷叫在线视频| 一区二区日韩欧美中文字幕| 国产色视频综合| 国产在视频线精品| 欧美黄色片欧美黄色片| 视频区图区小说| 精品福利观看| 亚洲男人天堂网一区| bbb黄色大片| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美一区视频在线观看| 男女之事视频高清在线观看| 国产精品亚洲av一区麻豆| 国产乱人伦免费视频| 成人免费观看视频高清| 国产成人av教育| 99国产精品一区二区三区| 宅男免费午夜| 操出白浆在线播放| 国产精品国产高清国产av | 国产男女内射视频| 欧美日韩亚洲高清精品| 精品久久久久久久毛片微露脸| 老司机午夜福利在线观看视频| 亚洲一区中文字幕在线| 成年人免费黄色播放视频| 大片电影免费在线观看免费| 老熟妇仑乱视频hdxx| cao死你这个sao货| 亚洲精品av麻豆狂野| 啦啦啦免费观看视频1| 免费在线观看黄色视频的| 亚洲精品一卡2卡三卡4卡5卡| 中文字幕另类日韩欧美亚洲嫩草| 9191精品国产免费久久| 黄频高清免费视频| 亚洲午夜理论影院| 国产精品一区二区在线观看99| 亚洲成人手机| 免费观看人在逋| 两性午夜刺激爽爽歪歪视频在线观看 | 俄罗斯特黄特色一大片| 不卡av一区二区三区| 日本a在线网址| 亚洲国产精品合色在线| 亚洲国产欧美一区二区综合| 黄网站色视频无遮挡免费观看| 亚洲五月婷婷丁香| 欧美 日韩 精品 国产| 欧美日韩一级在线毛片| 日本五十路高清| 十分钟在线观看高清视频www| 久久久国产欧美日韩av| 美女扒开内裤让男人捅视频| 另类亚洲欧美激情| 午夜免费鲁丝| 成人亚洲精品一区在线观看| 无限看片的www在线观看| 亚洲av第一区精品v没综合| 一本大道久久a久久精品| 免费观看人在逋| 免费在线观看视频国产中文字幕亚洲| 国产一区二区三区综合在线观看| 最新在线观看一区二区三区| 国产精品1区2区在线观看. | 自拍欧美九色日韩亚洲蝌蚪91| 精品电影一区二区在线| 国产成人影院久久av| 无限看片的www在线观看| 日本黄色日本黄色录像| 成人影院久久| 一区二区日韩欧美中文字幕| 老司机午夜福利在线观看视频| ponron亚洲| 18禁裸乳无遮挡免费网站照片 | 无限看片的www在线观看| 亚洲熟妇熟女久久| 搡老乐熟女国产| 亚洲国产毛片av蜜桃av| 99热国产这里只有精品6| 国产精品亚洲一级av第二区| 亚洲av熟女| 色播在线永久视频| 少妇被粗大的猛进出69影院| 精品欧美一区二区三区在线| 亚洲少妇的诱惑av| 黄色片一级片一级黄色片| 精品一区二区三区视频在线观看免费 | 飞空精品影院首页| 操出白浆在线播放| 国产精品久久久av美女十八| 国内久久婷婷六月综合欲色啪| 美女高潮喷水抽搐中文字幕| 亚洲国产欧美网| 51午夜福利影视在线观看| 欧美日韩av久久| 国产在线精品亚洲第一网站| 国产欧美日韩精品亚洲av| 看片在线看免费视频| 精品久久久久久久毛片微露脸| 国产免费男女视频| 1024视频免费在线观看| 飞空精品影院首页| 成人国语在线视频| 黄色女人牲交| 亚洲精品av麻豆狂野| 亚洲九九香蕉| 一级a爱视频在线免费观看| 国产色视频综合| 国产精品久久久久久精品古装| 精品国产一区二区久久| 精品一区二区三卡| 久久影院123| 99国产精品免费福利视频| 精品一区二区三区av网在线观看| 久久国产精品大桥未久av| 热99国产精品久久久久久7| 久久精品成人免费网站| 亚洲专区中文字幕在线| 国产又色又爽无遮挡免费看| 亚洲avbb在线观看| www.999成人在线观看| 精品卡一卡二卡四卡免费| 国产成人精品久久二区二区91| 中文亚洲av片在线观看爽 | 亚洲国产看品久久| 我的亚洲天堂| 久久人妻福利社区极品人妻图片| 久热爱精品视频在线9| 久久香蕉激情| 欧美精品高潮呻吟av久久| 国内久久婷婷六月综合欲色啪| 久久久久精品人妻al黑| 亚洲自偷自拍图片 自拍| 国产黄色免费在线视频| 嫩草影视91久久| av网站在线播放免费| 亚洲av美国av| 亚洲 欧美一区二区三区| 日韩欧美三级三区| 久久久久久免费高清国产稀缺| 久久国产乱子伦精品免费另类| 国产精品秋霞免费鲁丝片| 天天躁夜夜躁狠狠躁躁| 在线观看免费午夜福利视频| 纯流量卡能插随身wifi吗| 亚洲人成电影免费在线| 12—13女人毛片做爰片一| 亚洲色图 男人天堂 中文字幕| 久久香蕉精品热| 桃红色精品国产亚洲av| 亚洲熟女毛片儿| 久久人妻熟女aⅴ| 淫妇啪啪啪对白视频| 他把我摸到了高潮在线观看| 精品午夜福利视频在线观看一区| 不卡一级毛片| 国产精品久久视频播放| 久热爱精品视频在线9| 久久久久国内视频| 国产视频一区二区在线看| 国产成人影院久久av| 丰满饥渴人妻一区二区三| 一区二区三区精品91| 动漫黄色视频在线观看| 欧美精品一区二区免费开放| 妹子高潮喷水视频| av片东京热男人的天堂| 国产91精品成人一区二区三区| 少妇猛男粗大的猛烈进出视频| 亚洲一码二码三码区别大吗| 999精品在线视频| 可以免费在线观看a视频的电影网站| 黄片小视频在线播放| 91在线观看av| 欧美日韩成人在线一区二区| 人人妻,人人澡人人爽秒播| 国内久久婷婷六月综合欲色啪| 99国产精品免费福利视频| 免费在线观看日本一区| 国产成人精品久久二区二区91| 黄色 视频免费看| 婷婷丁香在线五月| 99在线人妻在线中文字幕 | 中文字幕另类日韩欧美亚洲嫩草| 久久久精品区二区三区| 亚洲精品乱久久久久久| 一本一本久久a久久精品综合妖精| av电影中文网址| 超色免费av| 免费黄频网站在线观看国产| 黄色a级毛片大全视频| 精品免费久久久久久久清纯 | 久久久国产成人精品二区 | 免费观看a级毛片全部| 欧美av亚洲av综合av国产av| 欧美久久黑人一区二区| 国产有黄有色有爽视频| 不卡一级毛片| 欧美日韩亚洲国产一区二区在线观看 | 母亲3免费完整高清在线观看| 成人av一区二区三区在线看| 亚洲avbb在线观看| videosex国产| 国产视频一区二区在线看| 夜夜夜夜夜久久久久| 欧美黄色片欧美黄色片| 99国产精品一区二区三区| 久9热在线精品视频| 国产xxxxx性猛交| av国产精品久久久久影院| 欧美精品人与动牲交sv欧美| 老熟女久久久| 精品第一国产精品| 亚洲精品中文字幕一二三四区| 女人被躁到高潮嗷嗷叫费观| 日韩欧美在线二视频 | 精品福利观看| 亚洲人成伊人成综合网2020| 免费在线观看完整版高清| av不卡在线播放| 欧美日韩一级在线毛片| 少妇被粗大的猛进出69影院| 香蕉久久夜色| 波多野结衣一区麻豆| av欧美777| 国产成人精品久久二区二区免费| 高清毛片免费观看视频网站 | 99精品欧美一区二区三区四区| 免费在线观看视频国产中文字幕亚洲| 99精品久久久久人妻精品| 国产主播在线观看一区二区| 9191精品国产免费久久| 成人手机av| 国产不卡一卡二| 亚洲国产欧美网| 久久性视频一级片| 国产不卡一卡二| 亚洲av成人一区二区三| 又大又爽又粗| 久久国产精品男人的天堂亚洲| 久久国产亚洲av麻豆专区| 99riav亚洲国产免费| 免费少妇av软件| 美女福利国产在线| 亚洲五月婷婷丁香| 午夜福利欧美成人| 王馨瑶露胸无遮挡在线观看| 欧美乱妇无乱码| 久久亚洲精品不卡| 韩国av一区二区三区四区| 久久午夜亚洲精品久久| 久久亚洲精品不卡| 国产在视频线精品| 精品熟女少妇八av免费久了| 丰满的人妻完整版| 一本综合久久免费| 在线观看免费午夜福利视频| 91麻豆精品激情在线观看国产 | 国产主播在线观看一区二区| 在线观看舔阴道视频| 后天国语完整版免费观看| 80岁老熟妇乱子伦牲交| 中文字幕精品免费在线观看视频|