• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CuNPs@Cu(Ⅱ)-AMTD金屬有機凝膠復合材料的合成及其催化性能

    2018-03-14 06:35:59孫飛飛封其春周映華1
    無機化學學報 2018年3期
    關鍵詞:李鋼碩士論文安徽師范大學

    承 勇 孫飛飛 封其春 周映華1,

    (1教育部功能分子固體重點實驗室,蕪湖 241000)

    (2安徽師范大學化學與材料科學學院,蕪湖 241000)

    0 Introduction

    During the last two decades,a substantial body of research has been directed toward the synthesis of metal nanoparticles in efforts to explore their special properties and potential applications[1-3].Among various metal particles,copper nanoparticles (CuNPs)have attracted considerable attention because oftheir catalytic,optical,electrical conducting and antifungal/antibacterial properties[4-5].CuNPs are considered as a viable alternative to noble metal nanoparticles in certain fields such as antibacterialapplication,organic synthesis,and catalytic reaction.However,copper nanoparticles are known to be extremely sensitive to oxygen by forming copper oxide nanoparticles and are also apt to aggregate into large sized aggregation due to their high surface energy and high reactivity,resulting in the deterioration of their unique properties[6-7].Therefore,it is desirable to use a matrix that could bind the copper nanoparticles and protect them from oxidizing environment[8-14].Up to now,many strategies have been reported for the preparation of hybrid polymeric gel materials containing metal nanoparticles[15-18],however,there are rare concerned with polymeric gel copper composites.

    Polymeric gel material has been regarded as one of the most promising substrate for stabilization of metallic nanoparticles[19-20].Polymeric gel metal composites are viable catalysts because the loosely bound dynamic fibrous structure expected to enhance easy access to the metal nanoparticles[21-23].The catalytic performance and stability of metal nanoparticles can be enhanced by incorporating functional groups such as-NH2,-CONH,and-SiH[24-26].Synthesis of efficient,robust,and reusable homogeneously dispersed copper nanoparticles supported in polymeric gel with enhanced functionalities is still a major challenge.

    In this paper,we describe the successful fabrication of copper nanoparticles within Cu(Ⅱ)-AMTD metal-organicgelmatrix.Thecomposites obtained were characterized by IR,SPR,SEM,TEM,EDX and XPS.It displays highly activity in catalytic 4-nitrophenol and other nitroarenes using NaBH4as a reductant performed in an aqueous solution.Considering the wide-ranging potential applications of a metal-organic gel as a host material for a variety of metal nanoparticals,the approach developed here may lead to new possibilitiesforthe fabrication of nanoparticals/metal-organic gel composites endowed with multiple functionalities.

    1 Experimental

    1.1 Apparatus and materials

    All analytical grade solvents and reagents were used without further purification.The precursor 2-amino-5-mercapto-1,3,4-thiadiazole was prepared according to the published procedures[27].4-nitrophenol(4-NP),2-nitrophenol (2-NP),4-nitroaniline (4-NA)and 8-hydroxy-5-nitroquinoline (8-H-5-NQ) were purchased from Aladdin Chemical Reagent Co.Ltd.,China.Cu (Ac)2,N,N-dimethylformamide (DMF)were purchased from Shanghai Lingfeng Chemical Reagent Co.,Ltd.China.Water was deionized and doubledistilled.

    Fourier transform infrared spectra (FT-IR)were taken on a Shimadzu FTIR-8400S spectrometer with a KBrpellettechnique.Ultraviolet-visible (UV-Vis)spectra experiments were performed on a Yuanxi UVVis 8000A spectrophotometer.Field emission scanning electron microscope (FESEM)images were obtained using a Hitachi S-4800 scanning electron microscope operating at an accelerating voltage of 5.0 kV.Energy Dispersive X-ray Spectroscopy (EDX)was taken with a Hitachi S-4800 scanning electron microscope.The transmitting electron microscopy (TEM)images were recorded on a JEOL-2011 transmission electron microscope at an accelerating voltage of 200 kV.X-ray photoelectron spectra (XPS)experiments were performed on a Thermo ESCALAB 250XI multifunctional imaging electron spectrometer. Nitrogen adsorption-desorption were obtained using a Nova 2000E surface analyzer.Pore-size distribution was determined from the adsorption branch ofthe isotherms using the Barett-Joyner-Halenda (BJH)method.

    1.2Preparation of CuNPs@Cu(Ⅱ)-AMTD composites

    DMF solution (1 mL)of AMTD (0.013 4 g,0.1 mmol)was placed in a centrifuge tube.To this,1 mL aqueous solution of Cu(Ac)2(0.020 1 g,0.1 mmol)was added.This immediately results in a dark blue color solution.After little shaking,the mixture was left to stand undisturbed.About 5 minutes,a dark green opacity gel appeared of which the gel state primarily confirmed by the retardation of flow of the materials upon “inversion ofthe centrifuge tube”.The CuNPs@Cu(Ⅱ)-AMTD green powder was obtained by drying the gel at 80℃in the drying oven about 48 h to constant weight(Scheme 1).

    1.3 Catalytic reduction of 4-NP and other nitroarenes

    Scheme 1 Formation of Cu(Ⅱ)-AMTD metal-organic gel

    To investigate the catalytic efficiency and reusability of the CuNPs@Cu(Ⅱ)-AMTD composites,reduction of 4-NP was performed according to the published procedure[28-29].100 mg CuNPs@Cu(Ⅱ)-AMTD wasadded in a solution containing 50 mL of deionized water to obtain a suspension solution by ultrasonic dispersion.A freshly prepared aqueous solution of NaBH4(56.0 mg,25 mL)was mixed with a 4-NP aqueous solution (10.43 mg,25 mL) (nNaBH4/nsubstrate=5.4)leading to a color change from light yellow to yellow-green.Subsequently,the catalyst suspension solution was added to the mixture under continuous stirring to initiate the reduction reaction.At each time interval,1 mL of the aqueous solution was withdrawn and diluted to 3.0 mL to analyze the reduction efficiency.Since the absorbance of 4-NP is proportional to its concentration in the solution,the ratio of absorbance at time t (At)to that at t=0 (A0)should be equal to the concentration ratio Ct/C0of 4-NP.Consequently,the conversion progress could be directly reflected by the absorption intensity.Therefore,a UVVis spectrophotometer was employed to monitor the progress of the conversion of 4-NP to 4-AP at ambient temperature.For comparison,the control experiment was also carried out under the same experimental condition using AMTD as catalyst.The catalytic activity of the as-prepared CuNPs@Cu(Ⅱ)-AMTD for the reduction of other nitroarenes were also investigated under the same condition.

    To test the recyclability of the catalyst,five successive cycles of catalytic reduction were carried out employing a definite amount of catalyst.In the successivecycles,the catalystwascollected by centrifugation from the solution and washed with ethanol and water several times,and used for the next cycling.

    2 Results and discussion

    2.1Formation of CuNPs@Cu(Ⅱ)-AMTD composites

    Cu(Ⅱ)-AMTD metal-organic gel was prepared by copper acetate and AMTD in DMF/H2O as shown in Scheme 1.To understand the coordination behavior between AMTD and Cu2+,we attempted to obtain crystal structure of the related complex,but not successful.In the absence of a suitable single crystal to undertake X-ray crystallography,we proposed that in the gel the nitrogen atom of thiadiazole ring and sulfur atom of thiol are coordinated with two Cu2+,respectively,forming a coordination polymer.Every Cu2+ion is coordinated with four AMTD,two of them act as N donor while the other two act as S donor ligand.Cu2+is linked by AMTD ligand,forming an extended 2D layer network structure.It is noteworthy to point out that there are hydrogen bonds between the solvent H2O and the amino group in the Cu(Ⅱ)-AMTD coordination polymer which formed the metalorganic gel.Considering the reducibility of-NH2in AMTD,we speculate that Cu(Ⅱ)ion would be reduced to copper (0)and CuNPs would existed in the gel matrix.The S atom of thiadiazole ring could also stabilize the CuNPs.Consequently,the Cu(Ⅱ)-AMTD coordination polymer could be served as a directing medium for the synthesis of CuNPs,which were embedded in the gelmatrix,providing a gelcomposites.

    2.2 Characterization of CuNPs@Cu(Ⅱ)-AMTD composites

    To investigate the morphologies of the composites,SEM were carried out on the xerogel of CuNPs@Cu(Ⅱ)-AMTD.As shown in Fig.1a,the SEM image clearly displays 2D layer fibrillar network,which consistent with the structure of Cu(Ⅱ)-AMTD coordination polymer that we proposed in Scheme 1.

    Nitrogen adsorption-desorption measurements were performed to validate the inner architectures of the 2D layernetwork.The nitrogen adsorptiondesorption isotherms and the pore size distribution curve are shown in Fig.2b (inset).The BET surface area of the gel was calculated as about 4 m2·g-1.In addition,the isotherm exhibits a hysteresis loop in the p/p0range of 0.64 to 0.98.This clearly indicates that the gel exhibits a large structural porosity.The pore size distribution of the gel shows a narrow peak in pore size region of 12.4~42.8 nm.That is mainly caused by the accumulation of the gel fibrillar network.

    Fig.1 (a)SEM image of CuNPs@Cu(Ⅱ)-AMTD composites;(b)Nitrogen adsorption-desorption isotherms of CuNPs@Cu(Ⅱ)-AMTD composites with corresponding pore-size distribution (inset)calculated by BJH method from the desorption branch

    Fig.2 (a,b)TEM images of the CuNPs@Cu(Ⅱ)-AMTD composites;(c)Particles size distribution of CuNPs;(d)EDX image of CuNPs@Cu(Ⅱ)-AMTD composites

    TEM measurements were carried out to characterize the morphology and size distribution of copper nanoparticles embedded in the Cu(Ⅱ)-AMTD metal-organic gel matrix.Observing the formed CuNPs directly in the gel is difficult because the gel is too chick to be opaque for the electron beam.In this work,the gel was diluted as a suspension solution for the measurement of TEM.It can be seen that CuNPs were spherical in nature (Fig.2a).The TEM image enlarged version clearly showing the lattice spacing of 0.12 nm,corresponding to the Cu (220)plane (Fig.2b).The particles size distribution shows that a significant amount of nanoparticles are below 5 nm (Fig.2c).Notably,no reflections assignable to metallic CuNPs were present in the XRD pattern of CuNPs@Cu(Ⅱ)-AMTD,possible because the CuNPs content was below the detection limit and/or due to the poor crystallinity of the CuNPs in the composites.Energydispersive X-ray spectroscopy (EDX)was performed on the xerogelwhich determined the elemental composition of copper,chlorine,nitrogen,and carbon(Fig.2d).

    To examine the CuNPs in the gel,the samples with different ratios (nCu(Ⅱ)/nAMTD=0.15,0.20,0.25,0.30,0.35)were dissolved in H2O.A small hump at around 345 nm was observed in the UV-Vis absorption spectrum (Fig.3a).It can be assigned to a typical surface plasmon resonance (SPR)excitation from the CuNPs.Furthermore,no apparent SPR absorption band appearing at around 560~600 nm was observed,indicating the absence of large CuNPs[30-32].

    Fourier transformed infrared spectroscopy was performed to identify the nature of participation of functional groups present in the ligand and in the corresponding CuNPs@Cu(Ⅱ)-AMTD composites (Fig.3b).The free ligand shows absorption peaks at 3 342,3 254 and 1 609 cm-1that can be assigned to N-H stretching and bending vibrations of-NH2group,which are weaken in the composites.Another broad area was observed near 3 430 cm-1,which could be assigned to the hydrogen bonding of a-OH group of solvent H2O.The peaks at 3 115 and 2 910 cm-1in free ligand assigned to the N-H of thiadiazole ring[33]in the resonance structure are disappeared in the composites,which indicate the coordination of the metal to the N-atom.The weak vibration frequency for-SH stretch at 2 750 cm-1in the ligand is absent in the composites.These observations indicate that the coordination of copper ions with the S atom of thiol group and the N atom of thiadiazole ring in the gel.

    Fig.3 (a)UV-Vis absorption spectra of CuNPs in the gel matrix with different ratios (nCu(Ⅱ)∶nAMTD=0.15,0.20,0.25,0.30,0.35);(b)FT-IR spectra obtained from AMTD and CuNPs@Cu(II)-AMTD composites

    Fig.4 (a)XPS of CuNPs@Cu(Ⅱ)-AMTD composites;(b)High-solution XPS of Cu2p electrons

    For the purpose of gaining insight into components of the CuNPs@Cu(Ⅱ)-AMTD composites,XPS survey spectra were performed.As shown in Fig.4a,five major peaks of S2p,C1s,N1s,O1s,Cu2p obviously emerged in the spectrum,indicating that CuNPs@Cu(Ⅱ)-AMTD prepared here were mainly composed of C,O,N,S and Cu.The oxidation state of copper in samples was also studied by XPS.As shown in Fig.4b,two fitting peaks at 934.6 and 954.3 eV were observed in the Cu2p XPS spectrum,corresponding to the binding energies of Cu2p3/2and 2p1/2,respectively,indicating the existence of Cu(0)or Cuガin the composites[34-35].Furthermore,there was a peak displayed around 942.7 eV, demonstrating the existence of Cu(Ⅱ)[36],which maybe attribute to Cu(Ac)2-AMTD coordination polymerin the composites(Scheme 1).

    2.3 Catalytic reduction of nitroarene

    4-Nitrophenol (4-NP) is one ofthe most hazardous and toxic organic pollutants in waste-water generated from agricultural and industrial sources.4-Aminophenol(4-AP)is also an important intermediate on the manufacture of antipyretic and analgesic drugs.The development of an effective catalysts is expected for the reduction of 4-NP to 4-AP[37-40].So,we choose the reduction of 4-NP as a model reaction to evaluate the catalytic activity of our synthesized composites.

    Normally,the 4-NP solution shows an absorbance peak at 317 nm under neutral conditions,which shifts to 400 nm after adding NaBH4because of the formation of 4-nitrophenolate ions via deprotonation(pKa=7.2)[42-43].During the reduction of 4-NP to 4-AP,the intensity of the absorption peak at 400 nm gradually decreased because of the consumption of 4-NP,resulting in the fading and ultimate bleaching of the yellow-green color of 4-nitrophenolate.Meanwhile,the generation of reduction product 4-AP led to a new UV-Vis peak at approximately 300 nm (Fig.5a)[44].

    Fig.5b presents the time-dependent evolution of theUV-Vis spectra of this reaction with CuNPs@Cu(Ⅱ)-AMTD as catalyst,showing a successive intensity decrease in the absorption peak at 400 nm,along with a concomitant appearance of a new peak at about 300 nm.All the spectra intersect each other at two points,indicating that the nitro compound was gradually converted to 4-AP without the formation of byproducts[45].After a 12 min reaction,the peak at 400 nm ascribed to 4-nitrophenolate disappeared,indicating the complete transformation of the 4-NP.Meanwhile,at the end of the reaction,the peak for 4-NP almost disappeared and only the peak for 4-AP could be observed,thus suggesting the presence of product with high purity.Additionally,the control experiment was performed by taking AMTD instead of CuNPs@Cu(Ⅱ)-AMTD.In this case,the intensity of the peak at 400 nm remained unchanged even after 12 h,confirming the catalytic role of CuNPs on the reduction reaction.

    Given that the concentration of NaBH4significantly exceeds that of 4-NP in the reaction system,the reduction rate was roughly independent of NaBH4concentration.Generally,the kinetics can be considered as pseudo-first-order with respect to 4-NP[46].In this case,the consumption of 4-NP is given by

    where rtis the consumption rate of 4-NP at time t,Ctis the concentration of 4-NP at time t,and k is the first-order rate constant.

    Fig.5 (a)UV-Vis absorption spectra of 4-nitrophenol and 4-aminephenol;(b)Successive UV-Vis absorption spectra of the reduction of 4-nitrophenol by NaBH4in the presence of CuNPs@Cu(Ⅱ)-AMTD composites;(c)Plot of ln(Ct/C0)against time (inset:Ct/C0~t);(d)Conversion efficiency of 4-NP in five successive cycles

    Fig.5c shows ln(Ct/C0)versus reaction time for the reduction of 4-NP using the CuNPs@Cu(Ⅱ)-AMTD as catalyst.ln(Ct/C0) was obtained from the relative intensity of the absorption at 400 nm because the absorption intensity of 4-NP is proportional to its concentration in the medium.The linear relationship between ln(Ct/C0)and reaction time (t)confirms the pseudo-first-order kinetics.The rate constant (k)of the catalytic reaction was 2.5×10-3s-1from the slope of the linear plot,which is higher than that of CuNPs(1.6×10-3s-1)[47],but was lower than that of Cu-TOCNF(2.4×10-2s-1)[48]and CuNCs (8.2×10-3s-1)[49].The ratio of the rate constant to the catalyst weight was 0.025 s-1·g-1.Generally,the rate constant of catalytic reaction is affected by the concentration or loading amount of CuNPs.

    Stability and recyclability is of great importance for the practical applications of catalysts.Recycling andreuseofCuNPs@Cu(Ⅱ)-AMTD werefurther examined under the same reaction conditions as that of the first cycle.As shown in Fig.5d,the catalyst can be successfully recycled and reused for five successive cycles of reaction with a conversion efficiency (~82%),indicating the stable and high recycling efficiency of the CuNPs@Cu(Ⅱ)-AMTD.The good recyclability of CuNPs@Cu(Ⅱ)-AMTD should be attributed to the strong stabilization ability of metal-organic gel matrix toward the CuNPs.These results clearly demonstrate that the Cu(Ⅱ)-AMTD metal-organic gel are excellent supporting carrier for CuNPs growth and immobilization because of their high specific surface area and interwoven fibrous structure properties.

    The CuNPs@Cu(Ⅱ)-AMTD can also be used for the reduction of other nitrobenzene analogues such as 4-NA,2-NP and 8-H-5-NQ.Here,we choose to run the reactions in the presence of CuNPs@Cu(Ⅱ)-AMTD catalyst and nitroarene with NaBH4to clearly monitor the conversion efficiency of the reaction.As shown in Fig.6,the composite exhibits high reactivity with excellent yields toward these nitroarenes compounds.It is also interesting to note that the 2-nitrophenol displays better conversion efficiency than other analogues.

    Fig.6 Reduction of various nitroarenes using CuNPs@Cu(Ⅱ)-AMTD as catalyst:(a)4-NA,(b)2-NP and (c)8-H-5-NQ

    The mechanism of the catalytic reaction could be explained by the Langmuir-Hinshelwood mechanism(Fig.7).NaBH4ionized in water to offer BH4-,providing surface hydrogen for the reaction.BH4-acted as the electron donor,whereas 4-NP acted as the electron acceptor.CuNPs act as an electronic relay agent to overcome the kinetic barrier,allowing the electron transfer from BH4-to 4-NP[43].Because of the strong adsorbing ability of the Cu(Ⅱ)-AMTD metal-organic gel,NaBH4and 4-NP could be rapidly adsorbed on the surface of gel,where the copper particles could relay electrons from the donor of BH4-to the acceptor of 4-NP,and promote the occurrence of reduction reaction.Therefore,the high catalytic activity arises from the synergistic effect of Cu(Ⅱ)-AMTD metalorganic gel and CuNPs:the high adsorption and electron transfer ability.

    Fig.7 Proposed the mechanism of the reduction of 4-NP to 4-AP

    3 Conclusions

    In conclusion,a novel composites CuNPs@Cu(Ⅱ)-AMTD were obtained by using Cu(Ⅱ)-AMTD metalorganic gel as a platform for in situ growth copper nanoparticleswithin gelmatrix.The as-prepared material is an efficient catalyst in the reduction of nitroarenes compounds.Such composites were thus expected to have the potential to be a new class of highly efficient,fully renewable heterogeneous catalyst for industrial applications.

    [1]ScholtenJD,LealBC,DupontJ.ACSCatal.,2012,2:184-200

    [2]Iablokov V,Beaumont S K,Alayoglu S,et al.Nano Lett.,2012,12:3091-3096

    [3]David C,De Abajo F J G.J.Phys.Chem.C,2011,115:19470-19475

    [4]Villanueva M E,Diez A M R,Gonzalez J A,et al.ACS Appl.Mater.Interfaces,2016,8:16280-16288

    [5]Manthiram K,Beberwyck B J,Alivisatos A P.J.Am.Chem.Soc.,2014,136:13319-13325

    [6]Park B K,Jeong S,Kim D,et al.J.Colloid Interface Sci.,2007,311:417-424

    [7]BenaventeE,LozanoH,Gonzalez G.Recent Pat.Nanotechnol.,2013,7:108-132

    [8]Kanninen P,Johans C,Merta J,et al.J.Colloid Interface Sci.,2008,318:88-95

    [9]Ruiz P,Munoz M,Macanás J,et al.Chem.Mater.,2010,22:6616-6623

    [10]Mallick S,Sharma S,Banerjee M,et al.ACS Appl.Mater.Interfaces,2012,4:1313-1323

    [11]Bogdanovi U,Vodnik V,Mitri M,et al.ACS Appl.Mater.Interfaces,2015,7:1955-1966

    [12]Gholinejad M,Jeddi N.ACS Sustainable Chem.Eng.,2014,2:2658-2665

    [13]Tokarek K,Hueso J L,Kustrowski P,et al.Eur.J.Inorg.Chem.,2013:4940-4947

    [14]Li B J,Li Y Y,Wu Y H,et al.Mater.Sci.Eng.C,2014,35:205-211

    [15]Che Y,Zinchenko A,Murata S.J.Colloid Interface Sci.,2015,445:364-370

    [16]Das D,Kar T,Das P K.Soft Matter,2012,8:2348-2356

    [17]Maity I,Rasale D B,Das A K.Soft Matter,2012,8:5301-5308

    [18]Roy S,Banerjee A.Soft Matter,2011,7:5300-5308

    [19]SHENG Li-Ying(沈利英),YU Hai-Tao(于海濤),HE Xuan(何璇),et al.Chin.J.Org.Chem.(有 機化學),2009,29(4):548-563

    [20]WU Ting(吳 婷 ).Thesis for the Master of Anhui Normal University(安徽師范大學碩士論文),2014.

    [21]Lu Y,Spyra P,Mei Y,et al.Macromol.Chem.Phys.,2007,208:254-261

    [22]Otari S V,Patil R M,Waghmare S R.Dalton Trans.,2013,42:9966-9975

    [23]Díaz D D,Kuhbeck D,Koopmans R J.Chem.Soc.Rev.,2011,40:427-448

    [24]Li J,Zhu J W,Liu X H.Dalton Trans.,2014,43:132-137

    [25]Zheng Y,Wang A Q.J.Mater.Chem.,2012,22:16552-16559

    [26]Gupta N R,Prasad B LV,Gopinath G S,et al.RSC Adv.,2014,4:10261-10268

    [27]Misra U,Shukla S,Gurtu S,et al.Boll.Chim.Farm.,1995,134:492-496

    [28]Liang M,Su R,Huang R,et al.ACS Appl.Mater.Interfaces,2014,6:4638-4649

    [29]Liang M,Wang L,Liu X,et al.Nanotechnology,2013,24:245601

    [30]Lisiecki I,Piled M P.J.Phys.Chem.,1995,99:5077-5082

    [31]Salzemann C,Lisiecki I,Brioude A,et al.J.Phys.Chem.B,2004,108:13242-13248

    [32]Mott D,Galkowski J,Wang L Y,et al.Langmuir,2007,23:5740-5745

    [33]Chufán E E,Pedregosa J C,Borrás J.Vib.Spectrosc.,1997,15:191-199

    [34]Bradwell D J,Osswald S,Wei W F,et al.J.Am.Chem.Soc.,2011,133:19971-19975

    [35]Balogh L,Tomalia D A.J.Am.Chem.Soc.,1998,120:7355-7356

    [36]Wu C K,Yin M,OBrien S,et al.Chem.Mater.,2006,18:6054-6058

    [37]AdityaT,PalbA,PalT.Chem.Commun.,2015,51:9410-9431

    [38]Zhao P X,Feng X W,Huanga D S,et al.Coord.Chem.Rev.,2015,287:114-136

    [39]Wang C,Cigand R,Salmon L,et al.Angew.Chem.Int.Ed.,2016,55:3091-3095

    [40]Wang C,Salmon L,Li Q,et al.Inorg.Chem.,2016,55:6776-6780

    [41]JIANG Jun (姜?。?LI Gang (李鋼),KONG Ling-Hao (孔令浩).Acta Phys.-Chim.Sin.(物理化學學報),2015,31(1):137-144

    [42]Yang M Q,Weng B,Xu Y J.Langmuir,2013,29:10549-10558

    [43]Wang H,Dong Z X,Na C Z.ACS Sustainable Chem.Eng.,2013,1:746-752

    [44]Liu C H,Chen X Q,Hu Y F,et al.ACS Appl.Mater.Interfaces,2013,5:5072-5079

    [45]Liang M,Wang L,Su R X,et al.Catal.Sci.Technol.,2013,3:1910-1914

    [46]Zhu C H,Hai Z B,Cui C H.Small,2012,8:930-936

    [47]Deka P,Deka R C,Bharali P.New J.Chem.,2014,38:1789-1793

    [48]Bendi R,Imae T.RSC Adv.,2013,3:16279-16282

    [49]Zhang P H,Sui Y M,Xiao G J,et al.J.Mater.Chem.A,2013,1:1632-1638

    猜你喜歡
    李鋼碩士論文安徽師范大學
    李鋼書法作品欣賞
    海歸李鋼:“紅杉人”民族魂“僑聯(lián)”中國心
    華人時刊(2021年13期)2021-11-27 09:19:18
    著名詩人
    鴨綠江(2021年14期)2021-08-18 03:33:00
    苦難英雄任正非
    南風(2020年29期)2020-11-18 06:57:12
    《安徽師范大學學報》(人文社會科學版)第47卷總目次
    Next-Generation Materials for Cutting Tools: Superhard Materials
    漢語國際教育專業(yè)泰國來華留學生碩士論文語言特征分析及教學啟示
    Hemingway’s Marriage in Cat in the Rain
    “雙一流”視域下導師學術品質對研究生培養(yǎng)質量的影響——基于安徽省四屆優(yōu)秀碩士論文評選的實證研究
    《安徽師范大學學報( 自然科學版) 》2016 年總目次
    亚洲va日本ⅴa欧美va伊人久久 | 99精品欧美一区二区三区四区| 人人妻人人澡人人看| 美女中出高潮动态图| 国产精品免费大片| 好男人电影高清在线观看| 免费在线观看完整版高清| 久久久国产精品麻豆| 男人爽女人下面视频在线观看| 日韩中文字幕视频在线看片| 在线看a的网站| 欧美av亚洲av综合av国产av| 99九九在线精品视频| 欧美成狂野欧美在线观看| 黄片小视频在线播放| 欧美 亚洲 国产 日韩一| 亚洲欧美一区二区三区黑人| av在线app专区| 精品国产乱子伦一区二区三区 | 午夜福利视频精品| 国产熟女午夜一区二区三区| 久久国产精品男人的天堂亚洲| 一级a爱视频在线免费观看| 精品第一国产精品| 男女边摸边吃奶| 国产又色又爽无遮挡免| 久久久久国产精品人妻一区二区| 熟女少妇亚洲综合色aaa.| 最近最新中文字幕大全免费视频| 精品卡一卡二卡四卡免费| 亚洲中文av在线| 黄色怎么调成土黄色| kizo精华| 淫妇啪啪啪对白视频 | av线在线观看网站| 久久久国产成人免费| 亚洲三区欧美一区| 国产免费福利视频在线观看| 高清欧美精品videossex| 91av网站免费观看| 亚洲欧美激情在线| 19禁男女啪啪无遮挡网站| 国产成人欧美在线观看 | 免费高清在线观看视频在线观看| 久久久精品免费免费高清| 97精品久久久久久久久久精品| 法律面前人人平等表现在哪些方面 | 欧美激情 高清一区二区三区| 91字幕亚洲| 亚洲中文日韩欧美视频| 国产熟女午夜一区二区三区| 性高湖久久久久久久久免费观看| 老司机靠b影院| 99国产精品99久久久久| 亚洲国产欧美在线一区| 天堂中文最新版在线下载| 涩涩av久久男人的天堂| 中文字幕高清在线视频| 亚洲国产欧美在线一区| 成年人黄色毛片网站| 精品人妻熟女毛片av久久网站| 国产亚洲av高清不卡| 两个人看的免费小视频| 女警被强在线播放| 精品国产乱码久久久久久男人| 亚洲第一青青草原| 精品国产一区二区三区四区第35| 韩国高清视频一区二区三区| 欧美另类一区| 中国美女看黄片| 国产av一区二区精品久久| 亚洲午夜精品一区,二区,三区| 欧美少妇被猛烈插入视频| 亚洲精品久久久久久婷婷小说| 五月开心婷婷网| 美女视频免费永久观看网站| 亚洲精品成人av观看孕妇| 午夜免费鲁丝| 日韩制服骚丝袜av| 交换朋友夫妻互换小说| 人妻 亚洲 视频| 精品国产超薄肉色丝袜足j| 91精品国产国语对白视频| 99热国产这里只有精品6| 天天影视国产精品| 日本av手机在线免费观看| 性高湖久久久久久久久免费观看| 老司机影院成人| 久久精品国产亚洲av高清一级| 秋霞在线观看毛片| 性少妇av在线| 热99久久久久精品小说推荐| 日日爽夜夜爽网站| 午夜福利在线免费观看网站| 大片免费播放器 马上看| 黄频高清免费视频| 亚洲精品国产区一区二| 亚洲av片天天在线观看| 青青草视频在线视频观看| 精品熟女少妇八av免费久了| 免费女性裸体啪啪无遮挡网站| 亚洲精品一二三| 天天躁夜夜躁狠狠躁躁| 国产视频一区二区在线看| 夜夜骑夜夜射夜夜干| 丁香六月欧美| 两人在一起打扑克的视频| 国产av又大| 亚洲精品日韩在线中文字幕| 一个人免费在线观看的高清视频 | 久久久水蜜桃国产精品网| 国产又爽黄色视频| 少妇粗大呻吟视频| 97精品久久久久久久久久精品| 美国免费a级毛片| 成人18禁高潮啪啪吃奶动态图| 国产欧美日韩一区二区精品| 日本a在线网址| 中文字幕最新亚洲高清| 成年人黄色毛片网站| 亚洲国产日韩一区二区| 国产又色又爽无遮挡免| 嫩草影视91久久| 亚洲三区欧美一区| 成年人午夜在线观看视频| 搡老熟女国产l中国老女人| 日日夜夜操网爽| 色综合欧美亚洲国产小说| 国产成人影院久久av| 欧美日本中文国产一区发布| 考比视频在线观看| 在线观看人妻少妇| 欧美亚洲日本最大视频资源| 在线观看www视频免费| 激情视频va一区二区三区| 久久人人爽人人片av| 又紧又爽又黄一区二区| 亚洲国产精品成人久久小说| 日韩免费高清中文字幕av| 50天的宝宝边吃奶边哭怎么回事| 大片电影免费在线观看免费| 99久久精品国产亚洲精品| 99久久国产精品久久久| 精品熟女少妇八av免费久了| 操出白浆在线播放| 热99re8久久精品国产| 三级毛片av免费| 日本一区二区免费在线视频| 如日韩欧美国产精品一区二区三区| 男女下面插进去视频免费观看| 国产有黄有色有爽视频| 黑丝袜美女国产一区| 久久中文看片网| 他把我摸到了高潮在线观看 | 热99国产精品久久久久久7| 国产av国产精品国产| 久久青草综合色| 色视频在线一区二区三区| 美女福利国产在线| 久久精品国产综合久久久| 国产av国产精品国产| 免费在线观看日本一区| 在线 av 中文字幕| 亚洲va日本ⅴa欧美va伊人久久 | 国产片内射在线| 十分钟在线观看高清视频www| 久久久精品国产亚洲av高清涩受| 在线观看免费午夜福利视频| 三级毛片av免费| 免费人妻精品一区二区三区视频| cao死你这个sao货| 天天添夜夜摸| 色94色欧美一区二区| 久久女婷五月综合色啪小说| 男女之事视频高清在线观看| 19禁男女啪啪无遮挡网站| 99国产精品免费福利视频| 日韩欧美一区二区三区在线观看 | 国产亚洲av片在线观看秒播厂| 久久久久久人人人人人| 国产亚洲精品第一综合不卡| 精品亚洲成国产av| 美女午夜性视频免费| 青春草视频在线免费观看| 久久久欧美国产精品| 日本黄色日本黄色录像| 欧美日韩中文字幕国产精品一区二区三区 | 无限看片的www在线观看| 亚洲av成人一区二区三| 欧美乱码精品一区二区三区| 国产亚洲精品一区二区www | 人妻一区二区av| 亚洲国产精品999| 日韩电影二区| 另类亚洲欧美激情| 一本一本久久a久久精品综合妖精| 亚洲国产精品999| 久久精品人人爽人人爽视色| 欧美日韩中文字幕国产精品一区二区三区 | 国产成人欧美在线观看 | 老汉色∧v一级毛片| 1024视频免费在线观看| 妹子高潮喷水视频| 91大片在线观看| 亚洲国产精品一区三区| 亚洲av电影在线观看一区二区三区| 亚洲avbb在线观看| 亚洲国产精品一区三区| 男女国产视频网站| 搡老乐熟女国产| 日日爽夜夜爽网站| 亚洲精品国产av成人精品| 在线十欧美十亚洲十日本专区| 99国产精品一区二区三区| 男人爽女人下面视频在线观看| av免费在线观看网站| 精品福利观看| 久久国产精品影院| 动漫黄色视频在线观看| 老熟妇仑乱视频hdxx| 91字幕亚洲| 欧美日韩亚洲高清精品| 日本五十路高清| 日韩精品免费视频一区二区三区| 在线永久观看黄色视频| 深夜精品福利| 欧美日韩中文字幕国产精品一区二区三区 | 午夜免费成人在线视频| 欧美 日韩 精品 国产| 国产在线观看jvid| 久久亚洲国产成人精品v| 国产欧美日韩精品亚洲av| 亚洲精品国产精品久久久不卡| 日韩三级视频一区二区三区| 日韩视频一区二区在线观看| 午夜福利在线免费观看网站| 香蕉丝袜av| 亚洲一码二码三码区别大吗| 纵有疾风起免费观看全集完整版| 中亚洲国语对白在线视频| 天天操日日干夜夜撸| 欧美在线一区亚洲| 精品福利永久在线观看| 亚洲av男天堂| 中文欧美无线码| 国产成人av教育| 日本wwww免费看| av又黄又爽大尺度在线免费看| 亚洲欧洲日产国产| 91大片在线观看| 亚洲 欧美一区二区三区| 91精品国产国语对白视频| 无限看片的www在线观看| 在线 av 中文字幕| 欧美激情久久久久久爽电影 | 丝袜喷水一区| 一个人免费看片子| 国产日韩欧美亚洲二区| 韩国精品一区二区三区| 久久人人97超碰香蕉20202| 丝瓜视频免费看黄片| 老司机靠b影院| 伊人久久大香线蕉亚洲五| 午夜免费成人在线视频| 午夜影院在线不卡| 国产又爽黄色视频| 国产真人三级小视频在线观看| 在线观看人妻少妇| 日韩精品免费视频一区二区三区| 美女午夜性视频免费| 日韩 欧美 亚洲 中文字幕| 精品一区二区三卡| 国产一卡二卡三卡精品| 欧美日韩中文字幕国产精品一区二区三区 | 老司机影院成人| 亚洲av片天天在线观看| 美国免费a级毛片| 欧美乱码精品一区二区三区| 高清欧美精品videossex| 曰老女人黄片| 下体分泌物呈黄色| 97精品久久久久久久久久精品| 美女视频免费永久观看网站| 天天躁狠狠躁夜夜躁狠狠躁| 考比视频在线观看| 岛国毛片在线播放| 叶爱在线成人免费视频播放| 69av精品久久久久久 | 欧美激情极品国产一区二区三区| 一本—道久久a久久精品蜜桃钙片| 久久久精品国产亚洲av高清涩受| 国产男人的电影天堂91| 91大片在线观看| 人人妻人人添人人爽欧美一区卜| 久久国产亚洲av麻豆专区| 咕卡用的链子| 97精品久久久久久久久久精品| 十八禁高潮呻吟视频| 国产91精品成人一区二区三区 | av线在线观看网站| 精品一品国产午夜福利视频| 欧美激情极品国产一区二区三区| 免费高清在线观看日韩| cao死你这个sao货| av福利片在线| 国产精品一区二区在线不卡| 99久久99久久久精品蜜桃| 欧美日韩精品网址| 久久久久久久大尺度免费视频| 日韩 欧美 亚洲 中文字幕| 在线天堂中文资源库| 免费观看a级毛片全部| 亚洲精品乱久久久久久| 精品第一国产精品| 五月天丁香电影| 亚洲av成人不卡在线观看播放网 | 精品国产乱码久久久久久小说| 成人三级做爰电影| 99久久综合免费| 久热爱精品视频在线9| 三上悠亚av全集在线观看| 国产一卡二卡三卡精品| 男女免费视频国产| 欧美成狂野欧美在线观看| 大片电影免费在线观看免费| 亚洲av成人一区二区三| 韩国高清视频一区二区三区| 波多野结衣av一区二区av| 日韩熟女老妇一区二区性免费视频| 欧美xxⅹ黑人| 99热网站在线观看| 91精品国产国语对白视频| 国产视频一区二区在线看| 国产精品久久久av美女十八| 性高湖久久久久久久久免费观看| 国产成人精品久久二区二区91| 三级毛片av免费| 国产一区二区 视频在线| 老司机深夜福利视频在线观看 | 亚洲av日韩在线播放| 99久久国产精品久久久| 国精品久久久久久国模美| 国产成人欧美| 捣出白浆h1v1| 十八禁人妻一区二区| 各种免费的搞黄视频| 99久久99久久久精品蜜桃| 国产精品久久久久久精品古装| 蜜桃在线观看..| cao死你这个sao货| 91麻豆av在线| 无限看片的www在线观看| 午夜精品国产一区二区电影| 午夜福利,免费看| 又大又爽又粗| 一级毛片电影观看| 9热在线视频观看99| 天天躁狠狠躁夜夜躁狠狠躁| 女人久久www免费人成看片| 久久九九热精品免费| 久久久精品国产亚洲av高清涩受| 精品欧美一区二区三区在线| 大片免费播放器 马上看| 成人av一区二区三区在线看 | 男女下面插进去视频免费观看| 热99re8久久精品国产| 热99re8久久精品国产| 看免费av毛片| 国产精品一二三区在线看| 久久毛片免费看一区二区三区| 母亲3免费完整高清在线观看| 久久久久视频综合| 高清欧美精品videossex| 免费黄频网站在线观看国产| 久久国产精品大桥未久av| 久久久国产成人免费| 色视频在线一区二区三区| 韩国高清视频一区二区三区| 另类亚洲欧美激情| 1024视频免费在线观看| 18禁裸乳无遮挡动漫免费视频| 天堂8中文在线网| 97精品久久久久久久久久精品| 一区福利在线观看| 91av网站免费观看| 亚洲av男天堂| 国产亚洲精品一区二区www | 老汉色av国产亚洲站长工具| 亚洲精华国产精华精| 午夜久久久在线观看| 一区二区三区乱码不卡18| 久久精品国产a三级三级三级| 91成年电影在线观看| 老司机午夜十八禁免费视频| 9191精品国产免费久久| 午夜免费成人在线视频| 亚洲av日韩精品久久久久久密| 精品熟女少妇八av免费久了| 美女福利国产在线| 欧美+亚洲+日韩+国产| 国产三级黄色录像| 欧美日韩福利视频一区二区| 欧美少妇被猛烈插入视频| 国产精品免费视频内射| 亚洲国产毛片av蜜桃av| 久久久水蜜桃国产精品网| 免费观看av网站的网址| 亚洲成国产人片在线观看| 一本综合久久免费| videos熟女内射| 天堂中文最新版在线下载| 一本—道久久a久久精品蜜桃钙片| 欧美日韩国产mv在线观看视频| av天堂在线播放| 国产精品.久久久| 亚洲欧美成人综合另类久久久| 人人妻人人添人人爽欧美一区卜| 妹子高潮喷水视频| 国产一区二区三区综合在线观看| 男人操女人黄网站| 50天的宝宝边吃奶边哭怎么回事| 国产亚洲av高清不卡| 他把我摸到了高潮在线观看 | 午夜精品国产一区二区电影| 麻豆乱淫一区二区| 国产高清视频在线播放一区 | 热re99久久国产66热| 国产精品熟女久久久久浪| 久久狼人影院| 国产三级黄色录像| 亚洲五月婷婷丁香| 成人手机av| 18禁黄网站禁片午夜丰满| 国产高清videossex| 国产精品秋霞免费鲁丝片| 天天影视国产精品| 又大又爽又粗| 国产1区2区3区精品| 在线观看免费日韩欧美大片| 黄片小视频在线播放| 国产真人三级小视频在线观看| 中国美女看黄片| 成人影院久久| 久久人人爽人人片av| 人妻 亚洲 视频| 久久久国产成人免费| 我的亚洲天堂| 精品亚洲成国产av| 亚洲九九香蕉| √禁漫天堂资源中文www| 9热在线视频观看99| 国产精品二区激情视频| 精品福利永久在线观看| 久久人人爽av亚洲精品天堂| 欧美激情久久久久久爽电影 | 另类亚洲欧美激情| 免费观看人在逋| 欧美精品av麻豆av| 777久久人妻少妇嫩草av网站| 国产精品二区激情视频| 丝袜人妻中文字幕| 午夜福利视频精品| 一区二区三区激情视频| 欧美日韩亚洲综合一区二区三区_| 操美女的视频在线观看| 脱女人内裤的视频| 啦啦啦免费观看视频1| 成人亚洲精品一区在线观看| 亚洲综合色网址| 丝袜脚勾引网站| 十八禁网站免费在线| 桃红色精品国产亚洲av| 一级毛片精品| 伊人久久大香线蕉亚洲五| cao死你这个sao货| 国产精品 欧美亚洲| 久久久久久久大尺度免费视频| 久久久水蜜桃国产精品网| 女人精品久久久久毛片| 精品高清国产在线一区| h视频一区二区三区| 高清黄色对白视频在线免费看| 黄色怎么调成土黄色| 纯流量卡能插随身wifi吗| 国产av精品麻豆| 成人国产av品久久久| 伊人久久大香线蕉亚洲五| 黄片小视频在线播放| 一区福利在线观看| 视频在线观看一区二区三区| 丁香六月欧美| 亚洲精品一区蜜桃| 久久天躁狠狠躁夜夜2o2o| 国产精品免费大片| 黄色 视频免费看| 精品乱码久久久久久99久播| 电影成人av| 在线观看免费高清a一片| 男女午夜视频在线观看| 汤姆久久久久久久影院中文字幕| 亚洲情色 制服丝袜| 亚洲精品久久午夜乱码| 国产精品一二三区在线看| 亚洲七黄色美女视频| 高潮久久久久久久久久久不卡| 亚洲伊人色综图| 国产黄色免费在线视频| www.熟女人妻精品国产| 亚洲 国产 在线| 91av网站免费观看| 成人18禁高潮啪啪吃奶动态图| 欧美精品亚洲一区二区| 免费在线观看完整版高清| 精品福利永久在线观看| 欧美日韩亚洲国产一区二区在线观看 | 国产精品二区激情视频| 国产精品成人在线| 亚洲自偷自拍图片 自拍| 亚洲精品第二区| a 毛片基地| 考比视频在线观看| 日韩一卡2卡3卡4卡2021年| 午夜91福利影院| 久久中文看片网| 99精品久久久久人妻精品| av不卡在线播放| 亚洲精品久久成人aⅴ小说| 91国产中文字幕| 2018国产大陆天天弄谢| 久久久精品区二区三区| 亚洲久久久国产精品| 桃红色精品国产亚洲av| 人妻人人澡人人爽人人| 国产欧美亚洲国产| 午夜激情久久久久久久| 999久久久国产精品视频| 国产成人精品久久二区二区91| 精品一区二区三区av网在线观看 | 国产精品久久久人人做人人爽| av超薄肉色丝袜交足视频| 国产免费一区二区三区四区乱码| 欧美日韩亚洲高清精品| 欧美精品人与动牲交sv欧美| 色婷婷av一区二区三区视频| 啦啦啦啦在线视频资源| 国产福利在线免费观看视频| 久久影院123| 国产主播在线观看一区二区| 后天国语完整版免费观看| 精品国产国语对白av| 欧美黑人精品巨大| 夜夜夜夜夜久久久久| 水蜜桃什么品种好| 永久免费av网站大全| 成人18禁高潮啪啪吃奶动态图| 国产精品香港三级国产av潘金莲| 人人妻人人澡人人看| 少妇粗大呻吟视频| 老鸭窝网址在线观看| 99国产精品一区二区三区| www.999成人在线观看| 国产精品欧美亚洲77777| 一区二区三区激情视频| 母亲3免费完整高清在线观看| 无限看片的www在线观看| 久久久久精品人妻al黑| 亚洲欧美日韩高清在线视频 | 女性被躁到高潮视频| 欧美日韩亚洲综合一区二区三区_| 一区二区三区四区激情视频| 99国产精品免费福利视频| 国产主播在线观看一区二区| 在线观看免费日韩欧美大片| 动漫黄色视频在线观看| 亚洲成人国产一区在线观看| 亚洲欧美成人综合另类久久久| 在线观看www视频免费| 亚洲av日韩在线播放| 在线观看舔阴道视频| 他把我摸到了高潮在线观看 | 国产成人精品在线电影| 一级片'在线观看视频| 免费在线观看完整版高清| 一区二区av电影网| 999久久久国产精品视频| 亚洲精品粉嫩美女一区| 黑人欧美特级aaaaaa片| 亚洲av成人不卡在线观看播放网 | 一本色道久久久久久精品综合| av线在线观看网站| 免费观看人在逋| 亚洲情色 制服丝袜| 日本精品一区二区三区蜜桃| 99国产精品一区二区蜜桃av | 桃红色精品国产亚洲av| av国产精品久久久久影院| 久久国产精品男人的天堂亚洲| 成年人黄色毛片网站| 亚洲欧美清纯卡通| 18禁国产床啪视频网站| 人人妻人人澡人人看| 淫妇啪啪啪对白视频 | 亚洲情色 制服丝袜| 国产精品熟女久久久久浪| 国产精品久久久人人做人人爽| 国产精品久久久久久人妻精品电影 | 亚洲情色 制服丝袜| 搡老岳熟女国产| 国产欧美日韩一区二区精品| 色综合欧美亚洲国产小说| 999久久久精品免费观看国产| 免费观看av网站的网址| 久久国产精品人妻蜜桃| 女人高潮潮喷娇喘18禁视频| 视频在线观看一区二区三区|