• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Predictions of the PPTC Propeller Tip Vortex Cavitation in Uniform Flow

    2018-01-04 08:24:56LIUDengchengWEIXizhong
    船舶力學 2017年12期
    關鍵詞:渦量空泡螺旋槳

    LIU Deng-cheng,WEI Xi-zhong

    (1.National Key Laboratory on Ship Vibration&Noise,China Ship Scientific Research Center,Wuxi 214082,China;2.Jiangsu Key Laboratory of Green Ship Technology,Wuxi 214082,China)

    Numerical Predictions of the PPTC Propeller Tip Vortex Cavitation in Uniform Flow

    LIU Deng-cheng1,2,WEI Xi-zhong1

    (1.National Key Laboratory on Ship Vibration&Noise,China Ship Scientific Research Center,Wuxi 214082,China;2.Jiangsu Key Laboratory of Green Ship Technology,Wuxi 214082,China)

    Using Sauer’s cavitation model,the effects of grid type and turbulence model on propeller tip vortex cavitation simulation results are researched.It shows that the Sauer’s cavitation model is suitable for the propeller tip vortex cavitation simulation,and the key point is the grid density at the tip vortex cavitation region.A local grid refinement method is proposed.The simulation of PPTC propeller wetted flow and tip vortex cavitation flow is implemented,and the propeller tip vortex cavitation shape is compared with the corresponding experiments results.In order to analyse the main features of tip vortex and tip vortex cavitation, ‘Q-Criterion’ and ‘λ2-Criterion’ are used.The vorticity distribution in the tip vortex region of wetted flow presents single hump shape,and the minimum value is at the tip vortex core.The vorticity distribution in the tip vortex cavity region of cavitation flow presents double humps shape,and the minimum value is not at the tip vortex cavitation core.

    uniform flow;tip vortex cavitation;propeller;numerical prediction

    0 Introduction

    Cavitating flows are highly complicated because it is a rapid phase change phenomenon,which often occurs in the high-speed or rotating fluid machineries when the local pressure drops below its vapor pressure.It is well known that the cavitating flow raises up the vibration,the noise and the erosion.Therefore,the research on the cavitating flow is of great interest.

    Cavitation presents complex unsteady,turbulent and multi-phase flow phenomena with a large density difference and mass transfer.These features result in a unique challenge for the simulation of cavitating flows,especially tip vortex cavitation.

    Numerical method is a highly important approach for studying the cavitating flow.Computational methods for cavitation have been studied since over two decades ago.In general,the methods can be largely categorized into two groups:single-phase modeling with cavitation interface tracking and multi-phase modeling with cavitation interface capturing.

    The former approach has been widely adopted for inviscid flow solution methods,such as potential flow boundary element methods.Kinnas and Fine[1]developed non-linear boundaryelement method based on speed potential,and so on.

    The latter approach can be adopted for viscous flow solution methods,and is very popular in the cavitation research recently with the development of CFD.The cavitating flow is treated as the homogeneous equilibrium single-fluid flow which satisfies Navier-Stokes equation.In this approach,the mixture density concept is introduced.The key challenge is how to define the mixed density of the single-fluid flow.In general,the cavitation modeling can be largely categorized into two groups according to the relation that defines the variable density field.One cavitation modeling proposed by Delannoy and Kueny[2]is based on the equation of state that relates pressure and density.By assuming the cavitating process to be isothermal,mixed density is simply a function of local pressure.The other cavitation modeling is based on mass transport equation which introduces the concept of volume fraction,and the source term of the mass transport equation controlled the evaporation and condensation transfer process,and then the mixed density is calculated using the volume fraction.Kubota et al[3]coupled the Rayleigh-Plesset equation to compute the volume fraction based on the bubble radius.A mass transport equation cavitation model has been recently developed.Merkle et al[4],Kunz et al[5-6],Senocak and Shhy[7-9],Singal et al[10],Zwart et al[11],Schnerr and Sauer[12-14]and Liu[15]have employed similar idea based on this concept with differences in the source terms.

    Many people did some research about the simulation of foil and propeller cavitation,and these work main focus on sheet cavitation and cloud cavitation.For example,Niklas et al[16]simulated two and three dimensional cavitating flow around hydrofoil with Kunz’s cavitation model.Shin Hyung Rhee and Kawamura[17]studied the cavitating flow around a marine propeller using an unstructured mesh with FLUENT 6.1.Liu[18-20]simulated the cavitating performance of marine propeller using a hybrid mesh based on RANS solver for singhal model.Coutier-Delgosha et al[21]computed cavitating flows around 2D foil by modifying turbulence model,and the sheet cavity length and the dynamic shedding behaviour were very similar to those observed in the experiment.Li[22-23]and Liu[24]predicted unsteady cavitating flows of 2D NACA0015 foil and 3D twisted foil using the same idea.

    In this paper,the effects of grid type and turbulence model on propeller tip vortex cavitation simulation results are researched.A local grid refinement method is proposed.The simulation of PPTC propeller wetted flow and tip vortex cavitation flow is implemented.In order to analyse the main features of tip vortex and tip vortex cavitation, ‘Q-Criterion’ and ‘λ2-Criterion’are used.

    1 Research object

    There are two international standard propeller models,one was named E779A which was designed in 1959 by INSEAN tank of Italy,the other was named PPTC which was proposed on the first workshop on cavitation and propeller performance.

    The first workshop on cavitation and propeller performance was held in Hamburg,Ger-many,at the end of smp’11.The workshop emphasis will be on prediction of PPTC propeller hydrodynamic performance and propeller cavitation performance in uniform flow,the test was blind test at Potsdam Model Basin.A large number of different research groups participated,and the workshop become a success.

    And the second international workshop on cavitating propeller performance was held in Austin,USA,at the end of smp’15.The workshop emphasis will be on prediction of PPTC propeller hydrodynamic performance and propeller cavitation performance in oblique flow,and the blind test will also be performed at Potsdam Model Basin.

    PPTC is a five bladed propeller(see Fig.1).It is a controllable pitch propeller with diameter D=0.250 m,hub diameter ratio of 0.3,pitch-to-diameter ratio of 1.635 at 0.7 radial section,skewed angle of 19.12°and area ratio of 0.78.

    Fig.1 The geometry of PPTC

    2 Numerical methods

    2.1 Governing equations

    For the multi-phase flow solutions,the single-fluid mixture model is employed.The governing equations are written for the mass and momentum conservation of mixed fluid as follows:

    where ρmis the mixed density,μ is the mixed viscosity,μtis the mixed eddy viscosity.

    2.2 Sauer’s cavitation model

    The mixed density is controlled by vapor mass fraction f:

    The vapor transport equation is written as:

    where ρvand ρlare the density of vapor and liquid,respectively.are the rates of vapor generation and condensation,respectively.Sauer derived the expressions ofwhere pvis saturated vapor pressure.

    2.3 Grid type and turbulence model

    For this simulation,the computational domain was created as block which is divided into static region and rotating region around propeller.Boundary conditions were set as follows:on the inlet boundary and the outer boundary,velocity components of uniform stream with the given inflow speeds were imposed;on propeller surface,the no slip condition was imposed;on the exit boundary,the static pressure was set to a constant value,which is determined by cavitation index in the cavtating cases.The initial and the free-stream turbulence quantities are set to 1%turbulence intensity and a turbulence viscosity ratio equal to 10.The advance coefficient is 1.019 and the cavitation number is 2.024.The case of computation is presented in Tab.1.The expression of advance ratio,cavitation number,thrust and torque coefficients is written as follows:

    For research the effect of different grid type and turbulence model,four different grid types filled the rotating region and three different turbulence models are employed.The grid types include trim mesh,trim mesh with tip region refinement,tetrahedral mesh and polyhe-dral mesh;these are named as Trim,Trim-tip,Tet and Poly,respectively.The turbulence models include k-ε,SST k-ω and Reynolds stress turbulence model(RSM).In Tab.2,the cases of cavitation computation about grid type and turbulence model are presented.The corresponding grid types are showed in Fig.2.For tip vortex region grid refinement,a block was created according to the helix line,and the pitch is equal to the propeller pitch at the 1.0 time radius(see Fig.3).

    Tab.1 The case2-1 of cavitation computational

    Tab.2 The cases of computation aboutgrid type and turbulence model

    Fig.2 The four different grid types

    Fig.3 The block for tip vortex region grid refinement

    3 Results and discussion

    3.1 The effect of grid types and turbulence model

    We simulated propeller cavitation performance at one advance ratio and one cavitation index with different grid types and different turbulence models.It has seven cases in Tab.2.

    Fig.4 The computational cavity shapes and compared with experimental result

    The comparison of the computed cavity shapes of different cases with the experimental result which come from Potsdam Model Basin at the first workshop on cavitation and propeller performance are presented in Fig.4.The computed cavity shapes can be confirmed by the isosurface of vapor volume fraction of 0.1.From the experimental result,we clearly see that the cavitation is to occur in the tip,root and leading edge of suction side of propeller.In Fig.4,it shows that the all computational cases catch the cavity in the root and leading edge;only the computational cases of tip vortex region grid refinement catch the tip vortex cavitation.The computational results indicated that the tip vortex cavity missing in some computations is attributed mainly to the mesh resolution in the cavitating region,but most grid types and turbulence model can deal well with cavitation flow,the Sauer’s cavitation model is not only suitable for the sheet cavitation simulation but also suitable for the propeller tip vortex cavitation simulation,where the key point is the grid density at the tip vortex cavitation region.

    3.2 The features of tip vortex and tip vortex cavitation

    According to the simulation results of PPTC propeller wetted flow and tip vortex cavitation flow using tip vortex region grid refinement and the SST k-ω turbulence model,we analyse the main features of tip vortex and tip vortex cavitation.Fig.5 presents comparison between tip vortex and tip vortex cavity.The iso-surface of the λ2 equal to 5 000 represents the tip vortex in wetted flow and tip vortex cavity in cavitation flow.We can clearly see that the streamlines of tip vortex are more helical than the streamlines of tip vortex cavity.

    Fig.6 The vorticity comparison between tip vortex and tip vortex cavity(x=0.32R)

    The vorticity comparison between tip vortex and tip vortex cavity at the cross face of propeller downstream(x=0.32R)is presented in Fig.6.The vorticity and λ2 distribution across the tip vortex respectively(r=0.96R,x=0.32R)are presented in Fig.7 and Fig.8.The vorticity distribution in the tip vortex region of wetted flow presents single hump shape,and the minimum value is at the tip vortex core.The vorticity distribution in the tip vortex cavity region of cavitation flow presents double humps shape,and the minimum value is not at the tip vortex cavitation core.It is showed that the vorticity and the absolute value of λ2 in the tip vortex of wetted flow are larger than these in the tip vortex cavity of cavitation flow,and the radius of tip vortex cavity in cavitation flow is larger than the radius of tip vortex in wetted flow.The reason is that the pressure in the tip vortex of wetted flow is lower than the pressure in the tip vortex cavity of cavitation flow which is about equal to the saturated pressure.

    Fig.7 The vorticity distribution across the tip vortex(r=0.96R,x=0.32R)

    Fig.8 The λ2 distribution across the tip vortex(r=0.96R,x=0.32R)

    4 Conclusions

    Using Sauer’s cavitation model,the effects of grid type and turbulence model on propeller tip vortex cavitation simulation results are researched.It shows that the Sauer’s cavitation model is suitable for the propeller tip vortex cavitation simulation,and the key point is the grid density at the tip vortex cavitation region.A local grid refinement method is proposed.The simulation of PPTC propeller wetted flow and tip vortex cavitation flow is implemented,and the propeller tip vortex cavitation shape is compared with the corresponding experimental results.In order to analyse the main features of tip vortex and tip vortex cavitation,‘Q-Criterion’ and‘λ2-Criterion’ are used.The vorticity distribution in the tip vortex region of wetted flow presents single hump shape,and the minimum value is at the tip vortex core.The vorticity distribution in the tip vortex cavity region of cavitation flow presents double humps shape,and the minimum value is not at the tip vortex cavitation core.

    [1]Kinnas S A,Fine E A.Numerical nonlinear analysis of the flow around 3-D cavitating hydrofoil[J].Journal of Fluid Mechanics,1993,254:151-181.

    [2]Delannoy Y,Kueny J L.Two phase flow approach in unsteady cavitation modeling[C]//ASME Fluids Engineering Division.Toronto,Ontario,1990:153-158.

    [3]Kubota A,Kato H,Yamaguchi H.A new modeling of cavitating flows:A numerical study of unsteady cavitation on a hydrofoil section[J].J of Fluid Mechanics,1992,240:59-96.

    [4]Merkle C L,Feng J,Buelow P E O.Computational modeling of the dynamics of sheet cavitation[C]//Proceedings of 3rd International Symposium on Cavitation.Grenoble,France,1998.

    [5]Kunz R F,Boger D A.A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction[J].Computers&Fluids,2000,29:849-875.

    [6]Kunz R F,Lindau J W.Unsteady RANS and detached eddy simulations of cavitating flow over a hydrofoil[C]//Fifth International Symposium on Cavitation,cav2003.Osaka,Japan,2003:1-4.

    [7]Senocak I,Shyy W.Numerical simulation of turbulent with sheet cavitation[C].Fourth International Symposium on Cavitation,cav2001,SessionA7.002,2001.

    [8]Senocak I,Shyy W.A pressure-based method for turbulent cavitating flow computation[J].Journal of Computational Physics,2002,176:363-383.

    [9]Senocak I,Shyy W.Interfacial dynamics-based modelling of turbulent cavitating flows,Part-1:Model development and steady-state computations[J].Int.J Numer.Methods Fluids,2004,44(9):975-995.

    [10]Singhal A K,Athavale M M.Mathematical basis and validation of the full cavitation model[J].Journal of Fluids Engineering,2002,124:617-624.

    [11]Zwart P J,Gerber A G,Belamri T.A two-phase flow model for predicting cavitation dynamics[C]//Proceedings of International Conference on Multiphase Flow.Yokohama,Japan,2004.

    [12]Schnerr G H,Sauer J.Physical and numerical modeling of unsteady cavitation dynamics[C]//Proceedings of 4th International Conference on Multiphase Flow.New Orleans,USA,2001.

    [13]Schnerr G H,Sezal I H,Schmidt S J.Numerical investigation of three-dimensional cloud cavitation with special emphasis on collapse induced shock dynamics[J].Phys.Fluids.,2008,20(4):040703.

    [14]ANSYS Corporation.ANSYS Fluent Documentations[K].2010.

    [15]Liu Dengcheng.The numerical simulation of propeller sheet cavitation with a new cavitation model[C]//7th International Conference on Fluid Mechanics,ICFM7.Qingdao,China,2015.

    [16]Niklas,Goran Bark,Christer Fureby.Large eddy simulation of cavitating submerged objects[C]//The 8th International Conference on Numerical Ship Hydrodynamics.Busan,Korea,2003.

    [17]Shin Hyung Rhee,Takarumi Kawamura.A study of propeller cavitation using a RANS CFD method[C]//The 8th International Conference on Numerical Ship Hydrodynamics.Busan,Korea,2003.

    [18]Liu Dengcheng,Hong Fangwen,Zhao Feng,et al.The CFD analysis of propeller sheet cavitation[C]//Proceedings of the 8th International Conference on Hydrodynamics.Nantes France,2008.

    [19]Liu Dengcheng,Hong Fangwen.The numerical predicted of SMP11 propeller performance with and without cavitation[C]//Second International Symposium on Marine Propulsors,SMP’11.Hamburg,Germany,2011.

    [20]Liu Dengcheng.The numerical predicted of VP1304 propeller cavitation performance in oblique flow[C]//Fourth International Symposium on Marine Propulsors,smp’15.Austin,USA,2015.

    [21]Olivier Coutier-Delgosha,Fortes-Patella R,Reboud L.Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation[J].Journal of Fluids Engineering,2003,125(1):38-45.

    [22]Li D Q,Grekula.Prediction of dynamic shedding of cloud cavitation on a 3D twisted foil and comparison with experiments[C]//27th Symposium on Naval Hydrodynamics.Seoul,Korea,2008.

    [23]Li Daqing,Mikael Grekula,Per Lindell.A modified SST k-ω turbulence model to predict the steady and unsteady sheet cavitation on 2D and 3D hydrofoils[C]//Proceedings of the 7th International Symposium on Cavitation,CAV2009.Ann Arbor,Michigan,USA,2009.

    [24]Liu Dengcheng,Hong Fangwen,Lu Fang.The numerical and experimental research on tip vortex flow and unsteady cloud cavitating flow of 3D elliptical hydrofoil[C]//Proceedings of the 9th International Conference on Hydrodynamics.Shanghai,China,2010.

    均流中PPTC螺旋槳梢渦空泡數(shù)值預報

    劉登成1,2, 韋喜忠1

    (1.中國船舶科學研究中心 船舶振動噪聲重點實驗室,江蘇 無錫214082;2.江蘇省綠色船舶技術重點實驗室,江蘇 無錫 214082)

    文章采用Sauer空化模型,研究了網格類型和湍流模型對均流中螺旋槳梢渦空泡數(shù)值模擬的影響,研究表明,現(xiàn)有的空泡模型適合于螺旋槳梢渦空泡的數(shù)值模擬,其中梢渦空泡區(qū)域網格密度是關鍵,文中提出了一種合適的梢渦空泡區(qū)域網格加密方法。對PPTC螺旋槳全濕流和梢渦空泡進行了數(shù)值預報,螺旋槳梢渦空泡形態(tài)與試驗結果進行了對比,并應用渦判據(jù)“Q準則”和“λ2準則”分析了梢渦與梢渦空泡的流動特征。全濕流中梢渦區(qū)域的渦量隨周向的分布呈現(xiàn)單峰特性,最小渦量在渦心處,而空泡流中梢渦空泡區(qū)域的渦量隨周向的分布呈現(xiàn)雙峰特性,最小渦量不在渦心處。

    均流;梢渦空泡;螺旋槳;數(shù)值預報

    U661.73

    A

    國家自然科學基金資助項目(11332009)

    劉登成(1982-),男,中國船舶科學研究中心高級工程師;

    韋喜忠(1982-),男,中國船舶科學研究中心高級工程師。

    U661.73 Document code:A

    10.3969/j.issn.1007-7294.2017.12.004

    date:2017-07-14

    Supported by the National Natural Science Foundation of China(Grant No.11332009)

    Biography:LIU Deng-cheng(1982-),male,senior engineer,E-mail:edon_001@163.com;WEI Xi-zhong(1982-),male,senior engineer.

    1007-7294(2017)12-1480-09

    猜你喜歡
    渦量空泡螺旋槳
    水下航行體雙空泡相互作用數(shù)值模擬研究
    含沙空化對軸流泵內渦量分布的影響
    基于CFD的螺旋槳拉力確定方法
    自由表面渦流動現(xiàn)象的數(shù)值模擬
    基于LPV的超空泡航行體H∞抗飽和控制
    基于CFD的對轉槳無空泡噪聲的仿真預報
    船海工程(2015年4期)2016-01-05 15:53:28
    3800DWT加油船螺旋槳諧鳴分析及消除方法
    廣東造船(2015年6期)2015-02-27 10:52:46
    航態(tài)對大型船舶甲板氣流場的影響
    螺旋槳轂帽鰭節(jié)能性能的數(shù)值模擬
    The application of numerical simulation of delta wing with blunt leading edge using RANS/LES hybrid method
    男人舔奶头视频| 插阴视频在线观看视频| 欧美日韩乱码在线| 国产片特级美女逼逼视频| 亚洲av电影不卡..在线观看| 国产高清三级在线| 亚洲无线观看免费| 欧美+亚洲+日韩+国产| 国产伦精品一区二区三区视频9| av免费在线看不卡| 亚洲欧美清纯卡通| 秋霞在线观看毛片| 亚洲丝袜综合中文字幕| 精品熟女少妇av免费看| 久久人人爽人人爽人人片va| 亚洲婷婷狠狠爱综合网| 久久精品国产99精品国产亚洲性色| 亚洲人成网站在线观看播放| 国产成人精品久久久久久| 久久婷婷人人爽人人干人人爱| 日韩强制内射视频| 熟女人妻精品中文字幕| 国产色爽女视频免费观看| 国内精品一区二区在线观看| 久久99蜜桃精品久久| 亚洲精品粉嫩美女一区| 最近2019中文字幕mv第一页| 国产色爽女视频免费观看| 国产精品一区二区三区四区免费观看| 国内揄拍国产精品人妻在线| 最近中文字幕高清免费大全6| 亚洲高清免费不卡视频| 午夜激情福利司机影院| 成人一区二区视频在线观看| 在线观看免费视频日本深夜| 看非洲黑人一级黄片| 综合色丁香网| 性欧美人与动物交配| 日韩在线高清观看一区二区三区| 1000部很黄的大片| 97超视频在线观看视频| 插阴视频在线观看视频| 观看免费一级毛片| 亚洲中文字幕一区二区三区有码在线看| 色综合亚洲欧美另类图片| а√天堂www在线а√下载| 桃色一区二区三区在线观看| 看片在线看免费视频| 人妻夜夜爽99麻豆av| 国产精品,欧美在线| 午夜福利在线观看吧| 别揉我奶头 嗯啊视频| 日韩欧美在线乱码| 免费看a级黄色片| 欧美性猛交黑人性爽| 一边摸一边抽搐一进一小说| 好男人在线观看高清免费视频| 欧洲精品卡2卡3卡4卡5卡区| 蜜桃久久精品国产亚洲av| 搞女人的毛片| 少妇被粗大猛烈的视频| 深夜精品福利| 美女国产视频在线观看| av在线老鸭窝| 日本一本二区三区精品| 天堂影院成人在线观看| 国产大屁股一区二区在线视频| 日韩视频在线欧美| 亚洲国产精品合色在线| 国产人妻一区二区三区在| 日韩一本色道免费dvd| 亚洲最大成人av| 国产精品.久久久| 国产精品伦人一区二区| ponron亚洲| 毛片一级片免费看久久久久| av卡一久久| 成年免费大片在线观看| 亚洲成人中文字幕在线播放| 九草在线视频观看| 成人鲁丝片一二三区免费| 国产黄片视频在线免费观看| 在线观看免费视频日本深夜| 午夜亚洲福利在线播放| 国产伦精品一区二区三区四那| 国产高清视频在线观看网站| 成人鲁丝片一二三区免费| 亚洲真实伦在线观看| 最近2019中文字幕mv第一页| 日本与韩国留学比较| 日本黄色片子视频| 国产精品综合久久久久久久免费| 亚洲婷婷狠狠爱综合网| 网址你懂的国产日韩在线| 黄色日韩在线| a级毛片a级免费在线| 欧美潮喷喷水| 校园人妻丝袜中文字幕| 大型黄色视频在线免费观看| 久久久久久久久中文| 麻豆成人午夜福利视频| 亚洲精品成人久久久久久| 成人综合一区亚洲| 国产精品一及| 国产大屁股一区二区在线视频| av在线天堂中文字幕| 欧美高清成人免费视频www| 九九热线精品视视频播放| 久久久久久久久久久丰满| av在线观看视频网站免费| 国产91av在线免费观看| 爱豆传媒免费全集在线观看| 尤物成人国产欧美一区二区三区| a级毛片a级免费在线| 精品久久久久久久久亚洲| 18+在线观看网站| 欧美极品一区二区三区四区| 国模一区二区三区四区视频| 哪里可以看免费的av片| av免费观看日本| 国产熟女欧美一区二区| 欧美高清成人免费视频www| 亚洲美女搞黄在线观看| 国产亚洲av嫩草精品影院| 在线观看午夜福利视频| 天堂网av新在线| 欧美精品一区二区大全| 成人漫画全彩无遮挡| 青春草国产在线视频 | 成人漫画全彩无遮挡| 国产亚洲欧美98| 国产成人一区二区在线| 最新中文字幕久久久久| 一本一本综合久久| 亚洲无线观看免费| 久久精品夜夜夜夜夜久久蜜豆| 国产高清有码在线观看视频| 久久99热6这里只有精品| 久久久久免费精品人妻一区二区| 日本五十路高清| 青春草亚洲视频在线观看| 日韩人妻高清精品专区| 最近的中文字幕免费完整| 久久久久国产网址| 亚洲四区av| 色噜噜av男人的天堂激情| 国产69精品久久久久777片| 日本与韩国留学比较| 插逼视频在线观看| 国产免费男女视频| 乱系列少妇在线播放| 亚洲激情五月婷婷啪啪| 欧美丝袜亚洲另类| 亚洲精品自拍成人| 国产色爽女视频免费观看| 18禁裸乳无遮挡免费网站照片| 天堂中文最新版在线下载 | 亚洲国产精品合色在线| 久久久久久久久中文| 久久久久久久亚洲中文字幕| 日本在线视频免费播放| 日本黄色片子视频| 最近的中文字幕免费完整| 一本久久精品| 久久精品国产亚洲av涩爱 | 97超视频在线观看视频| 日本免费a在线| 亚洲人与动物交配视频| 大又大粗又爽又黄少妇毛片口| 亚洲成人av在线免费| 91久久精品电影网| 成人性生交大片免费视频hd| 国产日韩欧美在线精品| 国产 一区精品| 国产三级在线视频| 久久久久久久午夜电影| 国内精品宾馆在线| 丝袜喷水一区| 寂寞人妻少妇视频99o| 91午夜精品亚洲一区二区三区| 久久中文看片网| 午夜老司机福利剧场| 精品99又大又爽又粗少妇毛片| 91狼人影院| 日本与韩国留学比较| 九九热线精品视视频播放| 国产真实乱freesex| 亚洲在线自拍视频| 人人妻人人澡人人爽人人夜夜 | 日韩高清综合在线| 亚洲第一电影网av| 不卡视频在线观看欧美| 长腿黑丝高跟| 如何舔出高潮| 神马国产精品三级电影在线观看| 亚洲七黄色美女视频| 国产色婷婷99| 久久婷婷人人爽人人干人人爱| 可以在线观看的亚洲视频| 欧美激情久久久久久爽电影| 国产国拍精品亚洲av在线观看| 中出人妻视频一区二区| 22中文网久久字幕| 亚洲精品久久国产高清桃花| 赤兔流量卡办理| 欧美日韩精品成人综合77777| 国产精华一区二区三区| 黄色配什么色好看| 亚洲无线在线观看| 99热这里只有是精品50| 最新中文字幕久久久久| 色视频www国产| 熟女电影av网| 亚洲av第一区精品v没综合| 国产色爽女视频免费观看| 久久99蜜桃精品久久| 在线观看午夜福利视频| 久久精品国产亚洲av涩爱 | 欧美+日韩+精品| 91麻豆精品激情在线观看国产| 午夜激情欧美在线| 在线a可以看的网站| 97在线视频观看| 直男gayav资源| 久久欧美精品欧美久久欧美| 18禁裸乳无遮挡免费网站照片| 色5月婷婷丁香| 在线免费观看的www视频| 国产视频内射| 日韩欧美 国产精品| 嫩草影院新地址| 成人一区二区视频在线观看| 精品国产三级普通话版| 青春草国产在线视频 | 毛片一级片免费看久久久久| 亚洲人成网站在线观看播放| 国产精品一及| 欧洲精品卡2卡3卡4卡5卡区| 日日啪夜夜撸| 麻豆国产av国片精品| 欧美不卡视频在线免费观看| 成年女人永久免费观看视频| 欧美高清性xxxxhd video| 精品一区二区三区人妻视频| 久久韩国三级中文字幕| 国产伦在线观看视频一区| 国产成人精品婷婷| 国产精品永久免费网站| www日本黄色视频网| 亚洲国产精品成人久久小说 | 在线免费十八禁| 欧美不卡视频在线免费观看| 九九热线精品视视频播放| 老女人水多毛片| 2021天堂中文幕一二区在线观| 久久久久九九精品影院| .国产精品久久| 久久精品影院6| 日本三级黄在线观看| 国产三级在线视频| 秋霞在线观看毛片| 身体一侧抽搐| 禁无遮挡网站| 美女脱内裤让男人舔精品视频 | 成人午夜精彩视频在线观看| 久久这里只有精品中国| 性欧美人与动物交配| 精品一区二区三区人妻视频| 天天躁日日操中文字幕| 日韩在线高清观看一区二区三区| 亚洲国产欧洲综合997久久,| 一卡2卡三卡四卡精品乱码亚洲| 此物有八面人人有两片| 一进一出抽搐动态| 一进一出抽搐gif免费好疼| 亚洲七黄色美女视频| 看黄色毛片网站| 亚洲美女视频黄频| 特大巨黑吊av在线直播| 亚洲精品日韩av片在线观看| 在线免费十八禁| 小说图片视频综合网站| 久久6这里有精品| 欧美潮喷喷水| 日韩三级伦理在线观看| 最近最新中文字幕大全电影3| 久久精品国产自在天天线| a级毛色黄片| 寂寞人妻少妇视频99o| 18禁在线无遮挡免费观看视频| 18+在线观看网站| 又粗又硬又长又爽又黄的视频 | av国产免费在线观看| 99久久无色码亚洲精品果冻| 丝袜喷水一区| 国产精品,欧美在线| 国产精品蜜桃在线观看 | av在线播放精品| 内地一区二区视频在线| 日产精品乱码卡一卡2卡三| videossex国产| 成人美女网站在线观看视频| 国产真实伦视频高清在线观看| 午夜爱爱视频在线播放| 永久网站在线| 成人无遮挡网站| 日韩国内少妇激情av| 一边亲一边摸免费视频| 久久久久性生活片| 亚洲在久久综合| 亚洲激情五月婷婷啪啪| 狂野欧美激情性xxxx在线观看| 人妻系列 视频| 久久久久国产网址| 亚洲av.av天堂| 能在线免费观看的黄片| 成人永久免费在线观看视频| 26uuu在线亚洲综合色| 国产成人影院久久av| 亚洲人成网站在线观看播放| 婷婷色综合大香蕉| 99久国产av精品国产电影| 赤兔流量卡办理| 欧美bdsm另类| 免费搜索国产男女视频| 日韩欧美国产在线观看| 精品一区二区三区人妻视频| 日本免费a在线| 国产成人午夜福利电影在线观看| 亚洲精品粉嫩美女一区| 久久这里有精品视频免费| 99热网站在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产一区二区在线观看日韩| 国产精品伦人一区二区| 婷婷色综合大香蕉| 人妻久久中文字幕网| 精品人妻视频免费看| 秋霞在线观看毛片| 免费看a级黄色片| 能在线免费观看的黄片| 欧美+亚洲+日韩+国产| 亚洲欧美日韩高清专用| 免费观看在线日韩| 久久久色成人| 成人毛片a级毛片在线播放| 春色校园在线视频观看| 高清午夜精品一区二区三区 | 午夜福利在线观看免费完整高清在 | 精品一区二区三区视频在线| 国内精品美女久久久久久| 性色avwww在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲av熟女| 麻豆成人av视频| 一级二级三级毛片免费看| 亚洲成av人片在线播放无| 精品久久国产蜜桃| 免费av观看视频| 91久久精品国产一区二区三区| 亚洲人成网站高清观看| 国产高清视频在线观看网站| 成人美女网站在线观看视频| 国产亚洲91精品色在线| 高清在线视频一区二区三区 | 男女边吃奶边做爰视频| 免费av观看视频| 噜噜噜噜噜久久久久久91| 国产色婷婷99| 欧美一区二区国产精品久久精品| 日韩视频在线欧美| 亚洲内射少妇av| 黄色欧美视频在线观看| 国产精品日韩av在线免费观看| 天堂网av新在线| 国产成人精品婷婷| 精品久久久久久久人妻蜜臀av| 久久久精品94久久精品| 日韩一区二区视频免费看| 99久久精品热视频| 国产色爽女视频免费观看| 久久久久久久久久黄片| 欧美一级a爱片免费观看看| 久久人人爽人人爽人人片va| 一级毛片aaaaaa免费看小| 精品久久久久久久久av| 亚洲欧美成人精品一区二区| 偷拍熟女少妇极品色| 搞女人的毛片| 日本爱情动作片www.在线观看| 少妇熟女aⅴ在线视频| 日日摸夜夜添夜夜爱| 黄色一级大片看看| 99久久无色码亚洲精品果冻| 变态另类成人亚洲欧美熟女| 国模一区二区三区四区视频| 成人特级黄色片久久久久久久| 国产成人影院久久av| 免费观看在线日韩| 国产成人aa在线观看| 波多野结衣高清无吗| 国产中年淑女户外野战色| 2021天堂中文幕一二区在线观| 又爽又黄无遮挡网站| 3wmmmm亚洲av在线观看| 天堂影院成人在线观看| 亚洲欧美精品专区久久| 亚洲人成网站在线播| 色综合亚洲欧美另类图片| 国产乱人偷精品视频| 美女国产视频在线观看| 99热这里只有是精品50| 成人特级av手机在线观看| 尾随美女入室| av在线播放精品| 国语自产精品视频在线第100页| 一边摸一边抽搐一进一小说| 国产成人精品久久久久久| 1024手机看黄色片| 99国产极品粉嫩在线观看| 性欧美人与动物交配| 久久精品国产自在天天线| 99久久人妻综合| 久久久久久久久大av| 最近最新中文字幕大全电影3| 国产男人的电影天堂91| 在线播放无遮挡| 国产黄片视频在线免费观看| 国语自产精品视频在线第100页| 国产成人影院久久av| 色哟哟哟哟哟哟| 久久精品夜色国产| 五月伊人婷婷丁香| 日本在线视频免费播放| 国产成人精品婷婷| 日日摸夜夜添夜夜添av毛片| 少妇裸体淫交视频免费看高清| 国产精品乱码一区二三区的特点| 日韩av在线大香蕉| 熟女电影av网| 欧美xxxx性猛交bbbb| 日韩欧美 国产精品| 麻豆精品久久久久久蜜桃| 日韩欧美精品v在线| 欧美成人免费av一区二区三区| 少妇丰满av| 久久人妻av系列| 国产精品三级大全| 国产午夜精品论理片| 日韩av在线大香蕉| 不卡一级毛片| 国产视频内射| 男女做爰动态图高潮gif福利片| 又黄又爽又刺激的免费视频.| 男女边吃奶边做爰视频| 日韩国内少妇激情av| 午夜福利在线观看吧| 麻豆久久精品国产亚洲av| 国产黄色视频一区二区在线观看 | 欧美一区二区亚洲| 老熟妇乱子伦视频在线观看| 给我免费播放毛片高清在线观看| 国产精品一区www在线观看| 伦理电影大哥的女人| 能在线免费看毛片的网站| 在线a可以看的网站| 69人妻影院| 亚洲,欧美,日韩| 色播亚洲综合网| 国产一级毛片七仙女欲春2| 99热6这里只有精品| 日本色播在线视频| 国产在视频线在精品| 国产一区二区在线av高清观看| 国产精品99久久久久久久久| 六月丁香七月| 国内少妇人妻偷人精品xxx网站| 又爽又黄无遮挡网站| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕免费在线视频6| 亚洲欧美日韩无卡精品| 美女高潮的动态| 国产乱人视频| 久久九九热精品免费| 女同久久另类99精品国产91| а√天堂www在线а√下载| 久久精品国产亚洲av涩爱 | 日日摸夜夜添夜夜添av毛片| 综合色av麻豆| 午夜免费男女啪啪视频观看| 国产亚洲91精品色在线| 99热精品在线国产| 国产成人精品婷婷| 日韩大尺度精品在线看网址| 美女黄网站色视频| 别揉我奶头 嗯啊视频| 搡女人真爽免费视频火全软件| 女的被弄到高潮叫床怎么办| av国产免费在线观看| 欧美成人免费av一区二区三区| 26uuu在线亚洲综合色| 蜜桃亚洲精品一区二区三区| 高清日韩中文字幕在线| 亚洲欧美成人精品一区二区| 中国美女看黄片| 久久精品人妻少妇| 内地一区二区视频在线| 亚洲欧洲日产国产| 老熟妇乱子伦视频在线观看| 午夜爱爱视频在线播放| 色噜噜av男人的天堂激情| 日韩大尺度精品在线看网址| 一个人免费在线观看电影| 亚洲成人av在线免费| 少妇人妻精品综合一区二区 | 久久精品国产亚洲网站| 日韩精品有码人妻一区| 久久这里有精品视频免费| av视频在线观看入口| 国产精品一区二区性色av| 久久精品国产99精品国产亚洲性色| 国产精品,欧美在线| 久久亚洲国产成人精品v| 一边摸一边抽搐一进一小说| 日产精品乱码卡一卡2卡三| 99久久成人亚洲精品观看| 国产一区二区在线av高清观看| 看免费成人av毛片| 男人和女人高潮做爰伦理| 精品人妻视频免费看| 99热这里只有是精品50| 精品免费久久久久久久清纯| 天堂中文最新版在线下载 | 国产爱豆传媒在线观看| 精品日产1卡2卡| 少妇的逼好多水| 黄色一级大片看看| 熟女人妻精品中文字幕| 搡女人真爽免费视频火全软件| 免费一级毛片在线播放高清视频| 亚洲av熟女| 男的添女的下面高潮视频| 99热这里只有精品一区| 国产一区二区在线av高清观看| 99久久九九国产精品国产免费| 熟女人妻精品中文字幕| 九九久久精品国产亚洲av麻豆| 少妇的逼水好多| 中国美女看黄片| 日本五十路高清| 久久人妻av系列| 少妇裸体淫交视频免费看高清| 永久网站在线| 欧美成人免费av一区二区三区| 国产黄a三级三级三级人| 看免费成人av毛片| 国产成人aa在线观看| 九九久久精品国产亚洲av麻豆| 欧美高清成人免费视频www| 18禁裸乳无遮挡免费网站照片| 亚洲乱码一区二区免费版| 亚洲av成人精品一区久久| 国产高清有码在线观看视频| 国内少妇人妻偷人精品xxx网站| 欧洲精品卡2卡3卡4卡5卡区| 国产一区二区三区在线臀色熟女| 你懂的网址亚洲精品在线观看 | 国产伦在线观看视频一区| 日本欧美国产在线视频| 永久网站在线| 在线免费观看不下载黄p国产| 精华霜和精华液先用哪个| 丝袜喷水一区| 一级二级三级毛片免费看| 一级黄色大片毛片| 热99re8久久精品国产| 国产蜜桃级精品一区二区三区| 午夜免费男女啪啪视频观看| 亚洲精品国产av成人精品| 91av网一区二区| 99久久精品一区二区三区| 国产精品精品国产色婷婷| 国产一级毛片七仙女欲春2| 校园春色视频在线观看| or卡值多少钱| 国产成人精品久久久久久| 国产91av在线免费观看| 亚洲精品粉嫩美女一区| 在线a可以看的网站| 成人二区视频| 成年女人永久免费观看视频| 九九在线视频观看精品| 成年免费大片在线观看| 国产国拍精品亚洲av在线观看| 国产精品一区二区在线观看99 | 最近视频中文字幕2019在线8| 欧美最新免费一区二区三区| 欧美3d第一页| 国产精品三级大全| 美女脱内裤让男人舔精品视频 | 国产亚洲5aaaaa淫片| 天堂网av新在线| 性插视频无遮挡在线免费观看| 久久人人精品亚洲av| 可以在线观看毛片的网站| 最后的刺客免费高清国语| 哪个播放器可以免费观看大片| 精品久久久久久久人妻蜜臀av| 亚洲欧美清纯卡通| 免费观看a级毛片全部| 久久久久久久久中文| 亚洲av免费高清在线观看| 欧美bdsm另类| 久久久久免费精品人妻一区二区| av女优亚洲男人天堂|