• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CuNPs@Cu(Ⅱ)-AMTD金屬有機凝膠復合材料的合成及其催化性能

    2018-03-14 06:35:59孫飛飛封其春周映華1
    無機化學學報 2018年3期
    關鍵詞:李鋼碩士論文安徽師范大學

    承 勇 孫飛飛 封其春 周映華1,

    (1教育部功能分子固體重點實驗室,蕪湖 241000)

    (2安徽師范大學化學與材料科學學院,蕪湖 241000)

    0 Introduction

    During the last two decades,a substantial body of research has been directed toward the synthesis of metal nanoparticles in efforts to explore their special properties and potential applications[1-3].Among various metal particles,copper nanoparticles (CuNPs)have attracted considerable attention because oftheir catalytic,optical,electrical conducting and antifungal/antibacterial properties[4-5].CuNPs are considered as a viable alternative to noble metal nanoparticles in certain fields such as antibacterialapplication,organic synthesis,and catalytic reaction.However,copper nanoparticles are known to be extremely sensitive to oxygen by forming copper oxide nanoparticles and are also apt to aggregate into large sized aggregation due to their high surface energy and high reactivity,resulting in the deterioration of their unique properties[6-7].Therefore,it is desirable to use a matrix that could bind the copper nanoparticles and protect them from oxidizing environment[8-14].Up to now,many strategies have been reported for the preparation of hybrid polymeric gel materials containing metal nanoparticles[15-18],however,there are rare concerned with polymeric gel copper composites.

    Polymeric gel material has been regarded as one of the most promising substrate for stabilization of metallic nanoparticles[19-20].Polymeric gel metal composites are viable catalysts because the loosely bound dynamic fibrous structure expected to enhance easy access to the metal nanoparticles[21-23].The catalytic performance and stability of metal nanoparticles can be enhanced by incorporating functional groups such as-NH2,-CONH,and-SiH[24-26].Synthesis of efficient,robust,and reusable homogeneously dispersed copper nanoparticles supported in polymeric gel with enhanced functionalities is still a major challenge.

    In this paper,we describe the successful fabrication of copper nanoparticles within Cu(Ⅱ)-AMTD metal-organicgelmatrix.Thecomposites obtained were characterized by IR,SPR,SEM,TEM,EDX and XPS.It displays highly activity in catalytic 4-nitrophenol and other nitroarenes using NaBH4as a reductant performed in an aqueous solution.Considering the wide-ranging potential applications of a metal-organic gel as a host material for a variety of metal nanoparticals,the approach developed here may lead to new possibilitiesforthe fabrication of nanoparticals/metal-organic gel composites endowed with multiple functionalities.

    1 Experimental

    1.1 Apparatus and materials

    All analytical grade solvents and reagents were used without further purification.The precursor 2-amino-5-mercapto-1,3,4-thiadiazole was prepared according to the published procedures[27].4-nitrophenol(4-NP),2-nitrophenol (2-NP),4-nitroaniline (4-NA)and 8-hydroxy-5-nitroquinoline (8-H-5-NQ) were purchased from Aladdin Chemical Reagent Co.Ltd.,China.Cu (Ac)2,N,N-dimethylformamide (DMF)were purchased from Shanghai Lingfeng Chemical Reagent Co.,Ltd.China.Water was deionized and doubledistilled.

    Fourier transform infrared spectra (FT-IR)were taken on a Shimadzu FTIR-8400S spectrometer with a KBrpellettechnique.Ultraviolet-visible (UV-Vis)spectra experiments were performed on a Yuanxi UVVis 8000A spectrophotometer.Field emission scanning electron microscope (FESEM)images were obtained using a Hitachi S-4800 scanning electron microscope operating at an accelerating voltage of 5.0 kV.Energy Dispersive X-ray Spectroscopy (EDX)was taken with a Hitachi S-4800 scanning electron microscope.The transmitting electron microscopy (TEM)images were recorded on a JEOL-2011 transmission electron microscope at an accelerating voltage of 200 kV.X-ray photoelectron spectra (XPS)experiments were performed on a Thermo ESCALAB 250XI multifunctional imaging electron spectrometer. Nitrogen adsorption-desorption were obtained using a Nova 2000E surface analyzer.Pore-size distribution was determined from the adsorption branch ofthe isotherms using the Barett-Joyner-Halenda (BJH)method.

    1.2Preparation of CuNPs@Cu(Ⅱ)-AMTD composites

    DMF solution (1 mL)of AMTD (0.013 4 g,0.1 mmol)was placed in a centrifuge tube.To this,1 mL aqueous solution of Cu(Ac)2(0.020 1 g,0.1 mmol)was added.This immediately results in a dark blue color solution.After little shaking,the mixture was left to stand undisturbed.About 5 minutes,a dark green opacity gel appeared of which the gel state primarily confirmed by the retardation of flow of the materials upon “inversion ofthe centrifuge tube”.The CuNPs@Cu(Ⅱ)-AMTD green powder was obtained by drying the gel at 80℃in the drying oven about 48 h to constant weight(Scheme 1).

    1.3 Catalytic reduction of 4-NP and other nitroarenes

    Scheme 1 Formation of Cu(Ⅱ)-AMTD metal-organic gel

    To investigate the catalytic efficiency and reusability of the CuNPs@Cu(Ⅱ)-AMTD composites,reduction of 4-NP was performed according to the published procedure[28-29].100 mg CuNPs@Cu(Ⅱ)-AMTD wasadded in a solution containing 50 mL of deionized water to obtain a suspension solution by ultrasonic dispersion.A freshly prepared aqueous solution of NaBH4(56.0 mg,25 mL)was mixed with a 4-NP aqueous solution (10.43 mg,25 mL) (nNaBH4/nsubstrate=5.4)leading to a color change from light yellow to yellow-green.Subsequently,the catalyst suspension solution was added to the mixture under continuous stirring to initiate the reduction reaction.At each time interval,1 mL of the aqueous solution was withdrawn and diluted to 3.0 mL to analyze the reduction efficiency.Since the absorbance of 4-NP is proportional to its concentration in the solution,the ratio of absorbance at time t (At)to that at t=0 (A0)should be equal to the concentration ratio Ct/C0of 4-NP.Consequently,the conversion progress could be directly reflected by the absorption intensity.Therefore,a UVVis spectrophotometer was employed to monitor the progress of the conversion of 4-NP to 4-AP at ambient temperature.For comparison,the control experiment was also carried out under the same experimental condition using AMTD as catalyst.The catalytic activity of the as-prepared CuNPs@Cu(Ⅱ)-AMTD for the reduction of other nitroarenes were also investigated under the same condition.

    To test the recyclability of the catalyst,five successive cycles of catalytic reduction were carried out employing a definite amount of catalyst.In the successivecycles,the catalystwascollected by centrifugation from the solution and washed with ethanol and water several times,and used for the next cycling.

    2 Results and discussion

    2.1Formation of CuNPs@Cu(Ⅱ)-AMTD composites

    Cu(Ⅱ)-AMTD metal-organic gel was prepared by copper acetate and AMTD in DMF/H2O as shown in Scheme 1.To understand the coordination behavior between AMTD and Cu2+,we attempted to obtain crystal structure of the related complex,but not successful.In the absence of a suitable single crystal to undertake X-ray crystallography,we proposed that in the gel the nitrogen atom of thiadiazole ring and sulfur atom of thiol are coordinated with two Cu2+,respectively,forming a coordination polymer.Every Cu2+ion is coordinated with four AMTD,two of them act as N donor while the other two act as S donor ligand.Cu2+is linked by AMTD ligand,forming an extended 2D layer network structure.It is noteworthy to point out that there are hydrogen bonds between the solvent H2O and the amino group in the Cu(Ⅱ)-AMTD coordination polymer which formed the metalorganic gel.Considering the reducibility of-NH2in AMTD,we speculate that Cu(Ⅱ)ion would be reduced to copper (0)and CuNPs would existed in the gel matrix.The S atom of thiadiazole ring could also stabilize the CuNPs.Consequently,the Cu(Ⅱ)-AMTD coordination polymer could be served as a directing medium for the synthesis of CuNPs,which were embedded in the gelmatrix,providing a gelcomposites.

    2.2 Characterization of CuNPs@Cu(Ⅱ)-AMTD composites

    To investigate the morphologies of the composites,SEM were carried out on the xerogel of CuNPs@Cu(Ⅱ)-AMTD.As shown in Fig.1a,the SEM image clearly displays 2D layer fibrillar network,which consistent with the structure of Cu(Ⅱ)-AMTD coordination polymer that we proposed in Scheme 1.

    Nitrogen adsorption-desorption measurements were performed to validate the inner architectures of the 2D layernetwork.The nitrogen adsorptiondesorption isotherms and the pore size distribution curve are shown in Fig.2b (inset).The BET surface area of the gel was calculated as about 4 m2·g-1.In addition,the isotherm exhibits a hysteresis loop in the p/p0range of 0.64 to 0.98.This clearly indicates that the gel exhibits a large structural porosity.The pore size distribution of the gel shows a narrow peak in pore size region of 12.4~42.8 nm.That is mainly caused by the accumulation of the gel fibrillar network.

    Fig.1 (a)SEM image of CuNPs@Cu(Ⅱ)-AMTD composites;(b)Nitrogen adsorption-desorption isotherms of CuNPs@Cu(Ⅱ)-AMTD composites with corresponding pore-size distribution (inset)calculated by BJH method from the desorption branch

    Fig.2 (a,b)TEM images of the CuNPs@Cu(Ⅱ)-AMTD composites;(c)Particles size distribution of CuNPs;(d)EDX image of CuNPs@Cu(Ⅱ)-AMTD composites

    TEM measurements were carried out to characterize the morphology and size distribution of copper nanoparticles embedded in the Cu(Ⅱ)-AMTD metal-organic gel matrix.Observing the formed CuNPs directly in the gel is difficult because the gel is too chick to be opaque for the electron beam.In this work,the gel was diluted as a suspension solution for the measurement of TEM.It can be seen that CuNPs were spherical in nature (Fig.2a).The TEM image enlarged version clearly showing the lattice spacing of 0.12 nm,corresponding to the Cu (220)plane (Fig.2b).The particles size distribution shows that a significant amount of nanoparticles are below 5 nm (Fig.2c).Notably,no reflections assignable to metallic CuNPs were present in the XRD pattern of CuNPs@Cu(Ⅱ)-AMTD,possible because the CuNPs content was below the detection limit and/or due to the poor crystallinity of the CuNPs in the composites.Energydispersive X-ray spectroscopy (EDX)was performed on the xerogelwhich determined the elemental composition of copper,chlorine,nitrogen,and carbon(Fig.2d).

    To examine the CuNPs in the gel,the samples with different ratios (nCu(Ⅱ)/nAMTD=0.15,0.20,0.25,0.30,0.35)were dissolved in H2O.A small hump at around 345 nm was observed in the UV-Vis absorption spectrum (Fig.3a).It can be assigned to a typical surface plasmon resonance (SPR)excitation from the CuNPs.Furthermore,no apparent SPR absorption band appearing at around 560~600 nm was observed,indicating the absence of large CuNPs[30-32].

    Fourier transformed infrared spectroscopy was performed to identify the nature of participation of functional groups present in the ligand and in the corresponding CuNPs@Cu(Ⅱ)-AMTD composites (Fig.3b).The free ligand shows absorption peaks at 3 342,3 254 and 1 609 cm-1that can be assigned to N-H stretching and bending vibrations of-NH2group,which are weaken in the composites.Another broad area was observed near 3 430 cm-1,which could be assigned to the hydrogen bonding of a-OH group of solvent H2O.The peaks at 3 115 and 2 910 cm-1in free ligand assigned to the N-H of thiadiazole ring[33]in the resonance structure are disappeared in the composites,which indicate the coordination of the metal to the N-atom.The weak vibration frequency for-SH stretch at 2 750 cm-1in the ligand is absent in the composites.These observations indicate that the coordination of copper ions with the S atom of thiol group and the N atom of thiadiazole ring in the gel.

    Fig.3 (a)UV-Vis absorption spectra of CuNPs in the gel matrix with different ratios (nCu(Ⅱ)∶nAMTD=0.15,0.20,0.25,0.30,0.35);(b)FT-IR spectra obtained from AMTD and CuNPs@Cu(II)-AMTD composites

    Fig.4 (a)XPS of CuNPs@Cu(Ⅱ)-AMTD composites;(b)High-solution XPS of Cu2p electrons

    For the purpose of gaining insight into components of the CuNPs@Cu(Ⅱ)-AMTD composites,XPS survey spectra were performed.As shown in Fig.4a,five major peaks of S2p,C1s,N1s,O1s,Cu2p obviously emerged in the spectrum,indicating that CuNPs@Cu(Ⅱ)-AMTD prepared here were mainly composed of C,O,N,S and Cu.The oxidation state of copper in samples was also studied by XPS.As shown in Fig.4b,two fitting peaks at 934.6 and 954.3 eV were observed in the Cu2p XPS spectrum,corresponding to the binding energies of Cu2p3/2and 2p1/2,respectively,indicating the existence of Cu(0)or Cuガin the composites[34-35].Furthermore,there was a peak displayed around 942.7 eV, demonstrating the existence of Cu(Ⅱ)[36],which maybe attribute to Cu(Ac)2-AMTD coordination polymerin the composites(Scheme 1).

    2.3 Catalytic reduction of nitroarene

    4-Nitrophenol (4-NP) is one ofthe most hazardous and toxic organic pollutants in waste-water generated from agricultural and industrial sources.4-Aminophenol(4-AP)is also an important intermediate on the manufacture of antipyretic and analgesic drugs.The development of an effective catalysts is expected for the reduction of 4-NP to 4-AP[37-40].So,we choose the reduction of 4-NP as a model reaction to evaluate the catalytic activity of our synthesized composites.

    Normally,the 4-NP solution shows an absorbance peak at 317 nm under neutral conditions,which shifts to 400 nm after adding NaBH4because of the formation of 4-nitrophenolate ions via deprotonation(pKa=7.2)[42-43].During the reduction of 4-NP to 4-AP,the intensity of the absorption peak at 400 nm gradually decreased because of the consumption of 4-NP,resulting in the fading and ultimate bleaching of the yellow-green color of 4-nitrophenolate.Meanwhile,the generation of reduction product 4-AP led to a new UV-Vis peak at approximately 300 nm (Fig.5a)[44].

    Fig.5b presents the time-dependent evolution of theUV-Vis spectra of this reaction with CuNPs@Cu(Ⅱ)-AMTD as catalyst,showing a successive intensity decrease in the absorption peak at 400 nm,along with a concomitant appearance of a new peak at about 300 nm.All the spectra intersect each other at two points,indicating that the nitro compound was gradually converted to 4-AP without the formation of byproducts[45].After a 12 min reaction,the peak at 400 nm ascribed to 4-nitrophenolate disappeared,indicating the complete transformation of the 4-NP.Meanwhile,at the end of the reaction,the peak for 4-NP almost disappeared and only the peak for 4-AP could be observed,thus suggesting the presence of product with high purity.Additionally,the control experiment was performed by taking AMTD instead of CuNPs@Cu(Ⅱ)-AMTD.In this case,the intensity of the peak at 400 nm remained unchanged even after 12 h,confirming the catalytic role of CuNPs on the reduction reaction.

    Given that the concentration of NaBH4significantly exceeds that of 4-NP in the reaction system,the reduction rate was roughly independent of NaBH4concentration.Generally,the kinetics can be considered as pseudo-first-order with respect to 4-NP[46].In this case,the consumption of 4-NP is given by

    where rtis the consumption rate of 4-NP at time t,Ctis the concentration of 4-NP at time t,and k is the first-order rate constant.

    Fig.5 (a)UV-Vis absorption spectra of 4-nitrophenol and 4-aminephenol;(b)Successive UV-Vis absorption spectra of the reduction of 4-nitrophenol by NaBH4in the presence of CuNPs@Cu(Ⅱ)-AMTD composites;(c)Plot of ln(Ct/C0)against time (inset:Ct/C0~t);(d)Conversion efficiency of 4-NP in five successive cycles

    Fig.5c shows ln(Ct/C0)versus reaction time for the reduction of 4-NP using the CuNPs@Cu(Ⅱ)-AMTD as catalyst.ln(Ct/C0) was obtained from the relative intensity of the absorption at 400 nm because the absorption intensity of 4-NP is proportional to its concentration in the medium.The linear relationship between ln(Ct/C0)and reaction time (t)confirms the pseudo-first-order kinetics.The rate constant (k)of the catalytic reaction was 2.5×10-3s-1from the slope of the linear plot,which is higher than that of CuNPs(1.6×10-3s-1)[47],but was lower than that of Cu-TOCNF(2.4×10-2s-1)[48]and CuNCs (8.2×10-3s-1)[49].The ratio of the rate constant to the catalyst weight was 0.025 s-1·g-1.Generally,the rate constant of catalytic reaction is affected by the concentration or loading amount of CuNPs.

    Stability and recyclability is of great importance for the practical applications of catalysts.Recycling andreuseofCuNPs@Cu(Ⅱ)-AMTD werefurther examined under the same reaction conditions as that of the first cycle.As shown in Fig.5d,the catalyst can be successfully recycled and reused for five successive cycles of reaction with a conversion efficiency (~82%),indicating the stable and high recycling efficiency of the CuNPs@Cu(Ⅱ)-AMTD.The good recyclability of CuNPs@Cu(Ⅱ)-AMTD should be attributed to the strong stabilization ability of metal-organic gel matrix toward the CuNPs.These results clearly demonstrate that the Cu(Ⅱ)-AMTD metal-organic gel are excellent supporting carrier for CuNPs growth and immobilization because of their high specific surface area and interwoven fibrous structure properties.

    The CuNPs@Cu(Ⅱ)-AMTD can also be used for the reduction of other nitrobenzene analogues such as 4-NA,2-NP and 8-H-5-NQ.Here,we choose to run the reactions in the presence of CuNPs@Cu(Ⅱ)-AMTD catalyst and nitroarene with NaBH4to clearly monitor the conversion efficiency of the reaction.As shown in Fig.6,the composite exhibits high reactivity with excellent yields toward these nitroarenes compounds.It is also interesting to note that the 2-nitrophenol displays better conversion efficiency than other analogues.

    Fig.6 Reduction of various nitroarenes using CuNPs@Cu(Ⅱ)-AMTD as catalyst:(a)4-NA,(b)2-NP and (c)8-H-5-NQ

    The mechanism of the catalytic reaction could be explained by the Langmuir-Hinshelwood mechanism(Fig.7).NaBH4ionized in water to offer BH4-,providing surface hydrogen for the reaction.BH4-acted as the electron donor,whereas 4-NP acted as the electron acceptor.CuNPs act as an electronic relay agent to overcome the kinetic barrier,allowing the electron transfer from BH4-to 4-NP[43].Because of the strong adsorbing ability of the Cu(Ⅱ)-AMTD metal-organic gel,NaBH4and 4-NP could be rapidly adsorbed on the surface of gel,where the copper particles could relay electrons from the donor of BH4-to the acceptor of 4-NP,and promote the occurrence of reduction reaction.Therefore,the high catalytic activity arises from the synergistic effect of Cu(Ⅱ)-AMTD metalorganic gel and CuNPs:the high adsorption and electron transfer ability.

    Fig.7 Proposed the mechanism of the reduction of 4-NP to 4-AP

    3 Conclusions

    In conclusion,a novel composites CuNPs@Cu(Ⅱ)-AMTD were obtained by using Cu(Ⅱ)-AMTD metalorganic gel as a platform for in situ growth copper nanoparticleswithin gelmatrix.The as-prepared material is an efficient catalyst in the reduction of nitroarenes compounds.Such composites were thus expected to have the potential to be a new class of highly efficient,fully renewable heterogeneous catalyst for industrial applications.

    [1]ScholtenJD,LealBC,DupontJ.ACSCatal.,2012,2:184-200

    [2]Iablokov V,Beaumont S K,Alayoglu S,et al.Nano Lett.,2012,12:3091-3096

    [3]David C,De Abajo F J G.J.Phys.Chem.C,2011,115:19470-19475

    [4]Villanueva M E,Diez A M R,Gonzalez J A,et al.ACS Appl.Mater.Interfaces,2016,8:16280-16288

    [5]Manthiram K,Beberwyck B J,Alivisatos A P.J.Am.Chem.Soc.,2014,136:13319-13325

    [6]Park B K,Jeong S,Kim D,et al.J.Colloid Interface Sci.,2007,311:417-424

    [7]BenaventeE,LozanoH,Gonzalez G.Recent Pat.Nanotechnol.,2013,7:108-132

    [8]Kanninen P,Johans C,Merta J,et al.J.Colloid Interface Sci.,2008,318:88-95

    [9]Ruiz P,Munoz M,Macanás J,et al.Chem.Mater.,2010,22:6616-6623

    [10]Mallick S,Sharma S,Banerjee M,et al.ACS Appl.Mater.Interfaces,2012,4:1313-1323

    [11]Bogdanovi U,Vodnik V,Mitri M,et al.ACS Appl.Mater.Interfaces,2015,7:1955-1966

    [12]Gholinejad M,Jeddi N.ACS Sustainable Chem.Eng.,2014,2:2658-2665

    [13]Tokarek K,Hueso J L,Kustrowski P,et al.Eur.J.Inorg.Chem.,2013:4940-4947

    [14]Li B J,Li Y Y,Wu Y H,et al.Mater.Sci.Eng.C,2014,35:205-211

    [15]Che Y,Zinchenko A,Murata S.J.Colloid Interface Sci.,2015,445:364-370

    [16]Das D,Kar T,Das P K.Soft Matter,2012,8:2348-2356

    [17]Maity I,Rasale D B,Das A K.Soft Matter,2012,8:5301-5308

    [18]Roy S,Banerjee A.Soft Matter,2011,7:5300-5308

    [19]SHENG Li-Ying(沈利英),YU Hai-Tao(于海濤),HE Xuan(何璇),et al.Chin.J.Org.Chem.(有 機化學),2009,29(4):548-563

    [20]WU Ting(吳 婷 ).Thesis for the Master of Anhui Normal University(安徽師范大學碩士論文),2014.

    [21]Lu Y,Spyra P,Mei Y,et al.Macromol.Chem.Phys.,2007,208:254-261

    [22]Otari S V,Patil R M,Waghmare S R.Dalton Trans.,2013,42:9966-9975

    [23]Díaz D D,Kuhbeck D,Koopmans R J.Chem.Soc.Rev.,2011,40:427-448

    [24]Li J,Zhu J W,Liu X H.Dalton Trans.,2014,43:132-137

    [25]Zheng Y,Wang A Q.J.Mater.Chem.,2012,22:16552-16559

    [26]Gupta N R,Prasad B LV,Gopinath G S,et al.RSC Adv.,2014,4:10261-10268

    [27]Misra U,Shukla S,Gurtu S,et al.Boll.Chim.Farm.,1995,134:492-496

    [28]Liang M,Su R,Huang R,et al.ACS Appl.Mater.Interfaces,2014,6:4638-4649

    [29]Liang M,Wang L,Liu X,et al.Nanotechnology,2013,24:245601

    [30]Lisiecki I,Piled M P.J.Phys.Chem.,1995,99:5077-5082

    [31]Salzemann C,Lisiecki I,Brioude A,et al.J.Phys.Chem.B,2004,108:13242-13248

    [32]Mott D,Galkowski J,Wang L Y,et al.Langmuir,2007,23:5740-5745

    [33]Chufán E E,Pedregosa J C,Borrás J.Vib.Spectrosc.,1997,15:191-199

    [34]Bradwell D J,Osswald S,Wei W F,et al.J.Am.Chem.Soc.,2011,133:19971-19975

    [35]Balogh L,Tomalia D A.J.Am.Chem.Soc.,1998,120:7355-7356

    [36]Wu C K,Yin M,OBrien S,et al.Chem.Mater.,2006,18:6054-6058

    [37]AdityaT,PalbA,PalT.Chem.Commun.,2015,51:9410-9431

    [38]Zhao P X,Feng X W,Huanga D S,et al.Coord.Chem.Rev.,2015,287:114-136

    [39]Wang C,Cigand R,Salmon L,et al.Angew.Chem.Int.Ed.,2016,55:3091-3095

    [40]Wang C,Salmon L,Li Q,et al.Inorg.Chem.,2016,55:6776-6780

    [41]JIANG Jun (姜?。?LI Gang (李鋼),KONG Ling-Hao (孔令浩).Acta Phys.-Chim.Sin.(物理化學學報),2015,31(1):137-144

    [42]Yang M Q,Weng B,Xu Y J.Langmuir,2013,29:10549-10558

    [43]Wang H,Dong Z X,Na C Z.ACS Sustainable Chem.Eng.,2013,1:746-752

    [44]Liu C H,Chen X Q,Hu Y F,et al.ACS Appl.Mater.Interfaces,2013,5:5072-5079

    [45]Liang M,Wang L,Su R X,et al.Catal.Sci.Technol.,2013,3:1910-1914

    [46]Zhu C H,Hai Z B,Cui C H.Small,2012,8:930-936

    [47]Deka P,Deka R C,Bharali P.New J.Chem.,2014,38:1789-1793

    [48]Bendi R,Imae T.RSC Adv.,2013,3:16279-16282

    [49]Zhang P H,Sui Y M,Xiao G J,et al.J.Mater.Chem.A,2013,1:1632-1638

    猜你喜歡
    李鋼碩士論文安徽師范大學
    李鋼書法作品欣賞
    海歸李鋼:“紅杉人”民族魂“僑聯(lián)”中國心
    華人時刊(2021年13期)2021-11-27 09:19:18
    著名詩人
    鴨綠江(2021年14期)2021-08-18 03:33:00
    苦難英雄任正非
    南風(2020年29期)2020-11-18 06:57:12
    《安徽師范大學學報》(人文社會科學版)第47卷總目次
    Next-Generation Materials for Cutting Tools: Superhard Materials
    漢語國際教育專業(yè)泰國來華留學生碩士論文語言特征分析及教學啟示
    Hemingway’s Marriage in Cat in the Rain
    “雙一流”視域下導師學術品質對研究生培養(yǎng)質量的影響——基于安徽省四屆優(yōu)秀碩士論文評選的實證研究
    《安徽師范大學學報( 自然科學版) 》2016 年總目次
    最好的美女福利视频网| 老司机深夜福利视频在线观看| 国产精品久久久久久久电影 | 国产成人av教育| 国产成人av激情在线播放| 亚洲专区国产一区二区| 18禁国产床啪视频网站| 高清毛片免费观看视频网站| 色尼玛亚洲综合影院| 亚洲成av人片在线播放无| 1000部很黄的大片| 色综合站精品国产| 成年免费大片在线观看| 亚洲最大成人中文| 国产伦精品一区二区三区视频9 | netflix在线观看网站| 中文字幕av成人在线电影| 99在线人妻在线中文字幕| 国产亚洲精品久久久com| 久久久久精品国产欧美久久久| 久久亚洲真实| 亚洲成a人片在线一区二区| 亚洲av中文字字幕乱码综合| 亚洲专区中文字幕在线| av在线天堂中文字幕| 国产麻豆成人av免费视频| 可以在线观看毛片的网站| 动漫黄色视频在线观看| 亚洲av成人av| 亚洲人成伊人成综合网2020| 又黄又粗又硬又大视频| 精品国产三级普通话版| 亚洲av第一区精品v没综合| 夜夜夜夜夜久久久久| 亚洲国产欧美网| 国产爱豆传媒在线观看| 男女床上黄色一级片免费看| 免费看美女性在线毛片视频| 九色成人免费人妻av| 欧美bdsm另类| 欧美av亚洲av综合av国产av| 久久久久亚洲av毛片大全| 国产野战对白在线观看| 少妇丰满av| АⅤ资源中文在线天堂| 搡老妇女老女人老熟妇| tocl精华| www国产在线视频色| 两个人看的免费小视频| 18+在线观看网站| 国产精品1区2区在线观看.| 999久久久精品免费观看国产| 日本与韩国留学比较| 宅男免费午夜| 免费看美女性在线毛片视频| 国产精品久久久久久人妻精品电影| 99久久综合精品五月天人人| 一级黄色大片毛片| 一二三四社区在线视频社区8| 国模一区二区三区四区视频| 国产又黄又爽又无遮挡在线| 国产乱人视频| 亚洲欧美一区二区三区黑人| 久久久久精品国产欧美久久久| 国内精品一区二区在线观看| 色噜噜av男人的天堂激情| а√天堂www在线а√下载| 欧美成人免费av一区二区三区| 国产精品乱码一区二三区的特点| 少妇丰满av| 欧美zozozo另类| 国产单亲对白刺激| 黄色成人免费大全| 亚洲熟妇中文字幕五十中出| av片东京热男人的天堂| 香蕉久久夜色| 99久久精品热视频| 午夜精品久久久久久毛片777| 丁香六月欧美| 亚洲成人中文字幕在线播放| 欧美在线一区亚洲| 男女那种视频在线观看| 波多野结衣高清无吗| 听说在线观看完整版免费高清| 美女高潮的动态| 一本综合久久免费| www.色视频.com| 美女cb高潮喷水在线观看| 中文字幕久久专区| 女人高潮潮喷娇喘18禁视频| 一个人免费在线观看电影| 夜夜夜夜夜久久久久| 亚洲va日本ⅴa欧美va伊人久久| 欧美bdsm另类| 精品欧美国产一区二区三| 美女被艹到高潮喷水动态| 男人舔奶头视频| 18禁在线播放成人免费| 国产精品 欧美亚洲| 国产毛片a区久久久久| 国产aⅴ精品一区二区三区波| 国产精品,欧美在线| 免费观看人在逋| 女警被强在线播放| 午夜精品一区二区三区免费看| 国产探花在线观看一区二区| a级一级毛片免费在线观看| 国产精品1区2区在线观看.| 国产精品久久久久久亚洲av鲁大| 一进一出好大好爽视频| 亚洲av一区综合| 精品一区二区三区视频在线 | 不卡一级毛片| 色综合亚洲欧美另类图片| 在线观看美女被高潮喷水网站 | 性色av乱码一区二区三区2| 成人性生交大片免费视频hd| 在线播放国产精品三级| 欧美+日韩+精品| 在线观看av片永久免费下载| 美女黄网站色视频| 51午夜福利影视在线观看| 日本免费a在线| 99精品久久久久人妻精品| 婷婷丁香在线五月| 99热这里只有是精品50| 在线观看免费视频日本深夜| 日韩大尺度精品在线看网址| 免费看光身美女| 此物有八面人人有两片| 琪琪午夜伦伦电影理论片6080| 嫩草影院入口| 亚洲av不卡在线观看| 欧美乱色亚洲激情| 日韩欧美国产一区二区入口| 亚洲av美国av| 观看美女的网站| 无人区码免费观看不卡| 人妻丰满熟妇av一区二区三区| 亚洲国产精品久久男人天堂| 精品久久久久久久毛片微露脸| 免费看美女性在线毛片视频| 国产精品 国内视频| 精品无人区乱码1区二区| 狂野欧美激情性xxxx| 精品99又大又爽又粗少妇毛片 | 日本精品一区二区三区蜜桃| 日本免费a在线| 亚洲人成电影免费在线| 99热这里只有是精品50| 黄色日韩在线| 亚洲真实伦在线观看| 久久精品综合一区二区三区| 黄片大片在线免费观看| 亚洲国产精品久久男人天堂| 成人高潮视频无遮挡免费网站| 国产三级在线视频| 欧美性猛交╳xxx乱大交人| 日韩有码中文字幕| 在线播放国产精品三级| h日本视频在线播放| 国产伦精品一区二区三区视频9 | 成人一区二区视频在线观看| 欧美日韩综合久久久久久 | 亚洲不卡免费看| 国内久久婷婷六月综合欲色啪| 少妇的逼水好多| 99久久九九国产精品国产免费| 日韩免费av在线播放| 亚洲,欧美精品.| 久久天躁狠狠躁夜夜2o2o| 色av中文字幕| 国产成+人综合+亚洲专区| 久久久久亚洲av毛片大全| 国产精品三级大全| tocl精华| 精品久久久久久久久久免费视频| 在线观看66精品国产| 热99在线观看视频| 91久久精品国产一区二区成人 | 欧美绝顶高潮抽搐喷水| 国产男靠女视频免费网站| 一个人免费在线观看的高清视频| 狂野欧美白嫩少妇大欣赏| 成人精品一区二区免费| 国产精品,欧美在线| 免费在线观看成人毛片| 日本黄大片高清| 欧美日韩乱码在线| 国产激情欧美一区二区| 香蕉av资源在线| 午夜激情福利司机影院| 精品国产超薄肉色丝袜足j| 国产精品自产拍在线观看55亚洲| 99热这里只有是精品50| 精品国产三级普通话版| 免费在线观看成人毛片| 91在线观看av| 怎么达到女性高潮| 最后的刺客免费高清国语| 日本一二三区视频观看| 国产成人欧美在线观看| 真人做人爱边吃奶动态| 日本免费一区二区三区高清不卡| 老汉色av国产亚洲站长工具| av女优亚洲男人天堂| 中文在线观看免费www的网站| 国产精品98久久久久久宅男小说| 国产一区在线观看成人免费| 亚洲av第一区精品v没综合| 亚洲精品456在线播放app | 国产高清有码在线观看视频| 亚洲精品456在线播放app | aaaaa片日本免费| 香蕉久久夜色| 亚洲精品成人久久久久久| 色播亚洲综合网| 国产又黄又爽又无遮挡在线| 国产高潮美女av| 亚洲18禁久久av| 欧美日韩福利视频一区二区| 午夜两性在线视频| 日韩av在线大香蕉| 欧美日本视频| 在线免费观看的www视频| 最新在线观看一区二区三区| 久久精品人妻少妇| 久久久色成人| av福利片在线观看| 舔av片在线| 黑人欧美特级aaaaaa片| 亚洲精品日韩av片在线观看 | 国产黄片美女视频| 国产黄色小视频在线观看| 久久久久久久亚洲中文字幕 | 丝袜美腿在线中文| 欧美乱色亚洲激情| 精品久久久久久久毛片微露脸| 国产aⅴ精品一区二区三区波| 精品久久久久久,| 久9热在线精品视频| 亚洲av五月六月丁香网| 香蕉丝袜av| 国产探花在线观看一区二区| 美女黄网站色视频| 精品99又大又爽又粗少妇毛片 | 国产免费一级a男人的天堂| 日日干狠狠操夜夜爽| 怎么达到女性高潮| 岛国视频午夜一区免费看| 精品日产1卡2卡| 日本免费一区二区三区高清不卡| 欧美成狂野欧美在线观看| 久久久久国产精品人妻aⅴ院| 国产成人福利小说| 国产色爽女视频免费观看| 欧美在线黄色| 色视频www国产| 国产免费一级a男人的天堂| 欧美黑人巨大hd| 中文资源天堂在线| 淫秽高清视频在线观看| 国产成人av激情在线播放| avwww免费| 国产视频内射| 伊人久久大香线蕉亚洲五| 欧美绝顶高潮抽搐喷水| 五月玫瑰六月丁香| 国产色爽女视频免费观看| 国产不卡一卡二| 国内精品久久久久久久电影| 精品人妻偷拍中文字幕| 亚洲五月天丁香| 国产熟女xx| 哪里可以看免费的av片| 午夜精品一区二区三区免费看| 搡女人真爽免费视频火全软件 | 嫩草影视91久久| 黄片大片在线免费观看| 欧美日韩综合久久久久久 | 亚洲国产精品sss在线观看| 操出白浆在线播放| 国产精品综合久久久久久久免费| 精品欧美国产一区二区三| 在线观看66精品国产| 亚洲av第一区精品v没综合| 精品国内亚洲2022精品成人| 中文字幕人妻丝袜一区二区| 国产成人a区在线观看| 久久99热这里只有精品18| 老司机午夜福利在线观看视频| 日韩精品青青久久久久久| 男人的好看免费观看在线视频| 欧美不卡视频在线免费观看| 女人十人毛片免费观看3o分钟| 9191精品国产免费久久| 90打野战视频偷拍视频| 一级毛片高清免费大全| 国产亚洲欧美在线一区二区| 国产伦精品一区二区三区四那| 在线免费观看的www视频| 亚洲精品乱码久久久v下载方式 | 啦啦啦韩国在线观看视频| 宅男免费午夜| 久久人妻av系列| 国产伦精品一区二区三区视频9 | 搡老岳熟女国产| 非洲黑人性xxxx精品又粗又长| 麻豆久久精品国产亚洲av| 国产成人影院久久av| 又黄又爽又免费观看的视频| 久久6这里有精品| 亚洲一区二区三区不卡视频| 亚洲av一区综合| 欧美高清成人免费视频www| 国产成人福利小说| 日日摸夜夜添夜夜添小说| 五月玫瑰六月丁香| 国产成人av激情在线播放| 91麻豆精品激情在线观看国产| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产欧美网| 国产乱人视频| 免费人成视频x8x8入口观看| 一卡2卡三卡四卡精品乱码亚洲| 一进一出抽搐动态| 亚洲欧美日韩东京热| 色av中文字幕| 国产亚洲精品av在线| av国产免费在线观看| 国产精品久久视频播放| 免费一级毛片在线播放高清视频| 少妇人妻一区二区三区视频| 在线观看午夜福利视频| 成人精品一区二区免费| 国产不卡一卡二| 欧美成狂野欧美在线观看| 国产熟女xx| 午夜免费观看网址| x7x7x7水蜜桃| 黄色日韩在线| 琪琪午夜伦伦电影理论片6080| 亚洲欧美精品综合久久99| 午夜两性在线视频| 国产精品爽爽va在线观看网站| 成人亚洲精品av一区二区| 国产一级毛片七仙女欲春2| 中文字幕熟女人妻在线| 国产精品 欧美亚洲| 大型黄色视频在线免费观看| а√天堂www在线а√下载| 午夜精品一区二区三区免费看| av国产免费在线观看| 日韩亚洲欧美综合| 日韩国内少妇激情av| 日本精品一区二区三区蜜桃| 99riav亚洲国产免费| 嫩草影院精品99| 国产精品久久久久久亚洲av鲁大| 国产精品嫩草影院av在线观看 | 国产欧美日韩一区二区三| 久久草成人影院| 好男人电影高清在线观看| 在线观看午夜福利视频| 国产免费男女视频| 国产成人福利小说| 精品久久久久久久久久久久久| 午夜影院日韩av| 黄色片一级片一级黄色片| 三级国产精品欧美在线观看| 99久久无色码亚洲精品果冻| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 又黄又爽又免费观看的视频| 88av欧美| 99久久成人亚洲精品观看| 99久久久亚洲精品蜜臀av| 天天躁日日操中文字幕| 搡老熟女国产l中国老女人| 久久精品国产清高在天天线| 午夜激情欧美在线| 久久国产精品影院| 中文字幕熟女人妻在线| 久久伊人香网站| 日韩欧美国产一区二区入口| 最后的刺客免费高清国语| 亚洲一区二区三区不卡视频| 岛国视频午夜一区免费看| 久久精品国产99精品国产亚洲性色| 精品一区二区三区视频在线观看免费| 制服丝袜大香蕉在线| 亚洲在线观看片| 少妇丰满av| 三级毛片av免费| av天堂中文字幕网| 免费观看人在逋| 中文字幕久久专区| av欧美777| 在线看三级毛片| 精品一区二区三区视频在线观看免费| 精品免费久久久久久久清纯| 一区二区三区国产精品乱码| 免费电影在线观看免费观看| 成年免费大片在线观看| eeuss影院久久| 亚洲不卡免费看| 香蕉av资源在线| 99热这里只有是精品50| 成年女人永久免费观看视频| 国产伦一二天堂av在线观看| 69av精品久久久久久| 婷婷精品国产亚洲av| 成人无遮挡网站| 午夜福利在线观看免费完整高清在 | 欧美成人性av电影在线观看| 少妇熟女aⅴ在线视频| 亚洲aⅴ乱码一区二区在线播放| 国产乱人伦免费视频| 国产精品久久视频播放| 色哟哟哟哟哟哟| 女警被强在线播放| 日韩成人在线观看一区二区三区| 日韩欧美在线二视频| 久久中文看片网| 国产色婷婷99| 黄色视频,在线免费观看| 久久精品国产亚洲av涩爱 | 高清在线国产一区| 国产欧美日韩精品亚洲av| 小蜜桃在线观看免费完整版高清| 国产伦人伦偷精品视频| 亚洲av五月六月丁香网| 亚洲最大成人手机在线| 日韩欧美国产一区二区入口| 色综合欧美亚洲国产小说| 99久久精品热视频| 免费观看精品视频网站| 99国产综合亚洲精品| 成人高潮视频无遮挡免费网站| 最近最新免费中文字幕在线| 午夜福利在线观看免费完整高清在 | 美女高潮的动态| 色噜噜av男人的天堂激情| 日韩欧美国产在线观看| 国产欧美日韩精品亚洲av| 18+在线观看网站| 亚洲av第一区精品v没综合| 波野结衣二区三区在线 | 精品福利观看| 欧美色视频一区免费| 婷婷精品国产亚洲av在线| 欧美成人免费av一区二区三区| 国产精品久久久久久精品电影| 国产单亲对白刺激| 在线观看一区二区三区| 亚洲在线观看片| 国产精品爽爽va在线观看网站| 一个人看视频在线观看www免费 | 欧美+亚洲+日韩+国产| 又爽又黄无遮挡网站| 草草在线视频免费看| 天堂网av新在线| 国产一区二区三区在线臀色熟女| 手机成人av网站| 国产成人影院久久av| 国内少妇人妻偷人精品xxx网站| 欧美黄色淫秽网站| 精品国产美女av久久久久小说| 99精品在免费线老司机午夜| 性色av乱码一区二区三区2| 在线观看66精品国产| 国产淫片久久久久久久久 | 一进一出好大好爽视频| 国产激情偷乱视频一区二区| av视频在线观看入口| 一区二区三区激情视频| 在线看三级毛片| 日本 av在线| 国内精品久久久久精免费| 黄色视频,在线免费观看| 老司机在亚洲福利影院| 99精品久久久久人妻精品| 日韩成人在线观看一区二区三区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 叶爱在线成人免费视频播放| 国产精品99久久99久久久不卡| 最近在线观看免费完整版| 亚洲乱码一区二区免费版| 色尼玛亚洲综合影院| 国产一区二区在线av高清观看| 内射极品少妇av片p| 99riav亚洲国产免费| 久久精品人妻少妇| 欧美中文综合在线视频| 国产成人福利小说| 又黄又爽又免费观看的视频| 亚洲五月婷婷丁香| 亚洲精品在线观看二区| 成人18禁在线播放| 欧美性猛交黑人性爽| 99久久九九国产精品国产免费| 久久久色成人| 美女大奶头视频| 最近最新中文字幕大全电影3| 露出奶头的视频| 网址你懂的国产日韩在线| 麻豆国产av国片精品| 亚洲国产精品999在线| 国产高清videossex| 欧美性猛交黑人性爽| 免费看光身美女| 久久九九热精品免费| 国产男靠女视频免费网站| 国产精品永久免费网站| 综合色av麻豆| 三级男女做爰猛烈吃奶摸视频| 麻豆成人午夜福利视频| av国产免费在线观看| 最新美女视频免费是黄的| 国产一区二区亚洲精品在线观看| 白带黄色成豆腐渣| 女警被强在线播放| 婷婷六月久久综合丁香| 午夜视频国产福利| 精品久久久久久久末码| 久久久久亚洲av毛片大全| 在线播放国产精品三级| 亚洲狠狠婷婷综合久久图片| 婷婷精品国产亚洲av| 一进一出抽搐动态| 久久婷婷人人爽人人干人人爱| 国产精品野战在线观看| 老鸭窝网址在线观看| 久久精品人妻少妇| www.熟女人妻精品国产| 亚洲av电影在线进入| 成人国产综合亚洲| 亚洲国产色片| 日本 av在线| 午夜视频国产福利| 日韩av在线大香蕉| 午夜福利高清视频| 亚洲精品乱码久久久v下载方式 | 国产精品亚洲美女久久久| 男插女下体视频免费在线播放| 欧美日本亚洲视频在线播放| 真实男女啪啪啪动态图| 搡老妇女老女人老熟妇| 悠悠久久av| 成熟少妇高潮喷水视频| 国产一区二区在线av高清观看| 激情在线观看视频在线高清| 在线观看免费午夜福利视频| 久久婷婷人人爽人人干人人爱| 日韩欧美在线乱码| 最后的刺客免费高清国语| 国产三级在线视频| 日本一本二区三区精品| 国产高清有码在线观看视频| 国产爱豆传媒在线观看| 高清在线国产一区| 俄罗斯特黄特色一大片| 亚洲成人免费电影在线观看| 国产97色在线日韩免费| 精品乱码久久久久久99久播| 伊人久久精品亚洲午夜| 午夜精品久久久久久毛片777| av欧美777| 看黄色毛片网站| 一边摸一边抽搐一进一小说| 国产午夜精品久久久久久一区二区三区 | 小说图片视频综合网站| e午夜精品久久久久久久| 男女床上黄色一级片免费看| 成人高潮视频无遮挡免费网站| 日韩有码中文字幕| 黄色女人牲交| 一本综合久久免费| 欧美色视频一区免费| 一a级毛片在线观看| 中文字幕高清在线视频| 免费看十八禁软件| 精品久久久久久,| 中文字幕久久专区| 亚洲精华国产精华精| 日本与韩国留学比较| 淫妇啪啪啪对白视频| 欧美在线一区亚洲| 日韩精品青青久久久久久| 久久国产精品人妻蜜桃| а√天堂www在线а√下载| 大型黄色视频在线免费观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | а√天堂www在线а√下载| 国产高潮美女av| 在线播放国产精品三级| 免费大片18禁| 久久久久久九九精品二区国产| 黄色丝袜av网址大全| 天天添夜夜摸| 人妻夜夜爽99麻豆av| 精品99又大又爽又粗少妇毛片 | 麻豆国产97在线/欧美| av天堂中文字幕网| 最新在线观看一区二区三区| 床上黄色一级片| 一级黄色大片毛片| 99久国产av精品| 亚洲av电影在线进入| 在线天堂最新版资源| 成熟少妇高潮喷水视频| 亚洲av日韩精品久久久久久密| 夜夜看夜夜爽夜夜摸| 亚洲欧美激情综合另类| 久久精品影院6| 网址你懂的国产日韩在线|