• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    三維超分子鋅/錳配合物的合成、晶體結(jié)構(gòu)及理論計算

    2018-03-14 06:35:51王志濤瓦倫丁瓦爾切夫方千榮李秀梅潘亞茹
    無機(jī)化學(xué)學(xué)報 2018年3期
    關(guān)鍵詞:瓦倫丁學(xué)報化學(xué)

    王志濤 瓦倫丁·瓦爾切夫 方千榮 李秀梅 潘亞茹

    (1通化師范學(xué)院化學(xué)學(xué)院,通化 134002)

    (2吉林大學(xué)無機(jī)合成與制備化學(xué)國家重點實驗室,長春 130012)

    The design and synthesis of metal-organic coordination polymers relying on the selection of ligands and metal ions have become a very attractive research field.This is motivated not only by the intriguing structural diversity but also by the demand of applying functionalmaterialsinto the fieldsofcatalysis,porosity,magnetism,luminescence and nonlinear optics[1-3].In general,grids with various sizes and shapes can be synthesized by choosing suitable single metal ions and organic ligands such as carboxylates and N-donor groups[4-6].Self-assembly is a complex process,highly influenced by many factors,such asthe coordination geometry of metal ions,the nature of organic ligands,solvent system,temperature,pH value of the solution,the ratio between metal salt and ligand,the templates and the counter anions[7-14].Except for these factors,other forces such as hydrogen-bonding,π-π interactions,metal-metal interactions can also greatly influence the supramolecular topology and its dimensionality[15-17]. Therefore, these considerations made us investigate new coordination structures with pyrazine-2,3-dicarboxylic acid,5-nitroisophthalic acid and chelating ligands.In this manuscript,we reported the syntheses,crystal structures,IR,UV,fluorescence,TG properties oftwo new complexes,namely,{[Zn2(pzdc)(L)2(H2O)]·H2O}n(1)and[Mn (μ2-O)(H2O)2(HL)]·NIPH (2).Moreover,we analyzed natural bond orbital (NBO)by using the PBE0/LANL2DZ method built in Gaussian 09 program.

    1 Experimental

    1.1 General procedures

    All solvents and chemicals were commercial reagents and used without further purification.Elemental analyses (carbon,hydrogen,and nitrogen)were performed with a Vario ELⅢElemental Analyzer.IR spectrum (4 000~400 cm-1)was measured from KBr pellet on a Nicolet 6700 FT-IR spectrometer.TG studies were performed on a Perkin-Elmer TGA7 analyzer.UV spectrum was obtained on a Shimzu UV-250 spectrometer in the 200~400 nm range.The fluorescent studies were carried out on a computercontrolled JY Fluoro-Max-3 spectrometer at room temperature.The crystal structure was determined by a Bruker D8 Venture diffractometer.The powder X-ray diffraction (PXRD)studies were performed with a Bruker D8 Discover instrument (Cu Kα radiation,λ=0.154 184 nm,U=40 kV,I=40 mA)over the 2θ range of 5°~50°at room temperature.

    1.2 Synthesis

    {[Zn2(pzdc)(L)2(H2O)]·H2O}n(1):A mixture of H2pzdc (0.068 g,0.4 mmol),HL (0.028 g,0.2 mmol),Zn(OAc)2·2H2O (0.088 g,0.4 mmol)and 18 mL H2O was adjust to the pH≈6.13 with 0.5 mol·L-1NaOH,sealed in a Teflon-lined stainless steel vessel,heated to 160℃for five days,and followed by slow cooling(a descent rate of 10 ℃·h-1)to room temperature.Pale yellow block crystals were obtained.Yield:32%(based on Zn).Anal.Calcd.for C44H32N16O11Zn4(%):C,43.23;H,2.64;N,18.33.Found (%):C,42.97;H,2.15;N,17.89.IR (cm-1):3 286(w),2 989(w),1 752(m),1 637(m),1 605(m),1 567(w),1 473(w),1 434(w),1 375(m),1 357(m),1 255(w),1 159(w),1 118(w),1 060(w),1 013(m),890(w),783(w),765(w),636(w),481(w).

    [Mn(μ2-O)(H2O)2(HL)]·NIPH (2):A mixture of Mn(OAc)2·4H2O (0.10 g,0.4 mmol),H2NIPH (0.084 g,0.4 mmol),HL (0.058 g,0.4 mmol)and 18 mL H2O was placed in a Teflon reactor (30 mL)and the pH value was adjusted to about 7 with 0.5 mol·L-1NaOH solution.Then the mixture was heated at 140℃for 7 days.After cooling to room temperature at a rate of 10℃·h-1,brown crystals of 1 were collected in 45%yield.Anal.Calcd.for C32H30Mn2N8O18(%):C,41.57;H,3.27;N,12.12.Found(%):41.36;H,3.01;N,11.98.IR (KBr,cm-1):3 413(m),3 102(w),1 630(s),1 606(s),1 583 (m),1 533(m),1 495 (w),1 443(w),1 334 (s),1 101(w),998(w),788(w),720(m),537(w).

    1.3 X-ray crystallography

    Single-crystal X-ray diffraction data for 1 and 2 were measured on a Bruker Smart ApexⅡCCD diffractometer with graphite-monochromated Mo Kα radiation (λ=0.071 073 nm)at 293 K.The structure was solved with the direct method of SHELXS-97 and refined with full-matrix least-squares techniques using the SHELXL-97 program[18-19].Anisotropic thermal parameters were assigned to all non-hydrogen atoms.The hydrogen atoms were placed at the calculated positions and refined as riding atoms with isotropic displacement parameters.The details of the crystal parameters,data collection and refinement for 1 and 2 are summarized in Table 1.Selected bond lengths and bond angles are shown in Table 2.

    CCDC:1468826,1;1439401,2.

    Table 1 Crystal data and structure refinement for 1 and 2

    Table 2 Selected bond lengths(nm)and bond angles(°)for 1 and 2

    2 Results and discussion

    2.1 IR spectrum

    For complex 1,two bands at 1 637 and 1 357 cm-1can be attributed to ν(OCO)assymand ν(OCO)sym[20],respectively.The Δν(ν(OCO)assym-ν(OCO)sym)is 280 cm-1,exhibiting the presence of monodentate (Δν>200 cm-1)linkage of carboxylates in the dianions.Therefore,the carboxylates coordinate to the metal as monodentate ligands via the carboxylate groups[21].The absence of the characteristic bands at abound 1 700 cm-1in complex 1 owing to the protonated carboxylic group indicates the complete deprotonation of pzdc ligand upon reaction with Zn ions[22].Moreover,X-ray diffraction analysisfurtherattributes the existence of monodentate coordination manners of the carboxylate groups and prence deprotonation of pzdc ligands.

    Infrared spectroscopy of complex 2 shows the typical anti-symmetric (1 606 cm-1)and symmetric(1 334 cm-1)stretching bands of carboxylate groups.The absence of the characteristic band around 1 700 cm-1in complex 2 owing to the protonated carboxylic group indicates that the present deprotonation of NIPH ligand.Moreover,the strong and broad band centered at 3 413 cm-1for 2 is owing to the H-O-H stretching vibration of water molecule in the light of the known structure[23].

    2.2 Description of the structure

    X-ray single-crystal diffraction analysis reveals that 1 crystallizes in the monoclinic system,space group C2/c and features a 2D network structure.The coordination environment of Zn(Ⅱ)in 1 is displayed in Fig.1.There are two coordination centers,Zn1 and Zn2,in the crystal structure.The Zn1 ion is fivecoordinated by two carboxylate oxygen atoms(O1,O4A)from two different pzdc ligands,two nitrogen donors (N2A,N8)from pzdc and HL ligands and one coordinated water molecule (O5).The Zn2 ion is also five-coordinated by five nitrogen atoms(N3,N4,N5B,N6,N7).The Zn-O distances fall in the range of 0.198 9(2)~0.212 5(2)nm,and Zn-N bond length fall in the 0.200 7(3)~0.222 2(3)nm,which are all in the normal ranges and the coordination angles around Zn atom are in the range 75.86(11)°~170.90(11)°.

    Fig.1 ORTEP drawing of 1 showing the local coordination environment of Zn(Ⅱ)

    In the crystal structure of complex 1,the HL ligands take μ3coordination mode and the completely deprotonated pzdc ligands show one kind of coordination mode,namely,monodentate bridging mode.As a result,two Zn(Ⅱ)ions are linked by four HL ligand to form dinuclear subunits,which are bridged by pzdc ligands to yield a two-dimensional(2D)network architecture (Fig.2).Each Zn(Ⅱ) shows a distorted square-pyramidal coordination structure.

    Fig.2 View of the two-dimensional network along a axis

    It is worth noting that hydrogen bonding interactions are important in the synthesis of supramolecular architecture[24].There are O-H…O and C-H…O hydrogen bonding interactions between carboxylate oxygen atom,carbon atoms and coordinated water molecules in complex 1 (Table 3).In addition,there are π-π interactions (Fig.3)in complex 1 between pyrazine ring of pzdc ligand and pyrazole ring of HL ligand.The centroid-to-centroid distance between adjacent ring is 0.345 6(2)nm for N4N5C14C13C12 and N1C3C4N2C5C6 rings. The perpendicular distance is 0.315 30(15)nm for N4N5C14C13C12 and N1C3C4N2C5C6rings.Thus,thetwo-dimensional networks are further extended into a three-dimensional supramolecular framework through hydrogen bonds and π-π interactions,which play an important role in stabilizing compound 1.

    Fig.3 View of π-π stacking interactions in complex 1

    Complex 2 crystallizes in the triclinic system,spacegroup P1 and featuresazero-dimensional structure.The coordination environment of Mn(Ⅱ)in 2 is displayed in Fig.4.There are two Mn(Ⅱ)ion,two NIPH ligand,two HL ligand,four coordinated water molecule and two μ2-O atomsin the molecular structure.Each Mn(Ⅱ)ion is six-coordinated by two coordinated water molecules (O7,O9),two μ2-O atoms(O8,O8A)and two nitrogen donors (N2 and N3)from HL ligand to supply a distorted octahedral coordination structure.One coordinated water molecule (O9),one μ2-O atom (O8)and two nitrogen atoms(N2,N3)define an equatorial plane,whereas the axial coordination sites are employed by the other coordinated water molecule(O7)and μ2-O atom (O8A).The Mn-O distances fall in the range of 0.213 46(14)~0.233 36(14)nm,and Mn-N bond length fall in the 0.222 64(14)~0.225 56(14)nm,which are all in the normal range and the coordination angles around Mn(Ⅱ)ion are in the range of 73.95(5)°~168.77(5)°.

    Fig.4 ORTEP drawing of 2 showing the local coordination environment of Mn(Ⅱ)

    Table 3 Hydrogen bond parameters for complexes 1 and 2

    In 2,the HL ligand adopts classic chelating mode,while NIPH ligand wasnotinvolved in coordination,which just play a role of balance charge.Two Mn(Ⅱ)ions are linked by two μ2-O atoms to form dinuclearsubunits,and exhibits zero-dimensional structure.Further study of the crystal packing of complex 2 suggests that there are two kinds of N-H…O and O-H…O hydrogen bonding interactions between nitrogen atom of HL ligand,carboxylate oxygen atoms of NIPH ligand,and coordinated water molecule (Table 3).Moreover,In complex 2,5-member ring of HL and 6-member ring of NIPH ligand centroid distances are 0.368 79(10)nm for N1N2C3C2C1 and C9C10C11C12C13C14 rings,with the vertical distance of 0.326 64(7)nm,indicating the existence of π-π effect,so the structure is more stable.Therefore,a three-dimensional supramolecular network structure is formed by such hydrogen bonds and π-π stacking(Fig.5).

    In order to check the purity of complex 1 and 2,powder X-ray diffraction of the as-synthesized sample were measured at room temperature (Fig.6).The peak positions ofexperimentalpatterns are in good agreement with the simulated ones,which clearly indicates good purity of 1 and 2[25-26].

    Fig.5 View of the 3D supramolecular architecture of 2 formed by hydrogen-bonding and π-π interactions

    Fig.6 PXRD analysis of complex 1 (a)and 2 (b)

    2.3 Thermal analysis

    The thermal stability of complex 1 was tested in the range of 50~700 ℃ under a nitrogen atmosphere at a heating rate of 5℃·min-1.The TGA curve of complex 1 is shown in Fig.7.It displays that the first weight loss of 49.5%from 60 to 192℃corresponds to the release of water molecules and HL ligand(Calcd.50.0%).Upon further heating,an obvious weight loss(26.2%)occurs in the temperature range of 192~525℃,corresponding to the removal of pzdc ligands(Calcd.27.1%).After 525 ℃ no weight loss is found,which indicates the complete decomposition of 1.

    2.4 Photoluminescent properties

    Fig.7 TG curve of the complex 1

    Fig.8 Solid-state emission spectrum of 1 at room temperature

    The emission spectrum of complex 1 in the solid state at room temperature is displayed in Fig.8.It can be reviewed that complex 1 shows blue photoluminescence with an emission maximum at ca.460 nm upon excitation at 375 nm.By way of studying the nature of these emission bands,we first investigated the photoluminescence properties of free H2pzdc,and the resultindicated thatitdoesnotemitany luminescence in the range of 400~800 nm.And then we discussed the emission spectrum of HL itself and theresultconfirmed thatitdoesnotemitany luminescence in the range 400~800 nm,which has also been proved previously[27].Therefore,on the basis of previous literature[28],the emission band could be assigned to the emission of ligand-to-metal charge transfer (LMCT).For possessing strong fluorescent intensity,complex 1 appears to be good candidates for novel hybrid inorganic-organic photoactive materials.

    2.5 UV spectrum analysis

    The UV spectra for complex 2 (Fig.9),H2NIPH and HL ligands have been studied in the solid state.For H2NIPH and HL ligands,there are 277 and 245 nm absorption bands,respectively,while 275 nm for complex 2,which should be assigned to the n→π*[29-32]transition of HL ligand in 2.However,after the ligands coordinates to the Mn2+ion,the absorption intensity increases.

    Fig.9 UV spectrum of 2 at room temperature

    2.6 Theoretical calculations

    All calculations in this work were carried out with the Gaussian 09 program[33].The parameters of the molecular structure for calculation were all from the experimental data of the complex.We analyzed natural bond orbital (NBO)by density functional theory (DFT)[34]with the PBE0[35-38]hybrid functional and the LANL2DZ basis set[39].

    The selected natural atomic charges and natural electron configuration for the complex 1 are displayed in Table 4.It is showed that the electronic configurations of Zn(Ⅱ)ion,N and O atoms are 4s0.303d9.984p0.40,2s1.32~1.372p4.06~4.23and 2s1.64~1.692p5.11~5.23,respectively.On the basis of above results,one can conclude that the Zn(Ⅱ)ion coordinated with N and O atoms is mostly on 3d,4s,and 4p orbitals.N atoms form coordination bonds with Zn(Ⅱ)ion using 2s and 2p orbitals.All O atoms provide electrons of 2s and 2p to Zn(Ⅱ)ion and form the coordination bonds.Thus,the Zn(Ⅱ)ion obtained some electrons from N atoms and O atoms of ligands[40-41].Therefore,on the basis of valence-bond theory,the atomic net charges distribution of the complex 1 appears the obvious covalent interaction between the coordinated atoms and Zn(Ⅱ)ion.

    As can be seen from the Fig.10,lowest unoccupied molecular orbital (LUMO)ismainly consists of HL and H2pzdc ligands,whereas highest occupied molecular orbital (HOMO)mostly composed of HL ligand.So,the charge transfer from ligand to ligand maybededuced from somecontoursof molecular orbital of complex 1.

    Table 4 Selected natural atomic charges and natural electron configuration for 1 and 2

    The selected natural atomic charges and natural electron configuration for complex 2 is displayed in Table 4.It is showed that the electronic configurations of Mn(Ⅱ) ion,N and O atoms are 4s0.233d5.825p0.43,2s1.32~1.352p3.88~4.10and 2s1.61~1.872p4.90~5.18,respectively.On the basis of above results,one can infer that the Mn(Ⅱ)ion coordination with N and O atoms is mostly on 3d,4s,and 5p orbitals.N atoms form coordination bonds with Mn(Ⅱ)ion using 2s and 2p orbitals.All O atoms provide electrons of 2s and 2p to Mn(Ⅱ)ion and form the coordination bonds.Thus,the Mn(Ⅱ)ion obtained some electrons from two N atoms of HL ligand,two O atomsofcoordinated watermolecules,two μ2-O atoms[40-41].Therefore,on the basis of valence-bond theory,the atomic net charge distribution and the NBO bond orders of complex 2 (Table 4)exhibits the obvious covalent interaction between the coordinated atoms and Mn(Ⅱ)ion.The differences of the NBO bond orders for Mn-O and Mn-N bonds make their bond lengths be different[41],which is in good agreement with the X-ray crystal structural data of complex 2.

    As can be seen from the Fig.11,lowest unoccupiedmolecularorbital (LUMO)ismostly consists of HL ligand and metal,whereas highest occupied molecular orbital (HOMO)mainly composed of μ2-O and metal center.So,the charge transfer from ligand to ligand and metal to ligand may be inferred from some contours of molecular orbital of complex 2.

    Fig.10 Frontier molecular orbitals of the complex 1

    Fig.11 Frontier molecular orbitals of the complex 2

    3 Conclusions

    In general, we have described two new supramolecular zinc/manganese complexes.In 1,the pyrazine-2,3-dicarboxylate ligands function in monodentate bridging coordination mode,and the HL ligands take μ3coordination mode.As a result,two Zn(Ⅱ) ions are linked by four HL ligand to yield dinuclear subunits,which are bridged by pzdc ligands to form a two-dimensional network structure.In 2,the HL ligand takes classic chelating mode,while NIPH ligand was not involved in coordination,which just plays a role of balance charge.Two Mn(Ⅱ)ions are linked by two μ2-O atoms to form dinuclear subunits,and exhibits zero-dimensional structure.It is worthy to note that the intermolecular hydrogen bonds and π-π interactions play an important role in the supramolecular structure.These materials will give new impetus to the construction of novel functional material with potentially useful physical properties.

    [1]Uppadine L H,Lehn J M.Angew Chem.Int.Ed.,2004,43:240-243

    [2]WANG Qing-Wei(王慶偉),WANG Ya-Nan(王亞楠),LI Xiu-Mei(李秀梅),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報),2014,30(9):2219-2224

    [3]Hou L,Li D,Shi W J,et al.Inorg.Chem.,2005,44:7825-7832

    [4]Hines C C,Reichert W M,Griffin S T.J.Mol.Struct.,2006,796:76-85

    [5]Wang X L,Qin C,Wang E B,et al.Chem.Eur.J.,2006,12:2680-2691

    [6]García-Couceiro U,Castillo O,Luque A,et al.Cryst.Growth Des.,2006,6:1839-1847

    [7]Hong M C,Zhao Y J,Su W P,et al.Angew.Chem.Int.Ed.,2000,39:2468-2470

    [8]Hong M C,Zhao Y Z,Su W P,et al.J.Am.Chem.Soc.,2000,122:4819-4820

    [9]Abrahams B F,Batten S R,Grannas M J,et al.Angew.Chem.Int.Ed.,1999,38:1475-1477

    [10]Bu X H,Chen W,Lu S L,et al.Angew.Chem.Int.Ed.,2001,40:3201-3203

    [11]Noro S,Kitaura R,Kondo M,et al.J.Am.Chem.Soc.,2002,124:2568-2583

    [12]Bu X H,Chen W,Du M,et al.Inorg.Chem.,2002,41:437-439

    [13]Kasai K,Aoyagi M,Fujita M.J.Am.Chem.Soc.,2000,122:2140-2141

    [14]Sun L B,Li Y,Liang Z Q,et al.Dalton Trans.,2012,41:12790-12796

    [15]Li X M,Pan Y R,Ji J Y,et al.J.Inorg.Organomet.Polym.,2014,24:836-841

    [16]Pan Y R,Sun M,Li X M.Chin.J.Struct.Chem.,2015,34:576-584

    [17]Liu Y Y,Ma J F,Yang Y,et al.Inorg.Chem.,2007,46:3027-3037

    [18]Sheldrick G M.SHELXS-97,Program for the Solution of Crystal Structure,University of G?ttingen,Germany,1997.

    [19]Sheldrick G M.SHELXL-97,Program for the Refinement of Crystal Structure,University of G?ttingen,Germany,1997.

    [20]Devereux M,Shea D O,Kellett A,et al.Inorg.Biochem.,2007,101:881-892

    [21]Farrugia L J,Wing X A.Windows Program for Crystal Structure Analysis,University of Glasgow,UK,1988.

    [22]Fu Z Y,Wu X T,Dai J C,et al.Eur.J.Inorg.Chem.,2002,2002:2730-2735

    [23]Nakamoto K.Infrared Spectra and Raman Spectra of Inorganic and Coordination Compound.New York:Wiley,1986.

    [24]Krische M J,Lehn J M.Struct.Bond.,2000,96:3-29

    [25]Gilbert A,Baggott J.Essentials of Molecular Photochemistry.Oxford,Boston:Blackwell Scientific Publications,1991.

    [26]Han Z B,He Y K,Ge C H,et al.Dalton Trans.,2007,36:3020-3024

    [27]Rendell D.Fluorescence and Phosphorescence.New York:John Willey&Sons,1987.

    [28]Zheng S L,Chen X M.Aust.J.Chem.,2004,57:703-712

    [29]Mohamed G G,El-Gamel N E A.Spectrochim.Acta Part A,2004,60:3141-3154

    [30]Dong M N,He L L,Fan Y J,et al.Cryst.Growth Des.,2013,13:3353-3364

    [31]Glasson C R K,Meehan G V,Motti C A,et al.Dalton Trans.,2011,40:10481-10490

    [32]Pandey S,Das S S,Singh A K,et al.Dalton Trans.,2011,40:10758-10768

    [33]Frisch M J,Trucks G W,Schlegel H B,et al.Gaussian 09,Rev.B.09,Gaussian Inc.,Pittsburgh,2009.

    [34]Parr R G,Yang W.Density Functional Theory of Atoms and Molecules.Oxford:Oxford University Press,1989.

    [35]Ernzerhof M,Scuseria G E.J.Chem.Phys.,1999,110:5029-5036

    [36]Adamo C,Barone V.J.Chem.Phys.,1999,110:6158-6170

    [37]Perdew J P,Burke K,Ernzerhof M.Phys.Rev.Lett.,1996,77:3865-3868

    [38]Perdew J P,Burke K,Ernzerhof M.Phys.Rev.Lett.,1997,78:1396-1397

    [39]Dunning T H,Hay P J.Modern Theoretical Chemistry:Vol.3.New York:Plenum,1976:1-28

    [40]Wang L,Zhao J,Ni L,et al.J.Inorg.Gen.Chem.,2012,638:224-230

    [41]LI Zhang-Peng(李章朋),XING Yong-Heng(邢永恒),ZHANG Yuan-Hong(張元紅),et al.Acta Phys.-Chim.Sin.(物理化學(xué)學(xué)報),2009,25(4):741-746

    猜你喜歡
    瓦倫丁學(xué)報化學(xué)
    每天都說我愛你
    致敬學(xué)報40年
    山岳的瓦倫丁 Marco Pantani
    中國自行車(2018年4期)2018-05-26 09:01:39
    當(dāng)善良遇到誠信
    中國信用(2017年3期)2017-05-14 09:58:04
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    學(xué)報簡介
    學(xué)報簡介
    免费看a级黄色片| 丝袜美腿在线中文| 午夜福利视频1000在线观看| 国产精品亚洲av一区麻豆| 欧美极品一区二区三区四区| 热99在线观看视频| 岛国视频午夜一区免费看| av在线天堂中文字幕| 好男人在线观看高清免费视频| 亚洲av不卡在线观看| 人妻丰满熟妇av一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲中文字幕一区二区三区有码在线看| 精华霜和精华液先用哪个| 亚洲18禁久久av| 欧美在线一区亚洲| 欧美中文日本在线观看视频| 99热精品在线国产| 熟女电影av网| 男人舔女人下体高潮全视频| 嫩草影院精品99| 久久九九热精品免费| 亚洲av不卡在线观看| 国产精品电影一区二区三区| 国产免费一级a男人的天堂| 久久精品夜夜夜夜夜久久蜜豆| 亚洲无线在线观看| 亚洲成人久久爱视频| 久久久久久久久久黄片| 18禁美女被吸乳视频| 在线观看日韩欧美| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 一个人免费在线观看的高清视频| 给我免费播放毛片高清在线观看| 国产单亲对白刺激| 日本熟妇午夜| 此物有八面人人有两片| 88av欧美| 给我免费播放毛片高清在线观看| 中文字幕人妻熟人妻熟丝袜美 | 国产亚洲av嫩草精品影院| 亚洲久久久久久中文字幕| 熟妇人妻久久中文字幕3abv| 午夜免费成人在线视频| 有码 亚洲区| 桃红色精品国产亚洲av| 国产成人啪精品午夜网站| 麻豆一二三区av精品| netflix在线观看网站| 亚洲国产欧美网| a级一级毛片免费在线观看| 日韩大尺度精品在线看网址| 日日夜夜操网爽| 国产成+人综合+亚洲专区| 99久久精品一区二区三区| netflix在线观看网站| www日本在线高清视频| 99视频精品全部免费 在线| 成年女人看的毛片在线观看| 在线视频色国产色| 国产一区二区在线观看日韩 | av欧美777| 最新中文字幕久久久久| 黄片小视频在线播放| 亚洲熟妇中文字幕五十中出| 黄片小视频在线播放| 美女高潮喷水抽搐中文字幕| 男女床上黄色一级片免费看| 欧美日韩中文字幕国产精品一区二区三区| 久久久国产精品麻豆| 一个人免费在线观看电影| 亚洲黑人精品在线| 亚洲精品久久国产高清桃花| 最近在线观看免费完整版| 男女视频在线观看网站免费| 色精品久久人妻99蜜桃| 免费看十八禁软件| 午夜福利视频1000在线观看| 两人在一起打扑克的视频| 亚洲人成伊人成综合网2020| 婷婷丁香在线五月| 国产久久久一区二区三区| 高清在线国产一区| 亚洲av成人精品一区久久| 国产欧美日韩精品一区二区| 18+在线观看网站| 少妇熟女aⅴ在线视频| 久久国产精品影院| 国产午夜福利久久久久久| 每晚都被弄得嗷嗷叫到高潮| 99国产极品粉嫩在线观看| av国产免费在线观看| 欧美午夜高清在线| 长腿黑丝高跟| 舔av片在线| 岛国在线免费视频观看| 夜夜爽天天搞| 亚洲av免费高清在线观看| 亚洲人与动物交配视频| 日本撒尿小便嘘嘘汇集6| 蜜桃久久精品国产亚洲av| 国产又黄又爽又无遮挡在线| 99精品在免费线老司机午夜| 欧美高清成人免费视频www| 欧美日韩精品网址| 国产精品久久久久久久电影 | 性色avwww在线观看| 青草久久国产| 18禁黄网站禁片午夜丰满| 色视频www国产| 国产成人啪精品午夜网站| 久久久久久久久中文| 国产成+人综合+亚洲专区| 精品福利观看| 男人舔奶头视频| 美女免费视频网站| 2021天堂中文幕一二区在线观| 国产精品久久久久久久电影 | 亚洲av一区综合| 中国美女看黄片| 午夜激情欧美在线| 亚洲不卡免费看| 欧美日韩国产亚洲二区| 亚洲精品在线美女| av国产免费在线观看| 亚洲,欧美精品.| 午夜福利免费观看在线| 亚洲最大成人手机在线| 国产美女午夜福利| 老司机午夜十八禁免费视频| xxxwww97欧美| 中出人妻视频一区二区| 成人一区二区视频在线观看| 国内精品一区二区在线观看| 高清日韩中文字幕在线| 久久国产乱子伦精品免费另类| 嫩草影视91久久| 国产爱豆传媒在线观看| 日本与韩国留学比较| 男女做爰动态图高潮gif福利片| 美女cb高潮喷水在线观看| 亚洲国产精品成人综合色| 香蕉丝袜av| 黄色视频,在线免费观看| 国语自产精品视频在线第100页| 啦啦啦韩国在线观看视频| 五月伊人婷婷丁香| 在线观看av片永久免费下载| 黄色日韩在线| 特级一级黄色大片| 亚洲国产日韩欧美精品在线观看 | 欧美在线黄色| 亚洲色图av天堂| 亚洲中文日韩欧美视频| 国产精品电影一区二区三区| 国产精品电影一区二区三区| 老司机在亚洲福利影院| 日韩欧美国产一区二区入口| 少妇丰满av| 午夜福利免费观看在线| 日韩亚洲欧美综合| 亚洲精品456在线播放app | 免费高清视频大片| 亚洲精品色激情综合| 成年女人永久免费观看视频| 乱人视频在线观看| 国产精华一区二区三区| 国内精品久久久久久久电影| 女人被狂操c到高潮| 欧美色欧美亚洲另类二区| www国产在线视频色| 法律面前人人平等表现在哪些方面| 精品久久久久久久久久免费视频| 一本综合久久免费| 伊人久久大香线蕉亚洲五| 国产成年人精品一区二区| 久久久久久久精品吃奶| 97超级碰碰碰精品色视频在线观看| 亚洲欧美日韩高清在线视频| 黄片小视频在线播放| 琪琪午夜伦伦电影理论片6080| 夜夜爽天天搞| 成熟少妇高潮喷水视频| 精品国产超薄肉色丝袜足j| 校园春色视频在线观看| 我的老师免费观看完整版| 有码 亚洲区| 最新在线观看一区二区三区| 亚洲国产高清在线一区二区三| 丰满乱子伦码专区| 一进一出抽搐动态| 国产精品久久久久久久电影 | 亚洲在线自拍视频| 国产真实伦视频高清在线观看 | 欧美日韩乱码在线| 男女那种视频在线观看| 欧美在线黄色| 三级毛片av免费| 日本熟妇午夜| 99热只有精品国产| 亚洲avbb在线观看| 午夜免费成人在线视频| 成年人黄色毛片网站| 免费av观看视频| 热99在线观看视频| 夜夜夜夜夜久久久久| 一级黄色大片毛片| 偷拍熟女少妇极品色| 亚洲天堂国产精品一区在线| 亚洲乱码一区二区免费版| 久久天躁狠狠躁夜夜2o2o| 国产伦精品一区二区三区四那| 成人三级黄色视频| 成人性生交大片免费视频hd| 国产精品99久久99久久久不卡| 国产一区二区亚洲精品在线观看| 精品午夜福利视频在线观看一区| 亚洲国产高清在线一区二区三| 精品久久久久久久毛片微露脸| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品在线美女| 免费搜索国产男女视频| 日韩欧美在线乱码| 亚洲熟妇熟女久久| 色尼玛亚洲综合影院| 伊人久久大香线蕉亚洲五| 亚洲黑人精品在线| 香蕉久久夜色| 国产一区二区激情短视频| 成年女人毛片免费观看观看9| 欧美区成人在线视频| 露出奶头的视频| 精品久久久久久成人av| 嫩草影视91久久| 亚洲成a人片在线一区二区| 一进一出抽搐gif免费好疼| 国产黄a三级三级三级人| 国产成人欧美在线观看| 12—13女人毛片做爰片一| 性色av乱码一区二区三区2| 国产av一区在线观看免费| 又粗又爽又猛毛片免费看| 久久亚洲真实| 老司机深夜福利视频在线观看| 免费高清视频大片| 国产高清videossex| 男人舔奶头视频| 亚洲精品久久国产高清桃花| 手机成人av网站| 九色成人免费人妻av| 精品99又大又爽又粗少妇毛片 | 欧美区成人在线视频| 亚洲av电影在线进入| 中文在线观看免费www的网站| 国产精品影院久久| 真人一进一出gif抽搐免费| 国产探花极品一区二区| a级毛片a级免费在线| 欧美大码av| 日韩欧美精品v在线| 俺也久久电影网| 无限看片的www在线观看| 免费av毛片视频| 久久久国产成人精品二区| 精品国产超薄肉色丝袜足j| 搡老妇女老女人老熟妇| 少妇的逼水好多| 国产蜜桃级精品一区二区三区| 在线看三级毛片| 不卡一级毛片| 国产精品久久视频播放| 又黄又爽又免费观看的视频| 欧美一区二区亚洲| 亚洲中文日韩欧美视频| 变态另类丝袜制服| 黑人欧美特级aaaaaa片| 他把我摸到了高潮在线观看| 亚洲av熟女| 99热精品在线国产| 午夜免费观看网址| 成人18禁在线播放| 搡老岳熟女国产| 欧美日韩福利视频一区二区| 亚洲 欧美 日韩 在线 免费| 嫩草影院入口| 精品午夜福利视频在线观看一区| 真人做人爱边吃奶动态| 内射极品少妇av片p| 国内少妇人妻偷人精品xxx网站| 美女高潮喷水抽搐中文字幕| 99久久无色码亚洲精品果冻| 成人亚洲精品av一区二区| 手机成人av网站| 99久久精品热视频| 欧美xxxx黑人xx丫x性爽| 国产又黄又爽又无遮挡在线| 国产午夜福利久久久久久| 国产国拍精品亚洲av在线观看 | netflix在线观看网站| 国产一区在线观看成人免费| 91久久精品国产一区二区成人 | 亚洲 国产 在线| 亚洲精华国产精华精| 国产伦在线观看视频一区| 麻豆国产97在线/欧美| xxx96com| 熟女少妇亚洲综合色aaa.| 999久久久精品免费观看国产| 国产精品女同一区二区软件 | 久久伊人香网站| 精品久久久久久,| 久99久视频精品免费| 九九在线视频观看精品| 狠狠狠狠99中文字幕| 欧美高清成人免费视频www| 波多野结衣高清作品| 欧美国产日韩亚洲一区| 亚洲国产精品999在线| 美女 人体艺术 gogo| 日本黄色视频三级网站网址| 18美女黄网站色大片免费观看| 伊人久久精品亚洲午夜| 香蕉丝袜av| 国产亚洲精品综合一区在线观看| 亚洲国产欧美人成| 中文字幕久久专区| 岛国视频午夜一区免费看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲片人在线观看| 精品午夜福利视频在线观看一区| 男女午夜视频在线观看| 精品无人区乱码1区二区| av在线蜜桃| 免费观看的影片在线观看| 国产精品98久久久久久宅男小说| 国产精品久久视频播放| 在线观看免费视频日本深夜| 男人的好看免费观看在线视频| 国产毛片a区久久久久| 变态另类丝袜制服| 成人一区二区视频在线观看| 久久久久久国产a免费观看| 观看免费一级毛片| 18禁国产床啪视频网站| 99久久成人亚洲精品观看| 色噜噜av男人的天堂激情| 亚洲一区高清亚洲精品| 搡老岳熟女国产| 亚洲人与动物交配视频| 91字幕亚洲| 麻豆国产av国片精品| 日韩中文字幕欧美一区二区| a在线观看视频网站| 久久国产精品影院| 午夜老司机福利剧场| 757午夜福利合集在线观看| 国内毛片毛片毛片毛片毛片| 欧美高清成人免费视频www| 国产三级黄色录像| 成人精品一区二区免费| 听说在线观看完整版免费高清| 脱女人内裤的视频| 五月玫瑰六月丁香| 国产在线精品亚洲第一网站| 日本精品一区二区三区蜜桃| 精品久久久久久久久久免费视频| 99精品欧美一区二区三区四区| 在线播放国产精品三级| 免费av毛片视频| 国产精品 欧美亚洲| 亚洲精品成人久久久久久| 性欧美人与动物交配| av天堂在线播放| 中文字幕精品亚洲无线码一区| 日韩免费av在线播放| 一级作爱视频免费观看| 精品人妻偷拍中文字幕| 可以在线观看的亚洲视频| 亚洲 国产 在线| 可以在线观看的亚洲视频| 国产高清视频在线播放一区| 99精品久久久久人妻精品| 国产午夜福利久久久久久| 禁无遮挡网站| 免费在线观看影片大全网站| 麻豆国产av国片精品| 99久久久亚洲精品蜜臀av| 日韩亚洲欧美综合| 国内少妇人妻偷人精品xxx网站| 成人av在线播放网站| 色哟哟哟哟哟哟| 真人一进一出gif抽搐免费| 亚洲一区二区三区色噜噜| 欧美乱妇无乱码| 国产一区二区三区视频了| tocl精华| 91久久精品电影网| 国产精品美女特级片免费视频播放器| 97碰自拍视频| 狂野欧美激情性xxxx| 村上凉子中文字幕在线| 老司机福利观看| 搡女人真爽免费视频火全软件 | 无遮挡黄片免费观看| 成年免费大片在线观看| 在线视频色国产色| 精品99又大又爽又粗少妇毛片 | 国产精品久久久久久亚洲av鲁大| 成年免费大片在线观看| 18禁黄网站禁片免费观看直播| 婷婷丁香在线五月| 日韩 欧美 亚洲 中文字幕| 老司机福利观看| 男女做爰动态图高潮gif福利片| 日本三级黄在线观看| 色综合亚洲欧美另类图片| 丰满人妻熟妇乱又伦精品不卡| 免费av毛片视频| 最新美女视频免费是黄的| 久久久久久久久大av| 最新美女视频免费是黄的| 草草在线视频免费看| 精品久久久久久久久久久久久| 宅男免费午夜| 99精品在免费线老司机午夜| 嫩草影院精品99| 日本熟妇午夜| 中亚洲国语对白在线视频| 午夜两性在线视频| 别揉我奶头~嗯~啊~动态视频| 日韩人妻高清精品专区| 亚洲成a人片在线一区二区| 亚洲成人精品中文字幕电影| 五月玫瑰六月丁香| 一区二区三区国产精品乱码| 天天添夜夜摸| 亚洲国产精品合色在线| 亚洲精品久久国产高清桃花| 欧美一区二区精品小视频在线| 午夜激情欧美在线| 亚洲国产精品sss在线观看| 亚洲av不卡在线观看| 男女做爰动态图高潮gif福利片| 中文字幕人妻熟人妻熟丝袜美 | 搞女人的毛片| 亚洲精华国产精华精| 成年女人看的毛片在线观看| 非洲黑人性xxxx精品又粗又长| 美女大奶头视频| 成人18禁在线播放| 亚洲男人的天堂狠狠| 亚洲专区国产一区二区| 叶爱在线成人免费视频播放| 亚洲av成人精品一区久久| 久久精品国产自在天天线| 国产成人aa在线观看| 麻豆成人av在线观看| 深爱激情五月婷婷| 高潮久久久久久久久久久不卡| 丁香欧美五月| 亚洲成人久久爱视频| 在线观看免费视频日本深夜| 国产伦人伦偷精品视频| 波多野结衣巨乳人妻| 亚洲av电影在线进入| 日韩国内少妇激情av| 99久久无色码亚洲精品果冻| 熟女电影av网| 成人性生交大片免费视频hd| 村上凉子中文字幕在线| 欧美中文综合在线视频| 丰满人妻一区二区三区视频av | avwww免费| 最新美女视频免费是黄的| 国产国拍精品亚洲av在线观看 | 长腿黑丝高跟| 免费av观看视频| 性色av乱码一区二区三区2| 欧美日韩精品网址| 国产亚洲精品久久久com| ponron亚洲| 老司机午夜十八禁免费视频| 3wmmmm亚洲av在线观看| 国产aⅴ精品一区二区三区波| 亚洲熟妇中文字幕五十中出| 亚洲成av人片在线播放无| av视频在线观看入口| 亚洲人成网站在线播放欧美日韩| 一级作爱视频免费观看| 亚洲乱码一区二区免费版| 欧美日韩亚洲国产一区二区在线观看| 亚洲,欧美精品.| 麻豆一二三区av精品| 免费观看人在逋| 婷婷精品国产亚洲av| 久久性视频一级片| 成人国产一区最新在线观看| 久久草成人影院| 热99在线观看视频| 一级毛片女人18水好多| 深爱激情五月婷婷| 免费av不卡在线播放| 免费观看的影片在线观看| 97碰自拍视频| 欧美极品一区二区三区四区| 美女黄网站色视频| 国产激情偷乱视频一区二区| 免费观看人在逋| 免费av不卡在线播放| 久9热在线精品视频| 婷婷精品国产亚洲av在线| 亚洲精品456在线播放app | 少妇人妻一区二区三区视频| 国产精品久久电影中文字幕| 亚洲精品国产精品久久久不卡| 少妇熟女aⅴ在线视频| 久久午夜亚洲精品久久| 亚洲国产精品sss在线观看| 国产色爽女视频免费观看| 99国产综合亚洲精品| 久久国产精品影院| 免费在线观看亚洲国产| 国产精品一及| 亚洲无线观看免费| 免费观看的影片在线观看| 村上凉子中文字幕在线| 两个人看的免费小视频| 极品教师在线免费播放| 亚洲人成网站在线播放欧美日韩| 在线看三级毛片| 欧美午夜高清在线| 中文资源天堂在线| 日本一二三区视频观看| 99国产极品粉嫩在线观看| 级片在线观看| 国产精品自产拍在线观看55亚洲| 欧美最新免费一区二区三区 | 欧美另类亚洲清纯唯美| 国产av不卡久久| 日韩精品中文字幕看吧| 熟女人妻精品中文字幕| 色噜噜av男人的天堂激情| 窝窝影院91人妻| 亚洲七黄色美女视频| 两个人的视频大全免费| 婷婷丁香在线五月| 床上黄色一级片| 亚洲av五月六月丁香网| 美女 人体艺术 gogo| 国产精品久久久久久精品电影| netflix在线观看网站| 久久久久九九精品影院| av中文乱码字幕在线| 九色国产91popny在线| 午夜亚洲福利在线播放| 999久久久精品免费观看国产| 国产v大片淫在线免费观看| АⅤ资源中文在线天堂| h日本视频在线播放| 很黄的视频免费| 国产私拍福利视频在线观看| 成人永久免费在线观看视频| 真人一进一出gif抽搐免费| 一级a爱片免费观看的视频| 成人一区二区视频在线观看| 欧美黑人巨大hd| 亚洲精品在线观看二区| 日本一本二区三区精品| 亚洲av熟女| 嫩草影视91久久| 欧美大码av| 一夜夜www| 久久久久久九九精品二区国产| 亚洲国产精品久久男人天堂| 乱人视频在线观看| 欧美日韩黄片免| 亚洲av不卡在线观看| 色综合站精品国产| 久久香蕉精品热| www国产在线视频色| 九色成人免费人妻av| 免费av不卡在线播放| 色视频www国产| 国产精品一及| 麻豆一二三区av精品| 狠狠狠狠99中文字幕| 女同久久另类99精品国产91| 麻豆国产av国片精品| 精品人妻偷拍中文字幕| 成年免费大片在线观看| 91av网一区二区| 日韩欧美国产在线观看| 国产国拍精品亚洲av在线观看 | 精品国产超薄肉色丝袜足j| 高清毛片免费观看视频网站| 精品国产亚洲在线| 性色avwww在线观看| 悠悠久久av| 亚洲国产欧洲综合997久久,| 日韩欧美国产在线观看| www.999成人在线观看| 尤物成人国产欧美一区二区三区| 亚洲av美国av| 国产在视频线在精品| 日韩欧美三级三区| 精品久久久久久久久久久久久| 国产伦精品一区二区三区视频9 | 亚洲七黄色美女视频| 亚洲精品乱码久久久v下载方式 | 最近视频中文字幕2019在线8| 国产高清videossex| 国产精品免费一区二区三区在线| 亚洲不卡免费看| 1000部很黄的大片| 最近在线观看免费完整版|