• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      細(xì)菌對(duì)有機(jī)污染物的趨化性及其對(duì)降解的影響

      2018-01-12 10:24:54王慧胡金星秦智慧徐新華沈超峰
      關(guān)鍵詞:趨化苯甲酸質(zhì)粒

      王慧,胡金星,秦智慧,徐新華,沈超峰*

      工農(nóng)業(yè)生產(chǎn)的迅速發(fā)展給人類(lèi)生產(chǎn)和生活帶來(lái)了許多方便,同時(shí),也使各種污染物被釋放到環(huán)境中。尤其是大量使用的環(huán)境異生物質(zhì),因其潛在毒性強(qiáng),具有生物富集、生物放大等特點(diǎn),給全球生態(tài)環(huán)境和人類(lèi)健康帶來(lái)嚴(yán)重威脅[1]。對(duì)異生物質(zhì)污染治理刻不容緩,其治理手段主要有物理、化學(xué)和生物修復(fù)等。微生物修復(fù)方法是最具有前景的修復(fù)手段之一,具有安全、經(jīng)濟(jì)、二次污染少等特點(diǎn)。研究表明,環(huán)境中的大部分有機(jī)污染物可被微生物降解[2]。污染物的生物降解效率除了與降解菌本身的降解能力有關(guān)之外,還依賴(lài)于污染物的生物可利用性[3]。土壤污染物的生物可利用性除受土壤介質(zhì)、污染物性質(zhì)影響外,也受土壤微生物移動(dòng)性的影響[4]。大多數(shù)具有移動(dòng)性的細(xì)菌能通過(guò)趨化過(guò)程感知和尋找污染物[5-6],具有運(yùn)動(dòng)和降解能力的細(xì)菌主動(dòng)移向吸附態(tài)污染物,可以提高污染物的生物可利用性和生物降解效率[4,7-9]。因此,研究者開(kāi)始關(guān)注細(xì)菌對(duì)環(huán)境污染物的趨化性。本文對(duì)細(xì)菌趨化性及趨化信號(hào)傳導(dǎo)機(jī)制、細(xì)菌對(duì)典型有機(jī)污染物的趨化、細(xì)菌趨化對(duì)降解的影響以及趨化與降解的分子關(guān)聯(lián)進(jìn)行了歸納、總結(jié),以期為進(jìn)一步的研究提供思路。

      1 細(xì)菌趨化性

      趨化性是指具有運(yùn)動(dòng)能力的細(xì)菌對(duì)物質(zhì)化學(xué)濃度梯度做出的響應(yīng),順濃度梯度遷移叫正趨化,逆濃度梯度遷移叫負(fù)趨化[10]。最早報(bào)道細(xì)菌趨化現(xiàn)象的是ENGELMANN和PFEFFER,隨后,ADLER[11]和HAZELBAUER[12]深入研究了大腸桿菌對(duì)氨基酸及糖類(lèi)物質(zhì)的趨化性機(jī)制。近年來(lái),越來(lái)越多的研究者開(kāi)始從事細(xì)菌趨化性研究。

      細(xì)菌能夠?qū)﹄S時(shí)改變的化學(xué)濃度梯度做出反應(yīng),是因?yàn)榧?xì)菌細(xì)胞膜表面有專(zhuān)一的化學(xué)受體蛋白,細(xì)菌能夠利用這些受體蛋白感知外界刺激物信號(hào)[13]。以大腸桿菌為例(圖1),趨化反應(yīng)通過(guò)處于細(xì)胞兩極的受體復(fù)合體和隨機(jī)分布于細(xì)胞四周、埋于細(xì)胞膜中的鞭毛-馬達(dá)復(fù)合體調(diào)節(jié)。甲基趨化受體蛋白(methylaccepting chemotaxis proteins,MCPs)感知刺激物信號(hào),信號(hào)通過(guò)趨化性組氨酸激酶A(chemotaxis histidine kinase A,CheA)和CheY傳遞給鞭毛馬達(dá)。CheA可發(fā)生自身磷酸化,從而使調(diào)節(jié)蛋白CheY磷酸化,磷酸化的CheY易與鞭毛馬達(dá)蛋白結(jié)合,調(diào)節(jié)鞭毛的旋轉(zhuǎn)方向。磷酸化的CheA同時(shí)調(diào)節(jié)甲基酯酶CheB的磷酸化,磷酸化的CheB和甲基轉(zhuǎn)移酶CheR分別調(diào)節(jié)MCPs的去甲基化和甲基化,使細(xì)菌適應(yīng)化學(xué)物質(zhì)濃度梯度,做出運(yùn)動(dòng)改變[13-15]。

      2 細(xì)菌對(duì)典型有機(jī)污染物的趨化性

      雖然細(xì)菌的趨化性在大腸桿菌中研究的比較深入,但是大腸桿菌主要對(duì)簡(jiǎn)單的氨基酸、糖類(lèi)等物質(zhì)具有趨化性。近幾十年的研究發(fā)現(xiàn),細(xì)菌對(duì)很多化合物都具有趨化性(表1),趨化物主要包括萘[16]、甲苯[17-18]、聯(lián)苯[19-20]、多氯聯(lián)苯[19]、苯甲酸[19]、氯代苯甲酸[21]、硝基芳香化合物[22]、甲基對(duì)硫磷[23]、阿特拉津[24]、2,4-D[5]、呋喃類(lèi)化合物[25]等。涉及的細(xì)菌種屬主要有假單胞菌(Pseudomonas sp.)、羅爾斯通菌(Ralstonia sp.)、固氮螺菌(Azospirillum sp.)、根瘤菌(Rhizobium sp.)、伯克氏菌(Burkholderia sp.)和節(jié)桿菌(Arthrobacter sp.)等。細(xì)菌能以大部分趨化物為碳源和能源,在碳源和能源相對(duì)缺乏的環(huán)境中,細(xì)菌對(duì)環(huán)境異生物質(zhì)的趨化性無(wú)疑是有益于其生存的行為。

      圖1 大腸桿菌趨化信號(hào)傳導(dǎo)機(jī)制Fig.1 Signal transduction of chemotaxis in Escherichia coli

      表1 對(duì)環(huán)境污染物有趨化性的細(xì)菌Table 1 Chemotaxis to pollutants by bacteria

      表1 (續(xù)) Continuation of Table 1

      3 細(xì)菌趨化性對(duì)污染物降解的影響

      有機(jī)污染物的生物可利用性被認(rèn)為是影響生物降解效率的主要限制因子之一。環(huán)境中的一些有機(jī)污染物水溶性較低,常常被吸附到固體顆粒表面。尤其在土壤環(huán)境里,高疏水性的有機(jī)污染物通常被吸附到土壤顆?;蛘叻撬嘁后w(nonaqueousphase liquid,NAPL)里,細(xì)菌難以接觸到污染物,生物可利用性低。趨化作用使降解菌有效感應(yīng)并靠近污染物,增強(qiáng)污染物的生物可利用性,提高生物降解效率,在污染物的微生物降解過(guò)程中發(fā)揮著重要作用[7]。

      大量研究表明,細(xì)菌趨化性能通過(guò)各種機(jī)制提高污染物的生物可利用性,其中,惡臭假單胞菌(Pseudomonas putida)G7對(duì)萘的趨化性及其對(duì)降解的影響研究比較深入。早在1999年,GRIMM等[26]研究發(fā)現(xiàn)萘的受體蛋白NahY由代謝質(zhì)粒編碼時(shí),就猜測(cè)細(xì)菌的趨化可能提高生物降解效率。MARX等[40]的研究證明了這一猜想,他們通過(guò)比較野生菌株P(guān)seudomonas putida G7、趨化突變株和移動(dòng)突變株對(duì)萘的降解,發(fā)現(xiàn)野生菌株的降解速率最快,如果要達(dá)到相同的降解效果,突變株需要更長(zhǎng)的降解時(shí)間。LAW等[41]在非水相液體2,2,4,4,6,8,8-七甲基壬烷中也證明了野生型菌株P(guān)seudomonas putida G7的趨化性能明顯提高萘的降解效率。

      除了液相體系,在土壤等高異質(zhì)性介質(zhì)里,細(xì)菌的趨化性在生物降解中也發(fā)揮著重要作用。Pseudomonas putida DLL-1是甲基對(duì)硫磷的高效降解菌株[42],該菌株對(duì)甲基對(duì)硫磷也具有趨化性[23]。通過(guò)基因打靶使Pseudomonas putida DLL-1染色體上單拷貝的cheA基因失活,成功獲得與野生菌株生長(zhǎng)沒(méi)有顯著差異的趨化突變株P(guān)seudomonas putida DAK。cheA基因的失活中斷了整個(gè)趨化信號(hào)傳導(dǎo),使菌株DAK喪失了對(duì)甲基對(duì)硫磷的趨化性。在搖瓶實(shí)驗(yàn)中,野生和突變株對(duì)甲基對(duì)硫磷的降解效率幾乎沒(méi)有差異,說(shuō)明在液態(tài)環(huán)境中,菌體與污染物充分接觸對(duì)降解影響不大。但是,在土培實(shí)驗(yàn)中,趨化突變株DAK對(duì)甲基對(duì)硫磷的降解效率比野生菌株DLL-1的降解效率低約20%~30%[23],揭示出在原位條件下,趨化性在生物降解過(guò)程中具有重要作用。PAUL等[43]以土壤為介質(zhì),采用能降解對(duì)硝基苯酚但無(wú)趨化性的洋蔥伯克霍爾德菌(Burkholderia cepacia)RKJ200作為陰性對(duì)照,發(fā)現(xiàn)Ralstonia sp.SJ98對(duì)對(duì)硝基酚具有趨化性,并且有明顯的降解現(xiàn)象,而B(niǎo)urkholderia cepacia RKJ200則無(wú)明顯的降解現(xiàn)象。他們的研究均證明了在土壤介質(zhì)里細(xì)菌對(duì)污染物的趨化,說(shuō)明細(xì)菌趨化性確實(shí)能提高土壤和沉積物里污染物的生物降解效率。

      生物膜是細(xì)菌細(xì)胞附著在非生物或者生物機(jī)體表面、并由自身產(chǎn)生的胞外多聚物(extracellular polymeric substance,EPS)包裹所形成的多細(xì)胞聚合體[44],是細(xì)菌在自然界中常見(jiàn)的存在形式,使細(xì)菌在不利環(huán)境中生存,抵抗外界不利條件。生物膜在污水處理、原位污染治理與生態(tài)修復(fù)等過(guò)程中發(fā)揮重要作用[45-46]。研究表明,趨化性在生物膜的形成過(guò)程中發(fā)揮重要作用[47-49]。細(xì)菌通過(guò)趨化作用感知環(huán)境中的營(yíng)養(yǎng)物質(zhì),通過(guò)鞭毛、菌毛黏附在附著物表面,趨化運(yùn)動(dòng)使細(xì)菌沿著附著物表面生長(zhǎng),膜不斷擴(kuò)散開(kāi)并加厚,最后成熟脫落,再形成新的生物膜[45,50-51]。因此,趨化性可能通過(guò)影響生物膜的形成,進(jìn)而影響污染物的生物降解效率。

      大量研究證明,趨化性可以提高污染物的生物可利用性,在污染物的降解,尤其是在原位修復(fù)過(guò)程中發(fā)揮重要作用。細(xì)菌趨化性對(duì)降解的影響表明,趨化性可能是降解的重要屬性之一。

      4 細(xì)菌趨化與降解的內(nèi)在關(guān)聯(lián)

      從以上分析可以看出,趨化可促進(jìn)降解,反過(guò)來(lái),降解對(duì)趨化也有影響。研究降解對(duì)趨化的影響有助于進(jìn)一步揭示趨化與降解的內(nèi)在聯(lián)系。從細(xì)菌對(duì)污染物趨化性的表觀現(xiàn)象可以發(fā)現(xiàn),很多細(xì)菌只對(duì)能降解的底物具有趨化性,而且有些趨化需要底物誘導(dǎo)。Ralstonia sp.SJ98能降解某些硝基芳香族化合物(nitroaromatic compounds,NACs);且該菌株只對(duì)能降解的硝基芳香族化合物有趨化性,而對(duì)不能降解的硝基芳香族化合物則無(wú)趨化性[22]。Pseudomonas sp.JHN也只對(duì)能代謝的4-氯-2-硝基酚具有趨化性,對(duì)不能代謝的底物沒(méi)有趨化性[33]。氯代苯甲酸是多氯聯(lián)苯在好氧降解過(guò)程中易積累的中間代謝產(chǎn)物,該類(lèi)化合物能通過(guò)抑制降解菌的生長(zhǎng)而影響多氯聯(lián)苯的降解效率[52-53]。GORDILLO等[19]的研究表明,經(jīng)聯(lián)苯或苯甲酸誘導(dǎo)的聯(lián)苯降解菌Pseudomonas sp.B4對(duì)苯甲酸具有趨化作用,經(jīng)苯甲酸誘導(dǎo)的B4對(duì)4-氯代苯甲酸具有趨化作用,說(shuō)明Pseudomonas sp.B4對(duì)這些底物的趨化屬于誘導(dǎo)趨化。TREMAROLI等[21]的研究也表明,類(lèi)產(chǎn)堿假單胞菌(Pseudomonas pseudoalcaligenes)KF707對(duì)苯甲酸及氯代苯甲酸的趨化也屬于誘導(dǎo)趨化。

      某些降解菌的趨化基因位于代謝質(zhì)粒上,趨化和代謝基因共轉(zhuǎn)錄。如:Pseudomonas putida G7對(duì)萘的趨化受體蛋白NahY由代謝質(zhì)粒NAH7編碼,由nahY和降解基因共轉(zhuǎn)錄,且同受轉(zhuǎn)錄調(diào)控因子NahR的調(diào)控[26]。Pseudomonas sp.ZWL73是4-氯硝苯基的完全降解菌,其降解由質(zhì)??刂?。Pseudomonas putia PaW 340不能利用也不能轉(zhuǎn)化4-氯硝基苯,而菌株ZP8是將ZWL73的質(zhì)粒轉(zhuǎn)入無(wú)質(zhì)粒的Pseudomonas putia PaW 340得到的質(zhì)粒轉(zhuǎn)移接合子,該菌獲得了以4-氯硝基苯為唯一碳、氮源及能源生長(zhǎng)的能力。ZP8和ZWL73對(duì)受試化合物具有相同趨化譜,說(shuō)明ZWL73對(duì)4-氯硝基苯的趨化基因也由其質(zhì)粒編碼[32]。

      研究發(fā)現(xiàn),某些細(xì)菌趨化、轉(zhuǎn)運(yùn)和代謝之間有內(nèi)在聯(lián)系。LUU等[54]證明了Pseudomonas putida F1對(duì)4-羥基苯甲酸的趨化受體基因pcaY的表達(dá)受轉(zhuǎn)錄激活因子PcaR的調(diào)控,同時(shí)需要4-羥基苯甲酸代謝中間產(chǎn)物β-酮己二酸的誘導(dǎo),并且和代謝基因共轉(zhuǎn)錄。該研究還發(fā)現(xiàn),超家族轉(zhuǎn)運(yùn)蛋白PcaK能通過(guò)促進(jìn)4-羥基苯甲酸的吸收,累積大量的β-酮己二酸,誘導(dǎo)PcaR對(duì)pcaY的調(diào)控,從而間接影響pcaY的表達(dá)(圖2A)。羅爾斯通菌(Ralstonia eutropha)JMP134含有自主轉(zhuǎn)移質(zhì)粒pJP4,該質(zhì)粒編碼2,4-D的降解基因族tfd。研究發(fā)現(xiàn),對(duì)質(zhì)粒pJP4的改造導(dǎo)致該菌株喪失了對(duì)2,4-D的趨化性,說(shuō)明菌株JMP134對(duì)2,4-D的趨化基因也由該質(zhì)粒編碼。tfd基因簇同時(shí)編碼2,4-D的轉(zhuǎn)運(yùn)蛋白TfdK,且tfdK缺失突變株對(duì)2,4-D沒(méi)有趨化現(xiàn)象[5],因此推測(cè)TfdK可能間接影響JMP134對(duì)2,4-D的趨化??梢?jiàn),細(xì)菌對(duì)物質(zhì)的轉(zhuǎn)運(yùn)、趨化和降解基因之間的協(xié)調(diào)表達(dá),可能是細(xì)菌選擇最佳生存環(huán)境的一般機(jī)制,也體現(xiàn)了細(xì)菌趨化和降解的分子關(guān)聯(lián)。

      雖然鞭毛介導(dǎo)的細(xì)菌趨化信號(hào)傳導(dǎo)的核心機(jī)制相對(duì)保守,但是負(fù)責(zé)感受趨化信號(hào)的甲基趨化受體蛋白在不同種屬間差異較大。在某些情況下,受體蛋白不能直接感知趨化物,而是通過(guò)感知代謝中間產(chǎn)物實(shí)現(xiàn)趨化過(guò)程。NI等[39,55]研究發(fā)現(xiàn),菌株睪丸酮叢毛單胞菌(Comamonas testosteronei)CNB-1的甲基趨化受體蛋白MCP2201和MCP2983不能直接與芳環(huán)類(lèi)化合物結(jié)合,而是與三羧酸循環(huán)中間產(chǎn)物結(jié)合(圖2B)。他們的研究揭示了一類(lèi)新的趨化途徑,即細(xì)菌可以通過(guò)感知三羧酸循環(huán)中間化合物實(shí)現(xiàn)對(duì)芳香類(lèi)化合物的趨化。代謝突變株對(duì)芳環(huán)類(lèi)化合物沒(méi)有趨化性,說(shuō)明CNB-1對(duì)芳環(huán)類(lèi)化合物的趨化屬于代謝依賴(lài)趨化,這更深入地揭示了降解和趨化之間的內(nèi)在關(guān)聯(lián)。

      5 結(jié)語(yǔ)

      關(guān)于細(xì)菌趨化性與降解性之間關(guān)系的研究備受關(guān)注,目前的研究主要集中在趨化現(xiàn)象的表征上,很多細(xì)菌對(duì)污染物的探測(cè)機(jī)制尚不清楚,包括化學(xué)受體的鑒定、反應(yīng)調(diào)控以及趨化、降解和轉(zhuǎn)運(yùn)之間的關(guān)系等研究相對(duì)較少。深入研究細(xì)菌對(duì)污染物的趨化機(jī)制,闡明趨化、轉(zhuǎn)運(yùn)和降解之間的分子關(guān)聯(lián),對(duì)于提高污染物的生物降解效率有重要意義。本文從以下幾個(gè)方面提出展望:

      1)趨化受體蛋白作為細(xì)菌感應(yīng)外界刺激信號(hào)的關(guān)鍵分子,到目前為止,只有少部分趨化受體蛋白被發(fā)現(xiàn)與細(xì)菌對(duì)污染物的趨化相關(guān),多數(shù)受體蛋白對(duì)污染物的探測(cè)機(jī)制依然未知。因此,以后的研究工作仍需繼續(xù)鑒別細(xì)菌對(duì)污染物的趨化受體蛋白,以闡明細(xì)菌對(duì)污染物的感應(yīng)機(jī)制。

      2)研究者雖然進(jìn)行了大量的趨化研究,但大多是在半固體培養(yǎng)基里進(jìn)行的,在土壤等實(shí)際固體環(huán)境中研究趨化性的報(bào)道鮮見(jiàn)。今后應(yīng)在實(shí)際污染的土壤環(huán)境中進(jìn)行更多的實(shí)驗(yàn),利用生化與分子手段評(píng)估降解菌是否完全適應(yīng)脅迫環(huán)境。明確細(xì)菌對(duì)污染物的探測(cè)機(jī)制,有目的地調(diào)控細(xì)菌對(duì)污染物的趨化行為,對(duì)污染土壤的生物修復(fù)具有重要意義。

      3)目前研究較多的是鞭毛介導(dǎo)的運(yùn)動(dòng)與趨化行為,除此之外,也有細(xì)菌借助菌毛的伸縮在固體表面進(jìn)行蹭行運(yùn)動(dòng)[56-59]及黏性物質(zhì)介導(dǎo)的滑行運(yùn)動(dòng)[60-70]等。但在實(shí)際污染物環(huán)境里,無(wú)鞭毛降解菌占有一定的生境[71-73],它們?nèi)绾慰朔袡C(jī)污染物的高疏水性和低生物可利用性,如何與污染物分子相互接觸,及其在土壤環(huán)境中的分散機(jī)制等是否與趨化性相關(guān),目前尚不清楚。因此,有必要進(jìn)行更多降解菌運(yùn)動(dòng)模式與趨化機(jī)制的研究。

      圖2 Pseudomonas putida F1(A)和Comamonas testosteronei CNB-1(B)對(duì)4-羥基苯甲酸趨化信號(hào)探測(cè)示意圖Fig.2 Schematic representation of 4-hydroxybenzoate chemotaxis in Pseudomonas putida F1(A)and Comamonas testosteronei CNB-1(B)

      [1] 王慶仁,劉秀梅,崔巖山,等.土壤與水體有機(jī)污染的生物修復(fù)及其應(yīng)用研究進(jìn)展.生態(tài)學(xué)報(bào),2001,21(1):159-163.WANG Q R,LIU X M,CUI Y S,et al.Concept and advances of applied bioremediation for organic pollutants in soil and water.Acta Ecologica Sinica,2001,21(1):159-163.(in Chinese with English abstract)

      [2] PIEPER D H,REINEKE W.Engineering bacteria for bioremediation.Current Opinion in Biotechnology,2000,11(3):262-270.

      [3] YANG X Q,ERICKSON L E,FAN L T.A study of the dissolution rate-limited bioremediation of soil contaminated by residual hydrocarbons.Journal of Hazardous Materials,1995,41(2/3):299-313.

      [4] 羅啟仕,張錫輝,王慧,等.生物修復(fù)中有機(jī)污染物的生物可利用性.生態(tài)環(huán)境,2004,13(1):85-87.LUO Q S,ZHANG X H,WANG H,et al.Bioavailability of organic contaminants during bioremediation.Ecology and Environment,2004,13(1):85-87.(in Chinese with English abstract)

      [5] HAWKINSA A C,HARWOOD C S.Chemotaxis of Ralstonia eutropha JMP134(pJP4)to the herbicide 2,4-dichlorophenoxyacetate.Applied and Environmental Microbiology,2002,68(2):968-972.

      [6] LACAL J,REYES-DARIAS J A,GARCíA-FONTANA C,et al.Tactic responses to pollutants and their potential to increase biodegradation efficiency.Journal of Applied Microbiology,2013,114(4):923-933.

      [7] KRELL T,LACAL J,REYES-DARIAS J A,et al.Bioavailability of pollutants and chemotaxis.Current Opinion in Biotechnology,2013,24(3):451-456.

      [8] PANDEY G,JAIN R K.Bacterial chemotaxis toward environmental pollutants:Role in bioremediation.Applied and Environmental Microbiology,2002,68(12):5789-5795.

      [9] PARALES R E,LUU R A,HUGHES J G,et al.Bacterial chemotaxis to xenobiotic chemicals and naturally-occurring analogs.Current Opinion in Biotechnology,2015,33:318-326.

      [10]蔣建東,張瑞福,何健,等.細(xì)菌對(duì)環(huán)境污染物的趨化性及其在生物修復(fù)中的作用.生態(tài)學(xué)報(bào),2005,25(7):1764-1771.JIANG J D,ZHANG R F,HE J,et al.Bacterial chemotaxis to environmental pollutants and its significance in bioremediation.Acta Ecologica Sinica,2005,25(7):1764-1771.(in Chinese with English abstract)

      [11]ADLER J.My life with nature.Annual Review of Biochemistry,2011,80:42-70.

      [12]HAZELBAUER G L.Bacterial chemotaxis:The early years of molecular studies.Annual Review of Biochemistry,2012,66:285-303.

      [13]李茹,陳鵬.細(xì)菌趨化性的信號(hào)傳導(dǎo)及調(diào)節(jié)機(jī)制研究進(jìn)展.生物技術(shù)通報(bào),2011(11):54-57.LI R,CHEN P.Progress in mechanism of signal transduction and regulation in bacterial chemotaxis.Biotechnology Bulletin,2011(11):54-57.(in Chinese with English abstract)

      [14]MICALI G,ENDRES R G.Bacterial chemotaxis:Information processing,thermodynamics,and behavior.Current Opinion in Microbiology,2016,30:8-15.

      [15]WADHAMS G H,ARMITAGE J P.Making sense of it all:Bacterial chemotaxis.Nature Reviews:Molecular Cell Biology,2004,5(12):1024-1037.

      [16]GRIMM A C,HARWOOD C S.Chemotaxis of Pseudomonas spp.to the polyaromatic hydrocarbon naphthalene.Applied and Environmental Microbiology,1997,63(10):4111-4115.

      [17]LACAL J,MU?OZ-MARTíNEZ F,REYES-DARíAS J A,et al.Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas.Environmental Microbiology,2011,13(7):1733-1744.

      [18]PARALES R E,DITTY J L,HARWOOD C S.Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Applied and Environmental Microbiology,2000,66(9):4098-4104.

      [19]GORDILLO F,CHáVEZ F P,JEREZ C A.Motility and chemotaxis of Pseudomonas sp.B4 towards polychlorobiphenyls and chlorobenzoates.FEMS Microbiology Ecology,2007,60(2):322-328.

      [20]TREMAROLI V,FEDI S,TAMBURINI S,et al.A histidinekinase cheA gene of Pseudomonas pseudoalcaligens KF707 not only has a key role in chemotaxis but also affects biofilm formation and cell metabolism.Biofouling,2011,27(1):33-46.

      [21]TREMAROLI V,SUZZI C V,FEDI S,et al.Tolerance of Pseudomonas pseudoalcaligenes KF707 to metals,polychlorobiphenyls and chlorobenzoates:Effects on chemotaxis-,biofilm-and planktonic-grown cells.FEMS Microbiology Ecology,2010,74(2):291-301.

      [22]SAMANTA S K,BHUSHAN B,CHAUHAN A,et al.Chemotaxis of a Ralstonia sp.SJ98 toward different nitroaromatic compounds and their degradation.Biochemical and Biophysical Research Communications,2000,269(1):117-123.

      [23]文陽(yáng),蔣建東,鄧海華,等.趨化信號(hào)轉(zhuǎn)導(dǎo)基因cheA突變對(duì)Pseudomonas putida DLL-1甲基對(duì)硫磷的趨化性及原位降解的影響.微生物學(xué)報(bào),2007,47(3):471-476.WEN Y,JIANG J D,DENG H H,et al.Effect of mutation of chemotaxis signal transduction gene cheA in Pseudomonas putida DLL-1 on its chemotaxis and methyl parathion biodegradation.Acta Microbiologica Sinica,2007,47(3):471-476.(in Chinese with English abstract)

      [24]LIU X X,PARALES R E.Bacterial chemotaxis to atrazine and related S-triazines.Applied and Environmental Microbiology,2009,75(17):5481-5488.

      [25]NICHOLS N N,LUNDE T A,GRADEN K C,et al.Chemotaxis to furan compounds by furan-degrading Pseudomonas strains.Applied and Environmental Microbiology,2012,78(17):6365-6368.

      [26]GRIMM A C,HARWOOD C S.NahY,a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene.Journal of Bacteriology,1999,181(10):3310-3316.

      [27]SAMANTA S K,JAIN R K.Evidence for plasmid-mediated chemotaxis of Pseudomonas putida towards naphthalene and salicylate.Canadian Journal of Microbiology,2000,46(1):1-6.

      [28]HARWOOD C S,RIVELLI M,ORNSTON L N.Aromatic acids are chemoattractants for Pseudomonasputida.Journalof Bacteriology,1984,160(2):622-628.

      [29]HARWOOD C S,NICHOLS N N,KIM M K,et al.Identification ofthe pcaRKF gene clusterfrom Pseudomonas putida:Involvement in chemotaxis,biodegradation,and transport of 4-hydroxybenzoate.Journal of Bacteriology,1994,176(21):6479-6488.

      [30]HARWOOD C S.A methyl-accepting protein is involved in benzoate taxis in Pseudomonas putida.Journal of Bacteriology,1989,171(9):4603-4608.

      [31]HARWOOD C S,PARALES R E,DISPENSAL M.Chemotaxis of Pseudomonas putida toward chlorinated benzoates.Applied and Environmental Microbiology,1990,56(5):1501-1503.

      [32] 趙非,劉虹,王淑君,等.Pseudomonas sp.ZWL73對(duì)4-氯硝基苯及多種芳香烴化合物的趨化性.浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版),2004,30(6):624-627.ZHAO F,LIU H,WANG S J,et al.Chemotaxis of Pseudomonas sp.strain ZWL73 to 4-chloronitrobenzene and various aromatic compounds.Journal of Zhejiang University(Agriculture and Life Sciences),2004,30(6):624-627.(in Chinese with English abstract)

      [33]ARORA P K,BAE H.Biotransformation and chemotaxis of 4-chloro-2-nitrophenol by Pseudomonas sp.JHN.Microbial Cell Factories,2014,13:110.

      [34]CHATURVEDI V,KUMAR A.Metabolism dependent chemotaxis of Pseudomonas aeruginosa N1 towards anionic detergent sodium dodecyl sulfate.Indian Journal of Microbiology,2014,54(2):134-138.

      [35]IWAKI H,MURAKI T,ISHIHARA S,et al.Characterization of a pseudomonad 2-nitrobenzoate nitroreductase and its catabolic pathway-associated 2-hydroxylaminobenzoatemutaseand a chemoreceptor involved in 2-nitrobenzoate chemotaxis.Journal of Bacteriology,2007,189(9):3502-3514.

      [36]BHUSHAN B,SAMANTA S K,CHAUHAN A,et al.Chemotaxis and biodegradation of 3-methyl-4-nitrophenol by Ralstonia sp.SJ98.Biochemical and Biophysical Research Communications,2000,275(1):129-133.

      [37]LOPEZ-DE-VICTORIA G,LOVELL C R.Chemotaxis of Azospirillum species to aromatic compounds.Applied and Environmental Microbiology,1993,59(9):2951-2955.

      [38] 喬鋮,任磊,賈陽(yáng),等.節(jié)桿菌(Arthrobacter sp.)CN2對(duì)對(duì)硝基苯酚的趨化性研究.農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2016,35(10):1945-1952.QIAO C,REN L,JIA Y,et al.Chemotaxis of Arthrobacter sp.CN2 towards p-nitrophenol.Journal of Agro-Environment Science,2016,35(10):1945-1952.(in Chinese with English abstract)

      [39]NI B,HUANG Z,FAN Z,et al.Comamonas testosteroni uses a chemoreceptor for tricarboxylic acid cycle intermediates to trigger chemotactic responses towards aromatic compounds.Molecular Microbiology,2013,90(4):813-823.

      [40]MARX R B,AITKEN M D.Bacterial chemotaxis enhances naphthalene degradation in a heterogeneous aqueous system.Environmental Science&Technology,2000,34(16):3379-3383.

      [41]LAW A M J,AITKEN M D.Bacterial chemotaxis to naphthalene desorbing from a nonaqueous liquid.Applied and Environmental Microbiology,2003,69(10):5968-5973.

      [42]劉智,孫建春,李順鵬.甲基對(duì)硫磷降解菌DLL-1的分離、鑒定及降解性研究.應(yīng)用與環(huán)境生物學(xué)報(bào),1999,5(增刊1):147-150.LIU Z,SUN J C,LI S P.Isolation,identification and characters of methyl parathion degrading bacterium.Chinese Journal of Applied&Environmental Biology,1999,5(Suppl.1):147-150.(in Chinese with English abstract)

      [43]PAUL D,SINGH R,JAIN R K.Chemotaxis of Ralstonia sp.SJ98 towards p-nitrophenol in soil.Environmental Microbiology,2006,8(10):1797-1804.

      [44]COSTERTON J W,STEWART P S,GREENBERG E P.Bacterial biofilms:A common cause of persistent infections.Science,1999,284(5418):1318-1322.

      [45]SINGH R,PAUL D,JAIN R K.Biofilms:Implications in bioremediation.Trends in Microbiology,2006,14(9):389-397.

      [46]ABBASNEZHAD H,GRAY M,FOGHT J M.Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons.Applied Microbiology and Biotechnology,2011,92(4):653-675.

      [47]PRATT L A,KOLTER R.Genetic analysis of Escherichia coli biofilm formation:Roles of flagella,motility,chemotaxis and type I pili.Molecular Microbiology,1998,30(2):285-293.

      [48]ALEXANDRE G. Chemotaxis control of transient cell aggregation.Journal of Bacteriology,2015,197(20):3230-3237.

      [49]HE K,BAUER C E.Chemosensory signaling systems that control bacterial survival.Trends in Microbiology,2014,22(7):389-398.

      [50]DONLAN R M.Biofilms:Microbial life on surfaces.Emerging Infectious Diseases,2002,8(9):881-890.

      [51]ALEXANDRE G,ZHULIN I B.Different evolutionary constraints on chemotaxis proteins CheW and CheY revealed by heterologous expression studies and protein sequence analysis.Journal of Bacteriology,2003,185(2):544-552.

      [52]AHMED M,FOCHT D D.Degradation of polychlorinated biphenyls by two species of Achvornobacter.Canadian Journal of Microbiology,1973,19(1):47-52.

      [53]FURUKAWA K,MATSUMURA F,TONOMURA K.Alcaligenes and Acinetobacter strains capable of degrading polychlorinated biphenyls.Agricultural and Biological Chemistry,1978,42(3):543-548.

      [54]LUU R A,KOOTSTRA J D,NESTERYUK V,et al.Integration of chemotaxis,transport and catabolism in Pseudomonas putida and identification ofthe aromatic acid chemoreceptor PcaY.Molecular Microbiology,2015,96(1):134-147.

      [55]NI B,HUANG Z,WU Y F,et al.A novel chemoreceptor MCP2983 from Comamonas testosteroni specifically binds to cisaconitate and triggerschemotaxistowardsdiverse organic compounds.Applied Microbiology and Biotechnology,2015,99(6):2773-2781.

      [56]MILLER R M,TOMARAS A P,BARKER A P,et al.Pseudomonas aeruginosa twitching motility-mediated chemotaxis towards phospholipids and fatty acids:Specificity and metabolic requirements.Journal of Bacteriology,2008,190(11):4038-4049.

      [57]KLAUSEN M,HEYDORN A,RAGAS P,et al.Biofilm formation by Pseudomonas aeruginosa wild type,flagella and typeⅣpili mutants.Molecular Microbiology,2003,48(6):1511-1524.

      [58]MATTICK J S.TypeⅣpili and twitching motility.Annual Review of Microbiology,2002,56:289-314.

      [59]KENNAN R M,LOVITT C J,HAN X Y,et al.A two-component regulatory system modulates twitching motility in Dichelobacter nodosus.Veterinary Microbiology,2015,179(1/2):34-41.

      [60]KIRBY JR.Chemotaxisgenes,fibrilsandPE taxisin Myxococcus xanthus.Trends in Microbiology,2001,9(5):205.

      [61]SPORMANN A M,KAISER A D.Gliding movements in Myxococcus xanthus.Journal of Bacteriology,1995,177(20):5846-5852.

      [62]KEARNS D B,SHIMKETS L J.Chemotaxis in a gliding bacterium.Proceedings of the National Academy of Sciences of the USA,1998,95(20):11957-11962.

      [63]DARZINS A.Characterization of a Pseudomonas aeruginosa gene cluster involved in pilus biosynthesis and twitching motility:Sequence similarity to the chemotaxis proteins of enterics and the gliding bacterium Myxococcus xanthus.Molecular Microbiology,1994,11(1):137-153.

      [64]KRELL T,LACAL J,MU?OZ-MARTíNEZ F,et al.Diversity at its best:Bacterial taxis.Environmental Microbiology,2011,13(5):1115-1124.

      [65]HARSHEY R M.Bacterial motility on a surface:Many ways to a common goal.Annual Review of Microbiology,2003,57:249-273.

      [66]RECHT J,MARTíNEZ A,TORELLO S,et al.Genetic analysis of sliding motility in Mycobacterium smegmatis.Journalof Bacteriology,2000,182(15):4348-4351.

      [67]SUN M Z,WARTEL M,CASCALES E,et al.Motor-driven intracellular transport powers bacterial gliding motility.Proceedings of the National Academy of Sciences of the USA,2011,108(18):7559-7564.

      [68]RISSER D D,CHEW W G,MEEKS J C.Genetic characterization of the hmp locus,a chemotaxis-like gene cluster that regulates hormogonium development and motility in Nostoc punctiforme.Molecular Microbiology,2014,92(2):222-233.

      [69]COZY L M,CALLAHAN S M.The hmp chemotaxis cluster regulates gliding in the filamentous cyanobacterium Nostoc punctiforme.Molecular Microbiology,2014,92(2):213-216.

      [70]POLLITT E J G,CRUSZ S A,DIGGLE S P.Staphylococcus aureus forms spreading dendrites that have characteristics of active motility.Scientific Reports,2015,5:17698.

      [71]SUNGTHONG R,VAN WEST P,HEYMAN F,et al.Mobilization of pollutant-degrading bacteria by eukaryotic zoospores.Environmental Science&Technology,2016,50(14):7633-7640.

      [72]WAGNER-D?BLER I,BENNASAR A,VANCANNEYT M,et al.Microcosm enrichment of biphenyl-degrading microbial communities from soils and sediments.Applied and Environmental Microbiology,1998,64(8):3014-3022.

      [73]UYTTEBROEK M,BREUGELMANS P,JANSSEN M,et al.Distribution of the Mycobacterium community and polycyclic aromatic hydrocarbons(PAHs)among different size fractions of a long-termPAH-contaminated soil.Environmental Microbiology,2006,8(5):836-847.

      猜你喜歡
      趨化苯甲酸質(zhì)粒
      三維趨化流體耦合系統(tǒng)整體解的最優(yōu)衰減估計(jì)
      帶非線(xiàn)性擴(kuò)散項(xiàng)和信號(hào)產(chǎn)生項(xiàng)的趨化-趨觸模型解的整體有界性
      離子交換樹(shù)脂催化合成苯甲酸甲酯
      云南化工(2020年11期)2021-01-14 00:50:52
      具不同分?jǐn)?shù)階擴(kuò)散趨化模型的衰減估計(jì)
      短乳桿菌天然質(zhì)粒分類(lèi)
      含有苯甲酸的紅棗不能吃?
      3,5-二氨基對(duì)氯苯甲酸異丁酯的合成研究
      重組質(zhì)粒rAd-EGF構(gòu)建并轉(zhuǎn)染hDPSCs對(duì)其增殖的影響
      一類(lèi)趨化模型的穩(wěn)定性分析
      Survivin-siRNA重組質(zhì)粒對(duì)人神經(jīng)母細(xì)胞瘤細(xì)胞SH-SY5Y的作用
      新昌县| 平安县| 漠河县| 垫江县| 会同县| 开鲁县| 广河县| 新巴尔虎左旗| 新晃| 乾安县| 彝良县| 天祝| 东丰县| 交城县| 太仆寺旗| 山丹县| 遵义市| 靖安县| 武陟县| 鄂托克旗| 邵阳县| 疏附县| 汕尾市| 同心县| 望江县| 克什克腾旗| 宁远县| 郴州市| 锦屏县| 涞源县| 临海市| 江孜县| 邵东县| 阳曲县| 海原县| 灵石县| 密山市| 澄江县| 和平县| 武隆县| 神池县|