• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    中心金屬離子改變誘導MOFs結(jié)構(gòu)和光催化性能的改變

    2018-03-14 06:36:01李慧軍何亞玲李晴晴徐周慶
    無機化學學報 2018年3期
    關(guān)鍵詞:徐睿化工學院光催化

    李慧軍 何亞玲 張 寧 李晴晴 徐周慶 王 元

    (河南理工大學化學化工學院,焦作 454000)

    0 Introduction

    Recently,the rational design and construction of microporous metal-organic frameworks (MOFs)have obtained extensiveattention on accountoftheir fascinating topologies and potential applications in optical,gas storage and separation,biomimetic materials,catalysis and so on[1-4].In particular,the assembly of MOFs showing topological complexity,aesthetic beauty,and structural integrity,especially of those with undiscovered intriguing topologies has been appealing to more and more chemists[5-8].The controllable syntheses of MOFs are still difficult in the most of metal-organic ligands systems due to the fact that the assembly processes are complicated and influenced by many inner and outer factors[9-11].Generally,the resulting framework of the MOFs depends on the structural characteristics of organic ligands,the coordination modes of metal center ions,experiment condition and the reaction pathways and so on[12-16].In many case,metal ions can regulated the structure dramatically,which give rise to some ion-directed coordination systems.The selection of metal centers can tune the structure through their various coordination geometries[17-20].

    In additional,dyes removal from contaminated waterattracts the interests ofthe majority of researchers[21-24].However,quickly removing the dyes from waste-water is still a challenge.Compared with absorption method,photocatalysis is one of the most effective chemical methods to alleviate the environment issue by converting inexhaustible solar energy into clean chemical substances[25-27].Thus,the design strategy and improvement approaches for MOF-based photocatalytic activities are commendable[29-30].It has reported that the feasible strategy of photocatalytic process is to facilitate the generation of free radical as electron acceptors to the photocatalytic reaction[31-32].In this regard,unsaturated metal sites which could reduce charge carrier recombination probability may accelerate the generation of free radical and further degrade dye quickly.In the current study,a functional ligand with multiple coordination modes has been used as organic ligand to constructed two novel MOFs.Interestingly,theirstructuraldiversity is largely dependent on the changes of metal ions.And the two MOFs both exhibit good photocatalytic efficiency.

    Scheme 1 Structure of the ligand

    1 Experimental

    1.1 Materials and measurements

    Allchemicalswere commercially purchased.Elemental analyses for carbon,hydrogen and nitrogen were performed on a Thermo Science Flash 2000 element analyzer.FT-IR spectra were obtained in KBr disks on a PerkinElmer Spectrum One FTIR spectrophotometer in 4 000~450 cm-1spectral range.The powderX-ray diffraction (PXRD)studies were performed with a Bruker AXS D8 Discover instrument(Cu Kα radiation,λ=0.154 184 nm,U=40 kV,I=40 mA)over the 2θ range of 5°~60°at room temperature.Thermogravimetric analysis (TGA)was recorded on a Netzsch STA 449C thermal analyzer between 30 and 800℃and a heating rate of 10℃·min-1in atmosphere.Cyclic voltammetry (CV)measurements were performed on a CHI760D electrochemical workstation(Chenhua Instrument Company,ShangHai,China).

    1.2 Preparations of the complexes

    Synthesis of[Cu (PPCA)(H2O)]·H2O (HPU-7):a mixture of H2PPCA (0.05 mmol,10.15 mg),CuCl2·2H2O (0.10 mmol,17.048 mg),absolute ethanol(2 mL)and H2O (8 mL)was placed in a Teflon-lined stainless steel vessel(25 mL),heated to 160 ℃ for 3 days,and then cooled to room temperature at a rate of 5℃·h-1.Purple block crystals of HPU-7 were obtained and picked out,washed with distilled water and dried in air.Elemental analysis Calcd.for C8H8CuN4O4(%):C 33.40,H 2.80,N 19.47.Found(%):C 33.27,H 2.87,N 20.18.IR (KBr,cm-1):3 449s,1 611s,1 420m,1 279 m,1 146m,1 054m,972w,888m,797m.

    Synthesis of{[Co(PPCA)(H2O)]·H2O}n(HPU-8):a mixture of H2PPCA (0.05 mmol,11.2 mg),Co(NO3)2·6H2O (0.10 mmol,29.1 mg),CH3CN (2 mL)and H2O(8 mL)was placed in a Teflon-lined stainless steelvessel (25 mL),heated to 160 ℃ for 3 days,and then cooled to room temperature at a rate of 5 ℃·h-1.Brown block crystals of HPU-8 were obtained and picked out,washed with distilled water and dried in air.Elemental analysis Calcd.for C8H8CoN4O4(%):C 33.94,H 2.85,N 19.79.Found(%):C 33.69,H 2.47,N 20.08.IR (KBr,cm-1):3 446s,1 611s,1 428m,1 370 w,1 295m,1 154m,1 038m,780m.

    1.3 X-ray crystallography

    X-ray Single-crystal diffraction analysis of HPU-7 and HPU-8 was carried out on a Bruker SMART APEXⅡCCD diffractometer equipped with a graphite monochromated Mo Kα radiation (λ=0.071 073 nm)by using φ-ω scan technique at room temperature.The structures were solved via direct methods and successive Fourier difference synthesis(SHELXS-2014),and refined by the full-matrix least-squares method on F2with anisotropic thermal parameters for all non-H atoms (SHELXL-2014)[33].The empirical absorption corrections were applied by the SADABS program[34].The H-atoms of carbon were assigned with common isotropic displacement factors and included in the final refinement by the use of geometrical restraints.H-atoms of water molecules were first located by the Fourier maps,then refined by the riding mode.The crystallographic data for HPU-7 and HPU-8 are listed in Table 1.Moreover,the selected bond lengths and bond angles are listed in Table 2.

    CCDC:1575337,HPU-7;1575338,HPU-8.

    Table 1 Crystal data and structure refinement parameters for HPU-7 and HPU-8

    Table 2 Selected bond lengths(nm)and angles(°)for HPU-7 and HPU-8

    Continued Table 2

    1.4 Photocatalytic degradation of methylene blue(MB)

    The procedure was as follows:30 mg of the dissolved HPU-7 or HPU-8 was dispersed into 100 mL of MB aqueous solution (12.75 mg·L-1),followed by the addition of four drops of hydrogen peroxide solution (H2O2,30%).The suspensions were magnetically stirred in the dark for over 1 h to ensure adsorption equilibrium of MB onto the surface of samples.And a 2.6 nm xenon arc lamp was used as a light source.An optical filter in the equipment of xenon arc lamp was used to filtering out the UV emission below 400 nm.Visible light then irradiated the above solutions for every 10 min until 110 min,and the corresponding reaction solutions were filtered and the absorbance ofMB aqueous solutions was then measured by a spectrophotometer.For comparison,the contrast experiment was completed under the same conditions without any catalysts.The characteristic peak (λ=660 nm)for MB was employed to monitor the photocatalytic degradation process.

    2 Results and discussion

    2.1 Crystal structures of complexes HPU-7 and HPU-8

    Single-crystal X-ray measurement reveals that HPU-7 crystallizes in the monoclinic space group P21/c.Its asymmetric unit consists of one Cu(Ⅱ),one PPCA2-ligands and two water molecules.As shown in Fig.1a,the Cu1 ion is five-coordinated by three N atoms from two ligands,two oxygen atoms from the carboxylic group of the ligand and water molecule creating the distorted tetragonal pyramid geometry.The carboxylate group of the PPCA2-ligand adopts μ1-∶η1∶η1coordination mode.The ligand ligates with two Cu(Ⅱ) ions using its two nitrogen atoms (N1 and N2)and one oxygen atom (O1)forming a two nuclear[Cu2(PPCA)2(H2O)2]unit.In the binuclear unit,the distance of adjacent Cu atoms is 0.395 31 nm.And then the adjacent nuclear units are linked through hydrogen bonds (O3-H3…N4 and O1W-H1B…O1)(Fig.1b)resulting in a two-dimensional supramolecular architecture in Fig.1c.

    Single-crystal X-ray measurement reveals that HPU-8 crystallizes in the monoclinic space group P21/c.Its asymmetry unit includes one Co(Ⅱ),one H2PPCA ligand and two water molecules.As shown in Fig.2a,Co(Ⅱ)ion in a distorted octahedral environment is completed by four nitrogen atoms from three ligands,two oxygen atoms from a water molecule and thecarboxylicgroup ofoneligand.Theligand coordinates to three Co(Ⅱ)ions with its four nitrogen atoms and one oxygen atom (O1).Adjacent Co(Ⅱ) ions are connected by-N-N-bridges giving rise to binuclear units with the distances between Co…Co of 0.409 21 nm.It is different from the structure of HPU-7 that the N atom of pyrazine also participates in the coordination.Therefore,the binuclear units are connected together forming a two-dimensional network structure,as shown in Fig.2b.Besides,there is guest water molecules embedded in adjacent layers,which generates hydrogen bonds with other O atoms.Furthermore,the adjacentlayersareconnected togetherby these hydrogen bondsresulting in a three-dimensional supramolecular architecture in Fig.2d.

    Fig.1 (a)Coordination environment of Cu(Ⅱ) ion in HPU-7 with hydrogen atoms omitted for clarity;(b)Hydrogen bonds in HPU-7;(c)2D supramolecular architecture connected by hydrogen bonds in HPU-7

    Fig.2 (a)Coordination environment of Co(Ⅱ) ion in HPU-8;(b)2D layer of HPU-8;(c)3D architecture connected by hydrogen bonds

    2.2 PXRD patterns and thermal stability analysis

    To confirm the phase purity of the two complexes,the PXRD patterns were recorded for HPU-7 and HPU-8,and they were comparable to the corresponding simulated ones calculated from the single crystal diffraction data (Fig.3),indicating a pure phase of each bulky sample.

    Fig.3 Powder XRD patterns for HPU-7 and HPU-8

    Fig.4 TG curves of the complexes HPU-7 and HPU-8

    As shown in Fig.4,HPU-7 show the first weight loss of 12.67%corresponding to the release of both guest and coordinated two water molecules(Calcd.12.51%).Then,the framework is stable up to about 414℃.For HPU-8,the gradual weight change before 90℃is attributed to the removal of both guest and coordinated two water molecules (12.89%,Calcd.12.71%).Then,the major weight loss occurs in next step above 407℃,which may be ascribed to the decomposition of the coordination framework.

    2.3 Physical characterizations

    Fig.5 CV curves of HPU-7 and HPU-8 in 0.1 mol·L-1KOH solution

    Fig.6 Mott-Schottky plots of HPU-7 and HPU-8 in 0.1 mol·L-1KOH aqueous solution

    To study the electrochemical synthesis of HPU-7 and HPU-8,cyclic voltammetry is performed using standard electrochemical equipment within the scan rate of 20 mV·s-1and potential range of-1 to 0.36 V.The CV curves show that HPU-7 and HPU-8 have good conductivities (Fig.5).Besides,Mott-Schottky measurements were also conducted for better understanding the intrinsic electronic properties of the two complexes.As shown in Fig.6,the slope of C-2values versus potential are observed indicating that both the two complexes show n-type semiconductors.Theflat-bandspotentialofHPU-7 and HPU-8 determined from Mott-Schottky plots are-0.94 and-0.89 V,respectively,versus Hg/Hg2Cl2electrode at pH 13.0.So the redox potential of the conduction bands of HPU-7 and HPU-8 are-0.70 and-0.65 V versus normal hydrogen electrode (NHE).

    2.4 Photocatalytic experiments

    Fig.7 UV-Vis absorption of MB at different time intervals under high-pressure Hg lamp irradiation without(a)or with complexes HPU-7 (b)and HPU-8(c)as catalysts,respectively;(d)Plots of Ct/C0vs time for MB degradation without or with complexes HPU-7 and HPU-8

    Photocatalysts have attracted much attention due to their potential applications in purifying water and air by thoroughly decomposing organic compounds.To evaluate the photocatalytic performance ofthese complexes,the photocatalytic degradation ofMB aqueous solution was performed at ambient temperature.And the concentrations of MB versus reaction time of no complex and HPU-7 and HPU-8 are drawn in Fig.7.

    As shown in the Fig.7,with the gradient changes of reaction time,both of the absorbency of the solution is gradually reduced at 660 nm.The degradation rate is defined as (1-Ct/C0)×100%,where Ctand C0represent the remnant and initial concentration of MB respectively.Without addition of these complexes,the MB degradation rate was only 59.14%.After addition of HPU-7 and HPU-8,the MB degradation rates were 90.61%and 85.34%for HPU-7 and HPU-8,respectively.Therefore it was found that HPU-7 has better photocatalytic degradation efficiency.

    These results suggest that HPU-7 may be better candidate for photocatalytic degradation of MB.As mentioned in literature[35-36],the photocatalytic mechanism is clarified as below:the electrons of the complex could be excited from the valence band (VB)to the conduction band (CB).Then,the equal amount of positive vacancies is left in VB (h+).Besides,O2or hydroxyl (OH-)absorbed on the surfaces of the photocatalysts could interact with the electrons (e-)on the CB or the hole (h+)on the VB,respectively,which give rise to hydroxyl radicals (OH).As is known,the OH radical is the important factor for cleaving MB effectively in the above photocatalytic process.So the releasedifficultyofOH radicalsdeterminesthe catalytic effects.OH radicals are generated by oxygenating H2O2,which are deactivated by photocatalyst generating LMCT.Therefore,the structures of photocatalyst are the crucial issues for the faster generation speed of OH radicals.By comparison,HPU-7 owns more unsaturated metal sites which could reduce charge carrier recombination probability and generate OH radicals more easily.So HPU-7 shows better photocatalytic degradation efficiency.

    3 Conclusions

    In summary,twonew MOFsbased on a multifunctional ligand were successfully synthesized,which display diverse structures from 0D to 2D frameworks.The pyrazinyl functional groups could adjust coordination numbers ligating to different metal ions,which contribute to the formation of different structural MOFs.In addition,their electrochemical properties are also studied.The result shows that they have good conductivities.So they both show good photocatalytic efficiencies for the decomposition of MB.Besides,HPU-7 with unsaturated metal sites could reduce charge carrier recombination probability and exhibit better photocatalytic efficiency.Further research is underway to synthesize other materials with better application in decomposing other dyestuff.

    [1]Yang H,Wei Y L,Dong X Y,et al.Chem.Mater.,2015,27:1327-1331

    [2]Wei Y S,Hu X P,Han Z,et al.J.Am.Chem.Soc.,2017,139:3505-3512

    [3]WANG Qiang(王強),XU Rui(徐睿),WANG Xu-Sheng(王旭生),et al.Chinese J.Inorg.Chem.(無機化學學報),2017,33(11):2038-2044

    [4]JI Qing-Yan(季卿妍),WANG Qian(王倩),LI Hong-Xin(李洪昕),et al.Chinese J.Inorg.Chem.(無機化學學報),2017,33(11):2031-2037

    [5]Gao M L,Cao X M,Zhang Y Y,et al.RSC Adv.,2017,7:45029-45033

    [6]Li Z X,Liu X F,Ling Y,et al.Inorg.Chem.Commun.,2017,84:59-62

    [7]Murinzi T W,Hosten E,Watkins G M.Polyhedron,2017,137:188-196

    [8]Li S B,Zhang L,Wang J X,et al.Inorg.Chem.Commun.,2017,82:57-60

    [9]Li H J,Wang Y,Cai H X,et al.RSC Adv.,2015,5:89833-89838

    [10]Meng W,Xu S,Dai L,et al.Electrochim.Acta,2017,230:324-332

    [11]Guo X H,Li Y S,Peng Q Y,et al.Polyhedron,2017,133:238-244

    [12]Li T T,Liu Y M,Wang T,et al.Inorg.Chem.Commun.,2017,84:5-9

    [13]Cai S L,Huang Y,Gao Y,et al.Inorg.Chem.Commun.,2017,84:10-14

    [14]Wu Z F,Guo L K,Huang X Y,et al.Inorg.Chem.,2017,56:7397-7403

    [15]Park J,Oh M.Nanoscale,2017,9:12850-12854

    [16]Rajak R,Saraf M,Mohammad A,et al.J.Mater.Chem.A,2017,5:17998-18011

    [17]Hou J Y,Luan Y,Huang X B,et al.New J.Chem.,2017,41:9123-9129

    [18]Zhao H M,Xia Q S,Xing H Z,et al.ACS Sustainable Chem.Eng.,2017,5:4449-4456

    [19]Tan Y X,Zhang Y,He Y P,et al.Inorg.Chem.,2014,53:12973-12976

    [20]Dey A,Konavarapu S K,Sasmal H S,et al.Cryst.Growth Des.,2016,16:5976-5984

    [21]Meng X M,Zhang X Y,Wang X P,et al.Polyhedron,2017,137:81-88

    [22]Liu C B,Sun H Y,Li X Y,et al.Inorg.Chem.Commun.,2014,47:80-83

    [23]Liu D M,Xie Z G,Ma L Q,et al.Inorg.Chem.,2010,49:9107-9109

    [24]Ahmed A,Forster M,Jin J S,et al.ACS Appl.Mater.Interfaces,2015,7:18054-18063

    [25]Peng Y G,Huang H L,Liu D H,et al.ACS Appl.Mater.Interfaces,2016,8:8527-8535

    [26]Fan L Y,Yu K,Lv J H,et al.Dalton Trans.,2017,46:10355-10363

    [27]Bibi R,Wei L F,Shen Q H,et al.J.Chem.Eng.Data,2017,62:1615-1622

    [28]Li Q,Xue D X,Zhang Y F,et al.J.Mater.Chem.A,2017,5:14182-14189

    [29]Xia Q S,Yu X D,Zhao H M,et al.Cryst.Growth Des.,2017,17:4189-4195

    [30]He Y,Xu T,Hu J,et al.RSC Adv.,2017,7:30500-30505

    [31]Wang X L,Sun J J,Lin H Y,et al.CrystEngComm,2017,19:3167-3177

    [32]Li L J,Yang L K,Chen Z K,et al.Inorg.Chem.Commun.,2014,50:62-64

    [33]Sheldrick G M.Acta Crystallogr.Sect.C:Cryst.Struct.Commun.,2015,C71:3-8

    [34]Sheldrick G M.SADABS,University of G?ttingen,Germany,1996.

    [35]Li H J,He Y L,Zhao W L,et al.Polyhedron,2017,133:412-418

    [36]Wang X L,Luan J,Sui F F,et al.Cryst.Growth Des.,2013,13:3561-3576

    猜你喜歡
    徐睿化工學院光催化
    使固態(tài)化學反應100%完成的方法
    國家開放大學石油和化工學院學習中心列表
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    第一次辦生日派對
    單分散TiO2/SrTiO3亞微米球的制備及其光催化性能
    陶瓷學報(2019年5期)2019-01-12 09:17:34
    臭美鬼(2)
    臭美鬼
    BiOBr1-xIx的制備及光催化降解孔雀石綠
    《化工學報》贊助單位
    化工學報(2016年3期)2016-03-14 08:37:00
    可見光光催化降解在有機污染防治中的應用
    又粗又硬又长又爽又黄的视频| 七月丁香在线播放| videos熟女内射| 免费观看性生交大片5| 两性夫妻黄色片| 欧美激情 高清一区二区三区| 国产xxxxx性猛交| 麻豆精品久久久久久蜜桃| 嫩草影院入口| 欧美人与性动交α欧美精品济南到| 丝袜美腿诱惑在线| 国产不卡av网站在线观看| 国产精品久久久av美女十八| 亚洲国产精品国产精品| 晚上一个人看的免费电影| 亚洲欧美激情在线| 最近2019中文字幕mv第一页| 热re99久久国产66热| 国产亚洲最大av| 视频区图区小说| 免费在线观看黄色视频的| 欧美日韩视频精品一区| 久久性视频一级片| 精品福利永久在线观看| 中文字幕另类日韩欧美亚洲嫩草| 成年人免费黄色播放视频| 久久精品国产亚洲av涩爱| 亚洲,欧美,日韩| 久久亚洲国产成人精品v| 久热这里只有精品99| 一个人免费看片子| 九九爱精品视频在线观看| 亚洲欧美激情在线| 建设人人有责人人尽责人人享有的| av女优亚洲男人天堂| 最近手机中文字幕大全| 啦啦啦中文免费视频观看日本| 人人澡人人妻人| 日本av手机在线免费观看| 制服人妻中文乱码| 亚洲精品久久午夜乱码| 久久综合国产亚洲精品| 成年女人毛片免费观看观看9 | avwww免费| 伊人久久大香线蕉亚洲五| 老司机影院成人| 高清欧美精品videossex| 91精品伊人久久大香线蕉| 最近中文字幕高清免费大全6| 精品少妇久久久久久888优播| 久久久久久久久免费视频了| 天堂8中文在线网| 天美传媒精品一区二区| 青春草亚洲视频在线观看| 亚洲欧洲精品一区二区精品久久久 | av线在线观看网站| 国产精品久久久久久久久免| 另类精品久久| 中文字幕制服av| 自线自在国产av| 伊人久久国产一区二区| 久久久久久久大尺度免费视频| 美女扒开内裤让男人捅视频| 日韩一本色道免费dvd| 亚洲av国产av综合av卡| 亚洲一区二区三区欧美精品| 亚洲av日韩在线播放| 捣出白浆h1v1| 在线精品无人区一区二区三| 99re6热这里在线精品视频| 十八禁网站网址无遮挡| 精品少妇黑人巨大在线播放| 看十八女毛片水多多多| 国产在线免费精品| 人体艺术视频欧美日本| 国产有黄有色有爽视频| 精品国产乱码久久久久久男人| 满18在线观看网站| 日韩一本色道免费dvd| 国产精品国产三级专区第一集| 成人黄色视频免费在线看| 欧美日韩视频精品一区| 成人国产麻豆网| 亚洲伊人久久精品综合| 欧美中文综合在线视频| 日本爱情动作片www.在线观看| 久久久久人妻精品一区果冻| 久久ye,这里只有精品| 国产精品女同一区二区软件| 观看美女的网站| 久久 成人 亚洲| 中文字幕av电影在线播放| 美国免费a级毛片| 美女国产高潮福利片在线看| 国产精品国产三级国产专区5o| 麻豆精品久久久久久蜜桃| 亚洲熟女毛片儿| 亚洲av综合色区一区| 国产欧美日韩一区二区三区在线| 亚洲精品日本国产第一区| 亚洲欧美一区二区三区国产| 性色av一级| 狠狠精品人妻久久久久久综合| 亚洲av在线观看美女高潮| 男人添女人高潮全过程视频| 久久天堂一区二区三区四区| 精品视频人人做人人爽| 成年动漫av网址| 18禁动态无遮挡网站| 亚洲四区av| 黄色视频在线播放观看不卡| 亚洲熟女毛片儿| 亚洲图色成人| 午夜影院在线不卡| 精品视频人人做人人爽| 欧美黑人欧美精品刺激| 日本黄色日本黄色录像| 精品国产乱码久久久久久男人| 亚洲av欧美aⅴ国产| 国产精品 国内视频| 国产精品偷伦视频观看了| 国产精品无大码| e午夜精品久久久久久久| 激情五月婷婷亚洲| 观看美女的网站| 亚洲情色 制服丝袜| 国产精品人妻久久久影院| 亚洲熟女精品中文字幕| 男女免费视频国产| 国产午夜精品一二区理论片| 久久鲁丝午夜福利片| 亚洲av国产av综合av卡| 国产欧美日韩综合在线一区二区| 日本wwww免费看| 777米奇影视久久| 青春草亚洲视频在线观看| 老司机深夜福利视频在线观看 | 人妻一区二区av| 中文字幕人妻丝袜一区二区 | 我的亚洲天堂| 一区二区三区四区激情视频| netflix在线观看网站| 日韩免费高清中文字幕av| 午夜激情av网站| 晚上一个人看的免费电影| 精品国产一区二区三区四区第35| 国产精品久久久人人做人人爽| a级片在线免费高清观看视频| 亚洲久久久国产精品| 天天添夜夜摸| 国产精品久久久久久人妻精品电影 | 十八禁高潮呻吟视频| 国产淫语在线视频| 亚洲精品美女久久久久99蜜臀 | 天天添夜夜摸| 国产精品久久久久久人妻精品电影 | 欧美人与善性xxx| 亚洲中文av在线| 一级片免费观看大全| 成人手机av| 亚洲美女视频黄频| 一级片'在线观看视频| 最近中文字幕高清免费大全6| 美女国产高潮福利片在线看| 久久久久久久大尺度免费视频| 国产成人午夜福利电影在线观看| 夫妻性生交免费视频一级片| 一区二区三区精品91| 色婷婷av一区二区三区视频| 久久人人爽av亚洲精品天堂| 欧美 亚洲 国产 日韩一| 亚洲精品国产区一区二| 97在线人人人人妻| 午夜免费观看性视频| 久久久国产精品麻豆| 亚洲精品视频女| bbb黄色大片| 日韩成人av中文字幕在线观看| 老司机深夜福利视频在线观看 | 亚洲熟女精品中文字幕| 亚洲av男天堂| 久久人人爽av亚洲精品天堂| 中文乱码字字幕精品一区二区三区| 悠悠久久av| h视频一区二区三区| 九草在线视频观看| 亚洲激情五月婷婷啪啪| 少妇人妻 视频| 日本猛色少妇xxxxx猛交久久| 久久99热这里只频精品6学生| 狂野欧美激情性bbbbbb| 免费黄频网站在线观看国产| 欧美在线黄色| 黄色一级大片看看| 日韩av不卡免费在线播放| 女人精品久久久久毛片| 中文字幕av电影在线播放| 国产欧美日韩一区二区三区在线| 午夜免费男女啪啪视频观看| 亚洲第一区二区三区不卡| 在线观看免费午夜福利视频| 黑人欧美特级aaaaaa片| a级毛片黄视频| 国产乱人偷精品视频| 久久久欧美国产精品| 国产免费福利视频在线观看| 亚洲欧洲国产日韩| 国产国语露脸激情在线看| 欧美国产精品一级二级三级| 免费在线观看视频国产中文字幕亚洲 | 午夜福利,免费看| 肉色欧美久久久久久久蜜桃| 在线观看免费午夜福利视频| 在线观看国产h片| 在线 av 中文字幕| 自线自在国产av| 亚洲成av片中文字幕在线观看| 日韩大码丰满熟妇| 欧美日韩亚洲国产一区二区在线观看 | 精品卡一卡二卡四卡免费| 曰老女人黄片| 亚洲国产毛片av蜜桃av| 成年人免费黄色播放视频| 国产精品偷伦视频观看了| 亚洲欧洲精品一区二区精品久久久 | 老司机亚洲免费影院| 精品亚洲乱码少妇综合久久| 男女床上黄色一级片免费看| av网站免费在线观看视频| 性少妇av在线| 卡戴珊不雅视频在线播放| 国产在视频线精品| 国产精品久久久久久久久免| 两个人免费观看高清视频| 国产有黄有色有爽视频| 精品国产一区二区久久| 一区二区三区精品91| 可以免费在线观看a视频的电影网站 | 精品第一国产精品| 亚洲欧美清纯卡通| 亚洲美女搞黄在线观看| 熟女av电影| 美女大奶头黄色视频| av片东京热男人的天堂| 久久久久久久精品精品| 国产精品国产三级国产专区5o| 亚洲精品久久成人aⅴ小说| 国产精品av久久久久免费| 黄片无遮挡物在线观看| 亚洲精品国产色婷婷电影| 秋霞在线观看毛片| 国产不卡av网站在线观看| 国产精品av久久久久免费| 国产精品一国产av| 久久午夜综合久久蜜桃| 国产精品熟女久久久久浪| 999久久久国产精品视频| 国产欧美亚洲国产| 亚洲av国产av综合av卡| 欧美中文综合在线视频| 我要看黄色一级片免费的| 日韩视频在线欧美| 免费观看av网站的网址| 亚洲av成人精品一二三区| 免费观看性生交大片5| 国产成人欧美| 久久久久精品人妻al黑| 日韩人妻精品一区2区三区| 国产极品天堂在线| 午夜福利,免费看| 天堂俺去俺来也www色官网| 人人妻人人爽人人添夜夜欢视频| svipshipincom国产片| 人成视频在线观看免费观看| 狠狠婷婷综合久久久久久88av| 99香蕉大伊视频| 久久青草综合色| 妹子高潮喷水视频| 久久久欧美国产精品| 亚洲激情五月婷婷啪啪| 一边亲一边摸免费视频| 国产精品99久久99久久久不卡 | 国产极品天堂在线| 中文字幕最新亚洲高清| 少妇人妻精品综合一区二区| 久久婷婷青草| 久久天躁狠狠躁夜夜2o2o | 日本爱情动作片www.在线观看| 国产无遮挡羞羞视频在线观看| 熟女av电影| 日本av免费视频播放| 日本爱情动作片www.在线观看| 999久久久国产精品视频| 五月开心婷婷网| 99香蕉大伊视频| 91精品伊人久久大香线蕉| 久久人人97超碰香蕉20202| 黄色一级大片看看| 精品久久久久久电影网| 午夜日韩欧美国产| 精品亚洲乱码少妇综合久久| 99精国产麻豆久久婷婷| xxx大片免费视频| 中文乱码字字幕精品一区二区三区| 日日啪夜夜爽| 欧美黄色片欧美黄色片| 免费人妻精品一区二区三区视频| 两个人看的免费小视频| 亚洲欧美中文字幕日韩二区| 伊人久久国产一区二区| 亚洲,欧美,日韩| 国产精品 国内视频| 久久ye,这里只有精品| 在线免费观看不下载黄p国产| 国产伦理片在线播放av一区| 哪个播放器可以免费观看大片| 一二三四中文在线观看免费高清| 纯流量卡能插随身wifi吗| 女人久久www免费人成看片| 精品国产一区二区久久| 夜夜骑夜夜射夜夜干| 一个人免费看片子| 亚洲精品久久成人aⅴ小说| 你懂的网址亚洲精品在线观看| 欧美精品人与动牲交sv欧美| 免费不卡黄色视频| 午夜福利视频精品| 亚洲成人免费av在线播放| 国产有黄有色有爽视频| 午夜久久久在线观看| 建设人人有责人人尽责人人享有的| 国产精品二区激情视频| av福利片在线| 99久久综合免费| 国产亚洲精品第一综合不卡| 国产福利在线免费观看视频| 丰满迷人的少妇在线观看| 免费黄网站久久成人精品| 色综合欧美亚洲国产小说| 毛片一级片免费看久久久久| 日本欧美视频一区| 老鸭窝网址在线观看| 我的亚洲天堂| 精品亚洲成a人片在线观看| 你懂的网址亚洲精品在线观看| 免费av中文字幕在线| 黄色 视频免费看| 国产av精品麻豆| 免费久久久久久久精品成人欧美视频| 99热全是精品| 亚洲国产日韩一区二区| 中国三级夫妇交换| 久久久久网色| 亚洲欧美成人精品一区二区| 久久久久久久久久久久大奶| 久久综合国产亚洲精品| 中文字幕制服av| 国产免费福利视频在线观看| 午夜激情久久久久久久| 成年人午夜在线观看视频| 亚洲精品一二三| 亚洲一卡2卡3卡4卡5卡精品中文| 啦啦啦在线免费观看视频4| 十八禁高潮呻吟视频| 亚洲av欧美aⅴ国产| 色视频在线一区二区三区| 熟妇人妻不卡中文字幕| 老司机影院毛片| 午夜激情久久久久久久| 国产精品一二三区在线看| 深夜精品福利| 99精品久久久久人妻精品| netflix在线观看网站| 九九爱精品视频在线观看| 精品福利永久在线观看| 色视频在线一区二区三区| 精品亚洲成a人片在线观看| 日韩大码丰满熟妇| av国产久精品久网站免费入址| 亚洲国产精品国产精品| 99精国产麻豆久久婷婷| 午夜激情久久久久久久| 97精品久久久久久久久久精品| 亚洲久久久国产精品| 日本wwww免费看| 天天躁日日躁夜夜躁夜夜| 国产精品久久久人人做人人爽| 最黄视频免费看| 国产精品久久久久成人av| 久久av网站| 免费不卡黄色视频| 黄网站色视频无遮挡免费观看| 19禁男女啪啪无遮挡网站| 18禁裸乳无遮挡动漫免费视频| 少妇人妻精品综合一区二区| 成年人免费黄色播放视频| 可以免费在线观看a视频的电影网站 | 中文乱码字字幕精品一区二区三区| av视频免费观看在线观看| 精品国产一区二区久久| 女性被躁到高潮视频| 黄色视频不卡| 精品午夜福利在线看| 欧美亚洲日本最大视频资源| 亚洲第一区二区三区不卡| 国产人伦9x9x在线观看| 纯流量卡能插随身wifi吗| 欧美精品一区二区大全| 观看美女的网站| 亚洲欧美色中文字幕在线| 一级,二级,三级黄色视频| 日日摸夜夜添夜夜爱| 国产免费又黄又爽又色| 婷婷色综合大香蕉| 超碰成人久久| 国产精品二区激情视频| av又黄又爽大尺度在线免费看| 亚洲精品在线美女| 精品免费久久久久久久清纯 | 国产成人精品久久久久久| 亚洲精品久久午夜乱码| 美女中出高潮动态图| 亚洲人成电影观看| 在线观看免费高清a一片| 亚洲国产毛片av蜜桃av| 国产一区二区三区av在线| www.熟女人妻精品国产| 飞空精品影院首页| 肉色欧美久久久久久久蜜桃| 久久综合国产亚洲精品| 国产免费又黄又爽又色| 麻豆av在线久日| 精品国产一区二区久久| 五月天丁香电影| 啦啦啦 在线观看视频| 最近最新中文字幕免费大全7| 国产精品熟女久久久久浪| 欧美精品高潮呻吟av久久| 一区在线观看完整版| 老司机影院成人| 黄色一级大片看看| 人人妻人人澡人人看| 久久青草综合色| 日本欧美视频一区| 亚洲欧美精品自产自拍| 男女边吃奶边做爰视频| 老汉色∧v一级毛片| 欧美xxⅹ黑人| 国产精品女同一区二区软件| 日日啪夜夜爽| 亚洲色图 男人天堂 中文字幕| av女优亚洲男人天堂| 黄片小视频在线播放| 十分钟在线观看高清视频www| 国产亚洲一区二区精品| 纵有疾风起免费观看全集完整版| 女性被躁到高潮视频| 国产在线免费精品| 欧美精品av麻豆av| 国产精品麻豆人妻色哟哟久久| 精品国产乱码久久久久久小说| 最近2019中文字幕mv第一页| 国产有黄有色有爽视频| 天堂8中文在线网| 丝袜喷水一区| 视频区图区小说| 韩国av在线不卡| 制服丝袜香蕉在线| 久久久久久久精品精品| 欧美精品高潮呻吟av久久| 操出白浆在线播放| 久久久久网色| 国产高清不卡午夜福利| 91老司机精品| 午夜福利视频在线观看免费| 美女主播在线视频| 最近2019中文字幕mv第一页| 性高湖久久久久久久久免费观看| 男女国产视频网站| 亚洲图色成人| 别揉我奶头~嗯~啊~动态视频 | 成人毛片60女人毛片免费| av国产精品久久久久影院| 秋霞伦理黄片| 亚洲天堂av无毛| 丝袜脚勾引网站| 精品国产乱码久久久久久男人| 多毛熟女@视频| 搡老岳熟女国产| 色婷婷av一区二区三区视频| 晚上一个人看的免费电影| 亚洲精品视频女| 天天躁日日躁夜夜躁夜夜| 久久精品国产亚洲av涩爱| 2018国产大陆天天弄谢| 国产日韩欧美亚洲二区| 69精品国产乱码久久久| 国产精品一二三区在线看| 国产女主播在线喷水免费视频网站| 最近手机中文字幕大全| 欧美激情极品国产一区二区三区| √禁漫天堂资源中文www| 亚洲专区中文字幕在线 | 人妻人人澡人人爽人人| 国产一区二区激情短视频 | 久久av网站| 伦理电影免费视频| 精品一品国产午夜福利视频| 亚洲精品乱久久久久久| www.自偷自拍.com| 国产欧美日韩综合在线一区二区| 建设人人有责人人尽责人人享有的| 亚洲精品自拍成人| 2021少妇久久久久久久久久久| 国产不卡av网站在线观看| 日韩一卡2卡3卡4卡2021年| 另类精品久久| 亚洲av国产av综合av卡| 狂野欧美激情性bbbbbb| 欧美日韩亚洲综合一区二区三区_| 91精品国产国语对白视频| 欧美日本中文国产一区发布| 制服人妻中文乱码| 国产淫语在线视频| 日韩精品有码人妻一区| 欧美成人精品欧美一级黄| 国产一区二区三区av在线| 日韩 亚洲 欧美在线| 人成视频在线观看免费观看| 精品少妇内射三级| 九草在线视频观看| 青青草视频在线视频观看| 日本91视频免费播放| 欧美97在线视频| 少妇的丰满在线观看| 女人高潮潮喷娇喘18禁视频| 久久精品久久久久久噜噜老黄| 亚洲精品在线美女| 欧美日韩成人在线一区二区| 亚洲欧美一区二区三区国产| 电影成人av| 亚洲欧美中文字幕日韩二区| 亚洲精品aⅴ在线观看| 又黄又粗又硬又大视频| av有码第一页| 黄色怎么调成土黄色| 考比视频在线观看| 丰满乱子伦码专区| 国产又色又爽无遮挡免| 久久午夜综合久久蜜桃| 日韩一区二区视频免费看| 夫妻午夜视频| 久久久精品免费免费高清| 一级毛片电影观看| 亚洲人成网站在线观看播放| 亚洲精品乱久久久久久| 国产精品麻豆人妻色哟哟久久| 久久久久视频综合| 男女午夜视频在线观看| 国产极品粉嫩免费观看在线| 中文字幕制服av| 别揉我奶头~嗯~啊~动态视频 | 在线观看免费日韩欧美大片| 国产无遮挡羞羞视频在线观看| 久久性视频一级片| 黄网站色视频无遮挡免费观看| 青草久久国产| 热re99久久精品国产66热6| 哪个播放器可以免费观看大片| 国产精品久久久久久久久免| 久久久久精品久久久久真实原创| 免费看av在线观看网站| av免费观看日本| 国产深夜福利视频在线观看| 人人妻人人澡人人看| 亚洲少妇的诱惑av| av片东京热男人的天堂| 亚洲成人免费av在线播放| 亚洲一级一片aⅴ在线观看| 美女中出高潮动态图| 国产男女内射视频| 欧美变态另类bdsm刘玥| 黄色怎么调成土黄色| 在线天堂中文资源库| 一区二区三区四区激情视频| 久久久国产精品麻豆| 女人爽到高潮嗷嗷叫在线视频| 黄频高清免费视频| 一边摸一边抽搐一进一出视频| 51午夜福利影视在线观看| 成年人午夜在线观看视频| 欧美在线一区亚洲| 少妇人妻精品综合一区二区| 两性夫妻黄色片| 免费看av在线观看网站| 亚洲欧美成人综合另类久久久| 九九爱精品视频在线观看| 性少妇av在线| 男人添女人高潮全过程视频| 国产高清国产精品国产三级| 一本一本久久a久久精品综合妖精| 国产av国产精品国产| 久久精品人人爽人人爽视色| 亚洲自偷自拍图片 自拍| 久久免费观看电影| 在线观看www视频免费| 日本wwww免费看| 无遮挡黄片免费观看| 色吧在线观看| av视频免费观看在线观看| 精品少妇久久久久久888优播| 美女高潮到喷水免费观看| 无限看片的www在线观看| 人成视频在线观看免费观看| 性色av一级|