• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      茶葉調(diào)節(jié)SREBPs的降脂作用

      2018-03-23 11:16:17潘聯(lián)云鹿顏龔雨順
      茶葉科學(xué) 2018年1期
      關(guān)鍵詞:降脂脂質(zhì)提取物

      潘聯(lián)云,鹿顏,龔雨順

      ?

      茶葉調(diào)節(jié)SREBPs的降脂作用

      潘聯(lián)云,鹿顏,龔雨順*

      湖南農(nóng)業(yè)大學(xué)園藝園林學(xué)院,國家植物功能成分利用工程技術(shù)研究中心,茶學(xué)教育部重點(diǎn)實(shí)驗室,湖南省植物功能成分利用協(xié)同創(chuàng)新中心,湖南 長沙 410128

      茶葉可調(diào)節(jié)不同組織的脂質(zhì)代謝,抑制腸道消化吸收脂質(zhì),起到降脂減肥作用。茶葉對脂質(zhì)代謝途徑具有顯著影響,主要通過調(diào)控固醇調(diào)節(jié)元件結(jié)合蛋白(Sterol Regulatory Element Binding Proteins)及其上下游因子表達(dá),影響脂質(zhì)合成和分解,從而降低脂肪積累。

      茶;肥胖;脂質(zhì)代謝;SREBP

      肥胖與糖尿病、高脂血癥、動脈粥樣硬化和某些癌癥等密切相關(guān)[1-2]。茶葉可以調(diào)控脂質(zhì)代謝途徑中的關(guān)鍵基因或限制酶,如(同源哺乳動物)或硬脂酰輔酶A去飽和酶(Stearyol-Co A desaturase, SCD),降低肥胖和相關(guān)疾病發(fā)生率[3-7]。探索茶葉降脂作用及其功能機(jī)理,有利于深入研究茶葉的保健功能。

      1 茶葉降脂研究現(xiàn)狀

      流行病學(xué)研究表明,茶葉具有降脂減肥作用[8-9],長期喝茶人群的脂肪堆積明顯降低,腰、臀圍比顯著下降[10]。茶葉及茶葉生物活性成分(茶多酚和兒茶素等)可以降低體重、減少脂肪含量、抑制高血脂癥與糖尿病、降低動脈粥樣硬化指數(shù)、促進(jìn)低密度脂蛋白受體表達(dá),以及降低血漿甘油三酯、膽固醇和低密度脂蛋白水平[11-13]。

      1.1 茶葉降低脂肪含量

      綠茶可以降低Wistar大鼠脂肪組織總重量,不影響肌肉組織和結(jié)蹄組織重量[14]。普洱茶可以降低C57BL/6J小鼠脂肪含量[15],改變秀麗線蟲脂滴的大小和數(shù)量[16]。茯磚茶特有的冠突散囊菌提取液能夠降低3T3-L1脂肪細(xì)胞和秀麗線蟲的脂質(zhì)含量,抑制脂肪沉積[17]。除此之外,紅茶和烏龍茶也能夠降低C57BL/6J小鼠內(nèi)臟脂質(zhì)積累[18]。

      1.2 茶葉調(diào)節(jié)肝臟、胰臟、骨骼肌和脂肪組織的脂質(zhì)代謝

      茶葉提取物能夠促進(jìn)肝臟脂肪氧化,減少脂肪和葡萄糖生成;增加肌肉組織對葡萄糖吸收和促進(jìn)脂肪氧化,提高線粒體的生物合成,促進(jìn)有氧呼吸和代謝作用;提高脂肪組織胰島素敏感性,降低脂質(zhì)合成和分解代謝,減少異位脂肪沉積,減少肥胖的發(fā)生[19-21]。此外,茶葉還可以調(diào)控胰臟減少胰島素分泌,降低胰島素水平、降低脂質(zhì)合成[22](圖1)。

      不同茶類調(diào)節(jié)肝臟、胰臟、骨骼肌和脂肪組織的脂質(zhì)代謝機(jī)制各不相同。綠茶含有豐富的兒茶素、茶氨酸和咖啡堿等物質(zhì),可以促進(jìn)肝臟和骨骼肌脂肪酸的β氧化和生熱作用[23-26],可提高血清脂聯(lián)素合成[27-29],還能降低脂肪組織的脂質(zhì)合成、吸收和沉積[30-31]。紅茶的大分子多酚可以通過抑制胰臟分脂肪酶來減少脂質(zhì)吸收[18,32]。烏龍茶降脂機(jī)制和紅茶相似,烏龍茶含有聚酯型兒茶素,能夠促進(jìn)去甲腎上腺素分泌和抑制胰脂肪酶活性,從而提高脂質(zhì)分解和減少脂肪吸收[18,33]。

      1.3 茶葉抑制脂質(zhì)消化吸收

      茶葉通過影響脂質(zhì)乳化、消化和膠束增溶作用干擾腸道吸收脂質(zhì)(圖1)。通過研究體外細(xì)胞和高血脂、動脈粥樣硬化的大鼠[34-35],以及進(jìn)行大鼠腸系膜淋巴管插管實(shí)驗[34, 36-38],發(fā)現(xiàn)綠茶及其活性成分兒茶素,尤其是表沒食子兒茶素沒食子酸酯((-)-Epigallocatechin gallate, EGCG),可以影響脂質(zhì)乳化、消化和膠束增溶作用,阻礙腸道脂質(zhì)吸收和肝臟脂肪生成[20,39]。茶多酚可以通過氫鍵和疏水鍵與消化蛋白酶和蛋白質(zhì)進(jìn)行結(jié)合,降低消化系統(tǒng)對營養(yǎng)物質(zhì)的吸收作用[22]。紅茶中茶多酚和EGCG能夠干擾脂肪乳化,抑制哺乳動物磷脂酶和胰脂肪酶的活性,降低脂質(zhì)吸收[31, 40-41]。

      以秀麗線蟲為模型,通過喂食GFP-OP50(帶有綠色熒光的大腸桿菌)觀察普洱茶對線蟲飲食的影響,結(jié)果發(fā)現(xiàn)飲用普洱茶的實(shí)驗組,其咽泵運(yùn)動頻率和腸道熒光強(qiáng)度都明顯降低[16]。一種特殊的發(fā)酵綠茶可以改變大鼠腸道厚壁菌/擬桿菌和擬桿菌/普氏菌的比率,降低肥胖發(fā)生和脂肪肝形成[42]。

      圖1 茶葉在組織和器官中的作用

      綜上所述,未發(fā)酵茶、發(fā)酵茶和微生物發(fā)酵茶均能降低脂肪含量。但不同類型的茶或者來自不同地方同一類型的茶,其降脂減肥機(jī)制和作用效果各不相同;同一種茶的不同成分作用效果也各不相同。增強(qiáng)脂質(zhì)氧化、提高能量消耗或減少食物攝入、抑制脂肪和營養(yǎng)物質(zhì)吸收是茶葉降脂減肥作用的關(guān)鍵。

      2 茶葉調(diào)節(jié)脂肪相關(guān)因子SREBP研究現(xiàn)狀

      在生物生命活動中,脂肪酸合成、轉(zhuǎn)運(yùn)和氧化,糖酵解和糖異生等過程都能影響脂質(zhì)積累[43]。近期研究發(fā)現(xiàn),茶葉對脂質(zhì)代謝SREBP途徑具有顯著影響,茶葉活性成分通過調(diào)節(jié)SREBP及其上游元件(AMPK、PPARγ、FXR與LXR)和下游元件(ACC、FAS、SCD、HMGCR、GPAT與FAT-5/6/7)來抑制脂肪生成,降低脂肪酸不飽和度,減少生物自身脂肪積累[44-46](圖2)。

      2.1 脂質(zhì)代謝因子SREBP概述

      SREBP屬于堿性螺旋-環(huán)-螺旋亮氨酸拉鏈轉(zhuǎn)錄因子家族,是真核生物調(diào)節(jié)脂質(zhì)合成的關(guān)鍵核轉(zhuǎn)錄因子。未活化的SREBP前體先在內(nèi)質(zhì)網(wǎng)上合成,然后經(jīng)過第1位點(diǎn)蛋白酶(Site 1 protease, S1P)和第2位點(diǎn)蛋白酶(Site 2 protease, S2P)的兩次裂解活化,成為成熟核型SREBP(n-SREBP),最后轉(zhuǎn)移到細(xì)胞核內(nèi),與靶基因(脂肪酸、膽固醇代謝基因和SREBP)啟動子/增強(qiáng)子的固醇調(diào)節(jié)元件(Sterol response element, SRE)或E-box結(jié)合激活轉(zhuǎn)錄[47]。SREBP有3種亞型:包括同一基因編碼、通過選擇性剪切形成的兩個亞型SREBP-1c和SREBP-1a,以及由另1個獨(dú)立基因編碼的SREBP-2亞型[48-49]。

      注:→:激活、促進(jìn)或正調(diào)控;:抑制或負(fù)調(diào)控;:SREBP合成和降解。UPS:泛素-蛋白酶體系統(tǒng);AA:氨基酸。

      無脊椎動物與哺乳動物中脂肪的合成、分化都需要SREBP參與,SREBP與脂質(zhì)代謝轉(zhuǎn)錄調(diào)節(jié)因子的輔因子MDT-15相互作用,調(diào)節(jié)脂肪酸與膽固醇生成和轉(zhuǎn)運(yùn)[50-51]。SREBP-1c主要調(diào)控脂肪酸合成途徑的基因表達(dá),SREBP-2主要調(diào)控膽固醇合成途徑的基因表達(dá)以及低密度脂蛋白受體基因表達(dá),SREBP-1a則是全身性低水平行使以上兩種亞型的功能[15-16, 52]。SREBPRNAi或SREBP功能缺失的生物會出現(xiàn)生長延遲、脂肪含量降低、腸道脂滴減少和脂肪合成基因(和)表達(dá)量下降等現(xiàn)象[53-54]。

      2.2 茶葉對SREBP的調(diào)節(jié)機(jī)制

      2.2.1 茶葉對SREBP-1c下游因子的調(diào)節(jié)機(jī)制

      SREBP-1c是乙酰輔酶A羧化酶(Acetyl-CoA carboxylase, ACC)、脂肪酸合成酶(Fatty acid synthetase, FAS)、SCD、脂肪酸延伸酶(Fatty acids extends enzyme, FAE)和甘油脂酰轉(zhuǎn)移酶(Glycerol phosphate acyltransferase, GPAT)的上游因子[15,55]。茶葉提取物能夠影響SREBP-1c表達(dá)、降低甘油三酯含量、刺激脂質(zhì)氧化分解,且呈劑量依賴性趨勢[15,55-56]。在分化的脂肪前體細(xì)胞中,0.5%白茶提取物能夠降低SREBP-1c的mRNA與蛋白表達(dá)水平,抑制脂肪合成[56-57]。茶葉提取物特別是EGCG通過下調(diào)脂肪生成基因的表達(dá)來抑制脂肪生成[3,58-59]。EGCG能夠下調(diào)H4IIE大鼠肝癌細(xì)胞中FAS和SCD的mRNA表達(dá)水平[60]。相比對照組,含有1.0% EGCG的高脂飲食的實(shí)驗組C57BL/6J小鼠血漿中甘油三酯的含量明顯降低,脂肪酸合成限速酶基因(ACC, SCD和FAS等)表達(dá)顯著下調(diào)[61]。

      此外,正常培養(yǎng)條件下茶葉提取物下調(diào)秀麗隱桿線蟲SBP-1(同源哺乳動物SREBP)的表達(dá),從而抑制其靶目標(biāo)基因SCD活性,導(dǎo)致脂肪儲存下降[16]。在高脂飲食條件下,茶葉活性成分能夠降低C57BL/6J小鼠脂肪酶mRNA表達(dá),抑制脂肪和膽汁酸積累,影響糞便總膽固醇的含量[15]。在高葡萄糖環(huán)境中,綠茶和紅茶都會增加脂肪酸合成酶(SREBP-1c, FAS, ACC)和氧化酶(PPAR-α, CPT-1, ACO)的表達(dá),促進(jìn)肝臟脂肪合成和分解,提高脂質(zhì)代謝,抑制脂肪分化,抑制脂肪組織吸收脂肪酸,降低脂肪和葡萄糖積累,減少葡萄糖的毒害作用和提高機(jī)體對葡萄糖的耐受性[50,62]。高果糖飲食增加大鼠肝臟SREBP-1c、FAS和SCD1的mRNA表達(dá),通過長期飲茶處理,這些基因的表達(dá)顯著下調(diào)[20,63-64]。

      2.2.2 茶葉對SREBP-2下游因子的調(diào)節(jié)機(jī)制

      低密度脂蛋白受體(Low density lipoprotein receptor, LDLR)和羥甲基戊二酸單酰輔酶A還原酶(3-hydroxy-3-methyl glutaryl coenzyme A reductase, HMGCR)是SREBP-2下游因子,主要參與調(diào)控膽固醇的合成和轉(zhuǎn)運(yùn)[15,55]。LDLR是清除低密度脂蛋白的跨膜受體,HMGCR是膽固醇生物合成的第一步限速酶。普洱茶通過競爭性抑制HMGCR減少細(xì)胞膽固醇合成,從而反饋刺激LDLR數(shù)量和活性增加,促進(jìn)血清膽固醇清除[15,65-67]。綠茶及其活性成分茶多酚可以作為一種蛋白酶體抑制劑,抑制HepG2和HeLa活化的SREBP-2泛素化-蛋白質(zhì)降解,促進(jìn)LDLR表達(dá)[68-69]。高脂飲食的實(shí)驗組C57BL/6J小鼠飲用普洱茶70?d后,HMGCR的mRNA表達(dá)水平顯著下調(diào),且呈劑量依賴性趨勢[15]。

      2.2.3 茶葉對SREBP上游因子的調(diào)節(jié)機(jī)制

      腺苷酸活化蛋白激酶(Adenosine 5′-monophosphate (AMP)-activated protein kinase, AMPK)、肝臟X活化受體(Liver X-activated receptor, LXR)、FXR(法尼酯衍生物X受體)和過氧化氫酶體增殖激活受體(Peroxisome proliferator-activated receptor, PPAR)是SREBP的上游因子,茶葉可以通過調(diào)控這些基因來間接調(diào)節(jié)SREBP轉(zhuǎn)錄和蛋白剪切,從而調(diào)控脂肪酸和膽固醇的生物合成。

      AMPK是調(diào)節(jié)生物能量代謝的關(guān)鍵因子,作為能量調(diào)節(jié)開關(guān),AMPK在脂質(zhì)代謝中發(fā)揮著重要作用[70-72]。綠茶EGCG可以通過瘦素和脂聯(lián)素等肽類激素介導(dǎo)的AMP非依賴通路或AMPK上游激酶,如肝激酶B1(Liver kinase B1, LKB1),激活A(yù)MPK磷酸化[27]。磷酸化AMPK增加其下游分子PPARγ的磷酸化水平,降低SREBP活性,進(jìn)而下調(diào)ACC和HMGCR表達(dá),導(dǎo)致脂肪合成和轉(zhuǎn)運(yùn)下降,脂肪沉積減少[70,73-76];同時,AMPK磷酸化可以進(jìn)一步促進(jìn)其下游分子PPARα和脂蛋白脂酶(Lipoprotein lipase, LPL)活性,增強(qiáng)脂肪分解代謝[48-49]。綠茶多酚可以通過抑制細(xì)胞外調(diào)節(jié)蛋白激酶(Eextracellular regulated protein kinases, ERK-1/2)活性降低PPARγ磷酸化,增加PPARγ表達(dá),促進(jìn)脂聯(lián)素合成[29],而脂聯(lián)素能夠降低高脂飲食小鼠體重和血糖水平、提高胰島素敏感性、刺激AMPK磷酸化[27]。

      EGCG能顯著激活FXR,從而抑制SREBP-1c和促進(jìn)PPARα表達(dá)來降低甘油三酯合成[77]。綠茶茶多酚上調(diào)PPARα基因表達(dá)促進(jìn)脂肪氧化,同時下調(diào)LXR和PPARγ基因表達(dá)降低SREBP-1c轉(zhuǎn)錄,從而抑制動脈粥樣硬化變病[69]。

      此外,胰島素能夠提高SREBP mRNA和前體蛋白水平,以及促進(jìn)SREBP蛋白的剪切加工[47]。綠茶及其活性物質(zhì)茶多酚上調(diào)胰島素受體底物(Insulin receptor substrate, IRS)水平,提高哺乳動物胰島素敏感性,抑制胰臟釋放胰島素,從而下調(diào)SREBP mRNA和蛋白水平,減少脂質(zhì)合成[31,78-79]。茶葉還能夠下調(diào)轉(zhuǎn)錄調(diào)節(jié)因子輔因子MDT-15,抑制固醇調(diào)節(jié)元件結(jié)合蛋白SREBP、核激素受體NHR-49和核轉(zhuǎn)錄因子SKN-1(同源哺乳動物Nrf2)與其結(jié)合,從而降低脂肪酸合成[51,53]。

      2.2.4 茶葉通過調(diào)節(jié)SREBP改變脂肪酸組成成分

      軟脂酸(C16:1)和油酸(C18:1n-9)是主要單不飽和脂肪酸,也是甘油三酯、磷脂質(zhì)、膽固醇酯的生物合成重要前體物質(zhì)[80-81]。茶葉提取物能夠增加硬脂酸(C18:0)含量,顯著降低不飽和脂肪酸油酸和亞麻酸(C18:2)的儲存水平[82]。

      在飽和脂肪酸(C16:0和C18:0)轉(zhuǎn)化為不飽和脂肪酸(C16:1n-7和C18:1n-9)的過程中,SCD能夠促進(jìn)C9和C10之間雙鍵生成,催化飽和脂肪酸去飽和化[83]。茶葉活性成分可以降低小鼠SCD-1 mRNA表達(dá),增加飽和脂肪酸含量[16]。普洱茶下調(diào)C57BL/6J小鼠和秀麗隱桿線蟲的SREBP/SBP-1及其相關(guān)作用元件如MDT-15的表達(dá),抑制脂質(zhì)合成過程中關(guān)鍵酶SCD的活性,降低硬脂酸去飽和化,從而導(dǎo)致脂質(zhì)儲存下降[15-16,84]。普洱茶還能夠下調(diào)編碼SCD蛋白的基因(),降低SCD含量,減少脂質(zhì)積累[85-86]。此外,茶提取物也會下調(diào)和來降低油酸/硬脂酸的比率[87-89]。

      3 結(jié)論

      綜上所述,茶葉的降脂作用機(jī)制主要通過調(diào)節(jié)脂質(zhì)代謝關(guān)鍵轉(zhuǎn)錄因子SREBP來實(shí)現(xiàn)降脂減肥作用。

      茶多酚、咖啡堿和茶氨酸是茶葉降脂減肥的主要活性成分,能夠有效抑制脂質(zhì)積累和降低脂肪含量。茶葉及其活性成分降脂減肥的機(jī)制如下:(1)抑制脂肪前體細(xì)胞增殖;(2)誘導(dǎo)脂肪前體細(xì)胞和成熟脂肪細(xì)胞凋亡;(3)抑制脂肪前體細(xì)胞分化和成熟脂肪細(xì)胞生成;(4)抑制腸胃消化酶活性,干擾脂質(zhì)乳化、水解和膠束增溶作用;(5)干擾腸道乳糜微粒的裝配和分泌,阻礙脂質(zhì)吸收和運(yùn)輸;(6)抑制胰臟分泌胰脂肪酶,減少脂質(zhì)吸收;(7)增加糞便排泄物脂質(zhì)含量和全氮含量;(8)改變腸道微生物菌群,影響營養(yǎng)物質(zhì)吸收;(9)促進(jìn)脂聯(lián)素合成,提高胰島素敏感性,降低胰島素分泌水平;(10)下調(diào)肝臟脂肪和糖原合成基因與相關(guān)轉(zhuǎn)錄因子,提高肝臟脂肪酸的β氧化基因mRNA水平;(11)促進(jìn)骨骼肌脂肪酸的氧化和葡萄糖的吸收;(12)提高脂肪組織的脂肪酸氧化和脂質(zhì)分解基因表達(dá),抑制脂肪組織葡萄糖吸收和脂肪合成相關(guān)因子表達(dá);(13)調(diào)節(jié)脂質(zhì)合成基因表達(dá),改變脂肪酸組分。

      SREBP的mRNA表達(dá)、蛋白剪切、加工和降解均與脂質(zhì)代謝密切相關(guān)。在SREBP脂質(zhì)代謝途徑中,茶葉及其活性成分即可直接抑制SREBP,也可通過上調(diào)AMPK和FXR或下調(diào)PPARγ、LXR和MDT-15表達(dá)來間接抑制SREBP。茶葉提取物通過提高AMPK磷酸化、激活FXR、下調(diào)LXR和PPARγ來下調(diào)SREBP mRNA表達(dá)或抑制SREBP蛋白活性。同時,茶葉提取物也可以通過抑制ERK-1/2提高PPARγ表達(dá),促進(jìn)脂聯(lián)素合成,繼而刺激AMPK磷酸化,抑制PPARγ表達(dá),從而降低SREBP活性,因此ERK-1/2和AMPK途徑相互抑制又相互依賴。

      茶葉活性物質(zhì)還能夠通過促進(jìn)脂聯(lián)素合成或者上調(diào)IRS來提高胰島素敏感性,降低胰島素水平,抑制SREBP表達(dá)。茶葉活性物質(zhì)還能夠通過下調(diào)SREBP的轉(zhuǎn)錄調(diào)節(jié)因子輔因子來降低SREBP水平。

      脂肪酸合成酶(SREBP-1c、ACC、SCD和FAS等)和氧化酶(PPAR-α、CPT-1、ACO)基因是調(diào)節(jié)脂肪酸合成和脂質(zhì)積累的重要因子。正常情況下,茶葉提取物下調(diào)脂肪酸合成酶基因,上調(diào)氧化酶基因,提高脂質(zhì)分解,減少脂肪酸合成,降低脂肪含量。在高糖條件下,為了減少高糖對生物體的毒害作用,茶葉提取物能夠同時提高脂質(zhì)合成和氧化基因表達(dá),促進(jìn)糖異生作用,增加脂肪酸氧化分解,降低脂質(zhì),提高葡萄糖耐受性。當(dāng)SREBP-1c活性降低則會進(jìn)一步降低脂肪酸合成酶基因FAS、ACC、SCD、CPAT、HMGCR、FAT-5/6/7和LDLR的表達(dá),導(dǎo)致甘油三酯含量下降、脂質(zhì)積累降低。據(jù)研究,茶葉對SREBP-2下游因子LDLR和HMGCR具有調(diào)控作用。茶葉提取物能夠抑制活化的SREBP-2降解,提高LDLR表達(dá),清除多余的膽固醇;相反,抑制未活化的SREBP-2表達(dá),可以下調(diào)HMGCR mRNA水平,減少膽固醇合成。此外,茶葉還能夠競爭性抑制HMGCR表達(dá),反饋調(diào)節(jié)LDLR活性,進(jìn)而調(diào)節(jié)膽固醇的合成和轉(zhuǎn)運(yùn)。

      肥胖發(fā)生不僅取決于脂肪含量,還取決于脂肪酸的組成成分,特別是多不飽和脂肪酸(Polyunsaturated Fatty Acids, PUFAs)的組分,如ω-3 PUFAs可以通過抑制腸道吸收甘油三酯和肝臟合成內(nèi)源甘油三酯等途徑降低血漿甘油三酯水平。茶葉提取物通過抑制SREBP表達(dá),下調(diào)ACC、FAS、FAE和SCD表達(dá),從而分別抑制乙酰輔酶A轉(zhuǎn)化、飽和脂肪酸合成、延伸和去飽和化,繼而影響脂肪酸組成成分。

      茶葉可通過多條途徑和多個作用位點(diǎn)調(diào)控脂質(zhì)代謝,不同茶葉對脂質(zhì)代謝調(diào)控作用機(jī)制不同,其效果也不同。據(jù)統(tǒng)計,研究茶葉降脂減肥機(jī)制以綠茶為主,而紅茶、烏龍茶、黑茶和普洱茶研究仍然較少。自然環(huán)境的不可控性、制茶工藝的多樣性、茶葉活性成分的不穩(wěn)定性、脂質(zhì)代謝機(jī)制的復(fù)雜性限制了我們對茶葉降脂減肥機(jī)制的研究。因此茶葉降脂減肥機(jī)制還需要從多方面深入研究探索。

      [1] MOKDAD A H, FORD E S, BOWMAN B A, et al. Prevalence of obesity, diabetes, and obesity-related health risk factors [J]. Jama, 2003, 289(1): 76-79.

      [2] FINUCANE M M, STEVENS G A, COWAN M J, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants [J]. The Lancet, 2011, 377(9765): 557-567.

      [3] MOON H-S, LEE H-G, CHOI Y-J, et al. Proposed mechanisms of (?)-epigallocatechin-3-gallate for anti-obesity [J]. Chemico-biological Interactions, 2007, 167(2): 85-98.

      [4] FUJITA H, YAMAGAMI T. Efficacy and safety of Chinese black tea (Pu-erh) extract in healthy and hypercholesterolemic subjects [J]. Annals of Nutrition and Metabolism, 2008, 53(1): 33-42.

      [5] HOU Y, SHAO W, XIAO R, et al. Pu-erh tea aqueous extracts lower atherosclerotic risk factors in a rat hyperlipidemia model [J]. Experimental Gerontology, 2009, 44(6): 434-439.

      [6] FUJITA H, YAMAGAMI T. Antihypercholesterolemic effect of Chinese black tea extract in human subjects with borderline hypercholesterolemia [J]. Nutrition Research, 2008, 28(7): 450-456.

      [7] CAO Z H, GU D H, LIN Q Y, et al. Effect of Pu-erh tea on body fat and lipid profiles in rats with diet-induced obesity [J]. Phytotherapy Research, 2011, 25(2): 234-238.

      [8] WOLFRAM S, WANG Y, THIELECKE F. Anti-obesity effects of green tea: from bedside to bench [J]. Molecular Nutrition & Food Research, 2006, 50(2): 176-187.

      [9] HURSEL R, VIECHTBAUER W, WESTERTERP-PLANTENGA M. The effects of green tea on weight loss and weight maintenance: a meta-analysis [J]. International Journal of Obesity, 2009, 33(9): 956-961.

      [10] KOVACS E M, LEJEUNE M P, NIJS I, et al. Effects of green tea on weight maintenance after body-weight loss [J]. British Journal of Nutrition, 2004, 91(3): 431-437.

      [11] NAGAO T, HASE T, TOKIMITSU I. A green tea extract high in catechins reduces body fat and cardiovascular risks in humans [J]. Obesity, 2007, 15(6): 1473-1483.

      [12] RAINS T M, AGARWAL S, MAKI K C. Antiobesity effects of green tea catechins: a mechanistic review [J]. The Journal of Nutritional Biochemistry, 2011, 22(1): 1-7.

      [13] KHAN N, MUKHTAR H. Tea polyphenols for health promotion [J]. Life Sciences, 2007, 81(7): 519-533.

      [14] ASHIDA H, FURUYASHIKI T, NAGAYASU H, et al. Anti-obesity actions of green tea: possible involvements in modulation of the glucose uptake system and suppression of the adipogenesis-related transcription factors [J]. Biofactors, 2004, 22(1/2/3/4): 135-140.

      [15] SHIMAMURA Y, MIYUKI Y, SAKAKIBARA H, et al. Pu-erh tea suppresses diet-induced body fat accumulation in C57BL/6J mice by down-regulating SREBP-1c and related molecules [J]. Bioscience, Biotechnology, and Biochemistry, 2013, 77(7): 1455-1460.

      [16] DING Y, ZOU X, JIANG X, et al. Pu-erh tea down-regulates sterol regulatory element-binding protein and stearyol-CoA desaturase to reduce fat storage in Caenorhaditis elegans [J]. PloS One, 2015, 10(2): e0113815. Doi:10.1371/journal.pone.0113815.

      [17] PENG Y, XIONG Z, LI J, et al. Water extract of the fungi from Fuzhuan brick tea improves the beneficial function on inhibiting fat deposition [J]. International Journal of Food Sciences and Nutrition, 2014, 65(5): 610-614.

      [18] HEBER D, ZHANG Y, YANG J, et al. Green tea, black tea, and oolong tea polyphenols reduce visceral fat and inflammation in mice fed high-fat, high-sucrose obesogenic diets [J]. The Journal of Nutrition, 2014, 144(9): 1385-1393.

      [19] EGAWA T, HAMADA T, MA X, et al. Caffeine activates preferentially α1-isoform of 5′AMP‐activated protein kinase in rat skeletal muscle [J]. Acta Physiologica, 2011, 201(2): 227-238.

      [20] SHRESTHA S, EHLERS S J, LEE J-Y, et al. Dietary green tea extract lowers plasma and hepatic triglycerides and decreases the expression of sterol regulatory element-binding protein-1c mRNA and its responsive genes in fructose-fed, ovariectomized rats [J]. The Journal of Nutrition, 2009, 139(4): 640-645.

      [21] COLLINS Q F, LIU H-Y, PI J, et al. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5’-AMP-activated protein kinase [J]. Journal of Biological Chemistry, 2007, 282(41): 30143-30149.

      [22] YANG C S, ZHANG J, ZHANG L, et al. Mechanisms of body weight reduction and metabolic syndrome alleviation by tea [J]. Molecular Nutrition & Food Research, 2016, 60(1): 160-174.

      [23] LEE L S, CHOI J H, SUNG M J, et al. Green tea changes serum and liver metabolomic profiles in mice with high-fat diet-induced obesity [J]. Molecular Nutrition & Food Research, 2015, 59(4): 784-794.

      [24] MURASE T, HARAMIZU S, SHIMOTOYODOME A, et al. Reduction of diet-induced obesity by a combination of tea-catechin intake and regular swimming [J]. International Journal of Obesity, 2006, 30(3): 561-568.

      [25] SHINICHI MEGURO T H, TADASHI HASE. Body fat accumulation in zebrafish is induced by a diet rich in fat and reduced by supplementation with green tea extract [J]. PloS One, 2015, 10(3): e0120142. Doi:10.1371/journal.pone.0120142.

      [26] CUNHA C A, LIRA F S, ROSA NETO J C, et al. Green tea extract supplementation induces the lipolytic pathway, attenuates obesity, and reduces low-grade inflammation in mice fed a high-fat diet [J]. Mediators of Inflammation, 2013 (6778): 635470. Doi:org/10.1155/2013/635470.

      [27] SANTAMARINA A B, OLIVEIRA J L, SILVA F P, et al. Green tea extract rich in epigallocatechin-3-gallate prevents fatty liver by AMPK activation via LKB1 in mice fed a high-fat diet [J]. PloS One, 2015, 10(11): e0141227.Doi:10.1371/journal.pone.0141227.

      [28] YANG X, YIN L, LI T, et al. Green tea extracts reduce adipogenesis by decreasing expression of transcription factors C/EBPα and PPARγ [J]. International Journal of Clinical and Experimental Medicine, 2014, 7(12): 4906-4914.

      [29] TIAN C, YE X, ZHANG R, et al. Green tea polyphenols reduced fat deposits in high fat-fed rats via erk1/2-PPARγ-adiponectin pathway [J]. PloS One, 2013, 8(1): e53796.Doi:10.1371/journal.pone.0053796.

      [30] JANSSENS P L, HURSEL R, WESTERTERP-PLANTENGA M S. Long-term green tea extract supplementation does not affect fat absorption, resting energy expenditure, and body composition in adults [J]. The Journal of Nutrition, 2015, 145(5): 864-870.

      [31] HUANG J, WANG Y, XIE Z, et al. The anti-obesity effects of green tea in human intervention and basic molecular studies [J]. European Journal of Clinical Nutrition, 2014, 68(10): 1075-1087.

      [32] PAN MH, LAI CS, WANG H, et al. Black tea in chemo-prevention of cancer and other human diseases [J]. Food Science and Human Wellness, 2013, 2(1): 12-21.

      [33] HUNG M W WL. Chemistry and health beneficial effects of oolong tea and theasinensins [J]. Food Science and Human Wellness, 2015, 4(4): 133-146.

      [34] KOO S I, NOH S K. Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect [J]. The Journal of Nutritional Biochemistry, 2007, 18(3): 179-183.

      [35] SHISHIKURA Y, KHOKHAR S, MURRAY B S. Effects of tea polyphenols on emulsification of olive oil in a small intestine model system [J]. Journal of Agricultural and Food Chemistry, 2006, 54(5): 1906-1913.

      [36] WANG S, NOH S K, KOO S I. Epigallocatechin gallate and caffeine differentially inhibit the intestinal absorption of cholesterol and fat in ovariectomized rats [J]. The Journal of Nutrition, 2006, 136(11): 2791-2796.

      [37] WANG S, NOH S K, KOO S I. Green tea catechins inhibit pancreatic phospholipase A2and intestinal absorption of lipids in ovariectomized rats [J]. The Journal of Nutritional Biochemistry, 2006, 17(7): 492-498.

      [38] NOH S K, KIM J, SEO Y, et al. Green tea (GT) extract lowers the lymphatic absorption of benzo [a] pyrene (BaP) in rats [J]. The FASEB Journal, 2008, 22(s1): 315.5-315.

      [39] WOLFRAM S. Effects of green tea and EGCG on cardiovascular and metabolic health [J]. Journal of the American College of Nutrition, 2007, 26(4): 373-388.

      [40] IKEDA I, YAMAHIRA T, KATO M, et al. Black tea polyphenols decrease micellar solubility of cholesterol in vitro and intestinal absorption of cholesterol in rats [J]. Journal of Agricultural and Food Chemistry, 2010, 58(15): 8591-8595.

      [41] GROVE K A, SAE-TAN S, KENNETT M J, et al. (?)-Epigallocatechin-3-gallate inhibits pancreatic lipase and reduces body weight gain in high fat-fed obese mice [J]. Obesity, 2012, 20(11): 2311-2313.

      [42] SEO D-B, JEONG H W, CHO D, et al. Fermented green tea extract alleviates obesity and related complications and alters gut microbiota composition in diet-induced obese mice [J]. Journal of Medicinal Food, 2015, 18(5): 549-556.

      [43] SALWAY J G. Metabolism at a glance [M]. Wiley-Blackwell, 2016: 50-82.

      [44] ASHRAFI K. Obesity and the regulation of fat metabolism [M]. WormBook, 2007: 1-20. Doi:10.1895/wormbook.1.7.1.

      [45] KENNEDY L M, PHAM S C, GRISHOK A. Nonautonomous regulation of neuronal migration by insulin signaling, DAF-16/FOXO, and PAK-1 [J]. Cell Reports, 2013, 4(5): 996-1009.

      [46] SRINIVASAN S. Regulation of body fat in Caenorhabditis elegans [J]. Annual Review of Physiology, 2015, 77(1): 400-408.

      [47] 張進(jìn). SREBP小分子調(diào)節(jié)劑的發(fā)現(xiàn)及其作用機(jī)制研究 [D]. 上海:華東師范大學(xué), 2014.

      [48] WATSON R T, KANZAKI M, PESSIN J E. Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes [J]. Endocrine reviews, 2004, 25(2): 177-204.

      [49] AZZOUT-MARNICHE D, BéCARD D, GUICHARD C, et al. Insulin effects on sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity in rat hepatocytes [J]. Biochemical Journal, 2000, 350(2): 389-393.

      [50] LEE D, JEONG D-E, SON H G, et al. SREBP and MDT-15 protect C. elegans from glucose-induced accelerated aging by preventing accumulation of saturated fat [J]. Genes & Development, 2015, 29(23): 2490-2503.

      [51] TAUBERT S, VAN GILST M R, HANSEN M, et al. A mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and-independent pathways in C elegans [J]. Genes & Development, 2006, 20(9): 1137-1149.

      [52] VENABLES M C, HULSTON C J, COX H R, et al. Green tea extract ingestion, fat oxidation, and glucose tolerance in healthy humans [J]. The American Journal of Clinical Nutrition, 2008, 87(3): 778-784.

      [53] YANG F, VOUGHT B W, SATTERLEE J S, et al. An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis [J]. Nature, 2006, 442(7103): 700-704.

      [54] ASHRAFI K. Mapping out starvation responses [J]. Cell Metabolism, 2006, 3(4): 235-236.

      [55] FERRE P, FOUFELLE F. SREBP-1c transcription factor and lipid homeostasis: clinical perspective [J]. Hormone Research in Paediatrics, 2007, 68(2): 72-82.

      [56] [56] S HLE J, KNOTT A, HOLTZMANN U, et al. White tea extract induces lipolytic activity and inhibits adipogenesis in human subcutaneous (pre)-adipocytes [J]. Nutrition & Metabolism, 2009, 6(1): 20.Doi:10.1186/1743-7075-6-20.

      [57] GREGOIRE F M. Adipocyte differentiation: from fibroblast to endocrine cell [J]. Experimental Biology and Medicine, 2001, 226(11): 997-1002.

      [58] LIN J K, LIN-SHIAU S Y. Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols [J]. Molecular Nutrition & Food Research, 2006, 50(2): 211-217.

      [59] KAO Y H, CHANG H H, LEE M J, et al. Tea, obesity, and diabetes [J]. Molecular Nutrition & Food Research, 2006, 50(2): 188-210.

      [60] WOLFRAM S, RAEDERSTORFF D, PRELLER M, et al. Epigallocatechin gallate supplementation alleviates diabetes in rodents [J]. The Journal of Nutrition, 2006, 136(10): 2512-2518.

      [61] WOLFRAM S, RAEDERSTORFF D, WANG Y, et al. TEAVIGOTM (epigallocatechin gallate) supplementation prevents obesity in rodents by reducing adipose tissue mass [J]. Annals of Nutrition and Metabolism, 2005, 49(1): 54-63.

      [62] CHEN N, BEZZINA R, HINCH E, et al. Green tea, black tea, and epigallocatechin modify body composition, improve glucose tolerance, and differentially alter metabolic gene expression in rats fed a high-fat diet [J]. Nutrition Research, 2009, 29(11): 784-793.

      [63] BASCIANO H, FEDERICO L, ADELI K. Fructose, insulin resistance, and metabolic dyslipidemia [J]. Nutrition & Metabolism, 2005, 2(1): 5.Doi:10.1186/1743-7075-2-5.

      [64] RUTLEDGE A C, ADELI K. Fructose and the metabolic syndrome: pathophysiology and molecular mechanisms [J]. Nutrition Reviews, 2007, 65(suppl 1): S13-S23.

      [65] 呂海鵬, 谷記平, 林智, 等. 普洱茶的化學(xué)成分及生物活性研究進(jìn)展[J]. 茶葉科學(xué), 2007, 27(1): 8-18.

      [66] YANG D-J, HWANG L S. Study on the conversion of three natural statins from lactone forms to their corresponding hydroxy acid forms and their determination in Pu-Erh tea [J]. Journal of Chromatography A, 2006, 1119(1): 277-284.

      [67] 陳智雄, 齊桂年, 鄒瑤, 等. 黑茶調(diào)節(jié)脂質(zhì)代謝的物質(zhì)基礎(chǔ)及機(jī)理研究進(jìn)展[J]. 茶葉科學(xué), 2013, 33(3): 242-252.

      [68] KUHN D J, BURNS A C, KAZI A, et al. Direct inhibition of the ubiquitin-proteasome pathway by ester bond-containing green tea polyphenols is associated with increased expression of sterol regulatory element-binding protein 2 and LDL receptor [J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2004, 1682(1): 1-10.

      [69] KAUL D, SIKAND K, SHUKLA A. Effect of green tea polyphenols on the genes with atherosclerotic potential [J]. Phytotherapy Research, 2004, 18(2): 177-179.

      [70] HARDIE D G. AMPK: positive and negative regulation, and its role in whole-body energy homeostasis [J]. Current Opinion in Cell Biology, 2015, 33: 1-7.

      [71] XIAO B, SANDERS M J, UNDERWOOD E, et al. Structure of mammalian AMPK and its regulation by ADP [J]. Nature, 2011, 472(7342): 230-233.

      [72] ZHOU J, FARAH B L, SINHA R A, et al. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, stimulates hepatic autophagy and lipid clearance [J]. PloS One, 2014, 9(1): e87161.Doi:10.1371/journal.pone.0087161.

      [73] WAY T-D, LIN H-Y, KUO D-H, et al. Pu-erh tea attenuates hyperlipogenesis and induces hepatoma cells growth arrest through activating AMP-activated protein kinase (AMPK) in human HepG2 cells [J]. Journal of Agricultural and Food Chemistry, 2009, 57(12): 5257-5264.

      [74] HUANG H-C, LIN J-K. Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet [J]. Food & Function, 2012, 3(2): 170-177.

      [75] LONG Y C, ZIERATH J R. AMP-activated protein kinase signaling in metabolic regulation [J]. The Journal of Clinical Investigation, 2006, 116(7): 1776-1783.

      [76] HARDIE D G, ROSS F A, HAWLEY S A. AMPK: a nutrient and energy sensor that maintains energy homeostasis [J]. Nature Reviews Molecular Cell Biology, 2012, 13(4): 251-262.

      [77] 傅冬和, 劉仲華, 黃建安, 等. 茯磚茶降脂功能成分研究[J]. 茶葉科學(xué), 2012, 32(3): 217-223.

      [78] WANG S, MOUSTAID-MOUSSA N, CHEN L, et al. Novel insights of dietary polyphenols and obesity [J]. The Journal of Nutritional Biochemistry, 2014, 25(1): 1-18.

      [79] CAO H, HININGER-FAVIER I, KELLY M A, et al. Green tea polyphenol extract regulates the expression of genes involved in glucose uptake and insulin signaling in rats fed a high fructose diet [J]. Journal of Agricultural and Food Chemistry, 2007, 55(15): 6372-6378.

      [80] WATTS J L. Genetic dissection of polyunsaturated fatty acid synthesis in caenorhabditis elegans [C]. Proceedings of the National Academy of Sciences, 2002, 99(9): 5854-5859.

      [81] KNIAZEVA M, CRAWFORD Q T, SEIBER M, et al. Monomethyl branched-chain fatty acids play an essential role in caenorhabditis elegans development [J]. PLoS Biology, 2004, 2(9): e257.

      [82] HODSON L, FIELDING B A. Stearoyl-CoA desaturase: rogue or innocent bystander? [J]. Progress in Lipid Research, 2013, 52(1): 15-42.

      [83] NTAMBI J M, MIYAZAKI M. Regulation of stearoyl-CoA desaturases and role in metabolism [J]. Progress in Lipid Research, 2004, 43(2): 91-104.

      [84] JEON T-I, OSBORNE T F. SREBPs: metabolic integrators in physiology and metabolism [J]. Trends in Endocrinology & Metabolism, 2012, 23(2): 65-72.

      [85] BROCK T J, WATTS J L. Fatty acid desaturation and the regulation of adiposity in caenorhabditis elegans [J]. Genetics, 2007, 176(2): 865-875.

      [86] NTAMBI J M, MIYAZAKI M, STOEHR J P, et al. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity [C]. Proceedings of the National Academy of Sciences, 2002, 99(17): 11482-11486.

      [87] BROCK T J, WATTS J L. Genetic regulation of unsaturated fatty acid composition in[J]. PLoS Genetics, 2006, 2(7): e108.Doi:10.1371/journal.pgen.0020108.

      [88] VAN GILST M R, HADJIVASSILIOU H, JOLLY A, et al. Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in[J]. PLoS Biol, 2005, 3(2): e53.Doi:10.1371/journal.pbio.0030053.

      [89] LIANG B, FERGUSON K, KADYK L, et al. The role of nuclear receptor NHR-64 in fat storage regulation in[J]. PloS One, 2010, 5(3): e9869.Doi:10.1371/journal.pone.0009869.

      The Mechanism of the Lipid-lowering Effect of Tea by Regulating the SREBP

      PAN Lianyun, LU Yan, GONG Yushun*

      Hunan Agricultural University, College of Horticulture and Landscape, National Engineering Center of Plant Functional Components Utilization, Key Lab of Tea Science, Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China

      Tea has a lipid-lowering effect through regulating lipid metabolism in different tissues and inhibiting digestion and absorption of lipid. The lipid metabolism pathway affects the synthesis and decomposition of lipid and fat decreasing through regulating the expression of Sterol Regulatory Element Binding Proteins (SREBPs) and its relative factors.

      tea, obesity, lipid metabolism, SREBP

      TS272;R972+.6

      A

      1000-369X(2018)01-102-10

      2017-06-29

      2017-09-20

      潘聯(lián)云,女,在讀碩士研究生,主要從事茶葉加工及功能成分化學(xué)研究,jiayoualei@sina.com。*通訊作者: gongyushun@foxmail.com

      猜你喜歡
      降脂脂質(zhì)提取物
      蟲草素提取物在抗癌治療中顯示出巨大希望
      中老年保健(2022年2期)2022-08-24 03:20:44
      蜜桑白皮的體內(nèi)降脂作用研究
      中藥提取物或可用于治療肥胖
      中老年保健(2021年5期)2021-12-02 15:48:21
      HPLC法同時測定三參降脂液中9種成分
      中成藥(2018年12期)2018-12-29 12:25:34
      復(fù)方一枝蒿提取物固體脂質(zhì)納米粒的制備
      中成藥(2018年9期)2018-10-09 07:18:36
      神奇的落葉松提取物
      白楊素固體脂質(zhì)納米粒的制備及其藥動學(xué)行為
      中成藥(2018年1期)2018-02-02 07:19:53
      紫地榆提取物的止血作用
      中成藥(2017年10期)2017-11-16 00:50:27
      UPLC-MS/MS法同時測定降脂活血片中5種成分
      中成藥(2017年4期)2017-05-17 06:09:30
      馬錢子堿固體脂質(zhì)納米粒在小鼠體內(nèi)的組織分布
      中成藥(2017年4期)2017-05-17 06:09:26
      海门市| 周口市| 奉节县| 平潭县| 澄城县| 东至县| 衡南县| 惠水县| 葵青区| 酉阳| 原平市| 湟中县| 出国| 延边| 措美县| 横山县| 华坪县| 禄丰县| 尼玛县| 眉山市| 潮安县| 黄梅县| 罗源县| 敦煌市| 澄江县| 荔浦县| 长乐市| 富蕴县| 双峰县| 新巴尔虎右旗| 平谷区| 临澧县| 拉萨市| 安福县| 时尚| 益阳市| 腾冲县| 通渭县| 桓台县| 哈密市| 太湖县|