• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The application of numerical simulation of delta wing with blunt leading edge using RANS/LES hybrid method

    2014-04-06 12:48:36BAIJunqiangWANGBoSUNZhiwei
    關(guān)鍵詞:渦量流線界面

    BAI Jun-qiang,WANG Bo,SUN Zhi-wei

    0 Foreword

    In order to obtain good maneuverability and agility,modern aircraft always flies at high angle of attack,sometimes even larger than the stall angle.The aerodynamic efficiency of conventional aircraft is low at large angle of attack,and it is unable to provide the necessary lift and moment.In this case,the movement and flight control of aircraft become very difficult and it often leads to accident directly.In order to improve the maneuverability of aircraft at high angle of attack,separated flow at high angle of attack is researched in recent years,and its formation mechanism is also conducted in-depth exploration.

    For the calculation of separated flow,Reynolds averaged method often can not describe the details of the development and the change of different scale's eddy[1-2].Large Eddy Simulation (LES)and Direct Numerical Simulation(DNS)in complex geometries and high Reynolds number(more than 1.0×105)is difficult to bring into effect in engineering because of the huge problem in the computation with the level of the current computer.In Large Eddy Simulation[3]a large part of computation is used to simulate the small-scale,high-frequency motion in boundary layer.If this part can be eliminated from computation and only the movement of largescale eddy that mainly influence on the flow is computed,it will greatly reduce the computation.DES,DDES are produced as a mixture of Reynolds averaged and large eddy simulation method against this background.

    DES[4]uses Reynolds averaged N-S method in the boundary layer near the wall,and turbulence model is used to simulate the small-scale fluctuation motion in the flow;The turbulence scale parameter of the turbulence model dissipation term will be modified in the flow separation zone[5].If the grid scale can meet the requirements,it plays the role of subgrid scale stress model[6]in Smagorinski Large Eddy Simulation.DES method does not take a large number of small-scale fluctuation motion into account in the turbulent boundary layer,so the number of grid required is greatly reduced.The method not only takes advantage of the small computation amount using Reynolds averaged method in the boundary layer,but also well simulate large scale detached eddy in the flow separation.

    DDES method[7-8]solves the problem on mesh dependence of DES.In the mesh refinement process Modeled-Stress Depletion phenomenon and the grid induced separation problems may occur.Spalart,Strelets and others improved the original DES method:the Delay Control of the function of boundary layer is introduced to determine the parameters.The method ensures that the RANS method in boundary layer is used in calculation regardless of Large Eddy Simulation.

    Nowadays the simulation using DES and DDES around delta wing configurations with sharp leading edges has been well known,many experimental and numerical investigations[9-13]have been published to simulating the flow using high fidelity numerical methods.However,the flow around delta wing configurations with blunt leading edge is still not entirely understood.Therefore,several experimental data in the Second International Vortex Flow Experiment were provided and generated within the NATO RTO/AVT-113task group for a 65°swept delta wing with sharp and various blunt/rounded leading edges[14].

    The paper focuses on the flow around the delta wing with blunt leading edge using RANS and hybrid models such as DES and DDES methods.The overall goal is to simulate the flow more fully a-round these non-sharp leading edge delta wings and gain more about the mechanism.

    1 Governing equations

    In the paper,the unsteady three dimensional compressible Navier Stokes equation in integral form under inertial Cartesian coordinates is adopted.The equation can be written as:

    In order to close RANS equations,based on Boussinesq assumption,the Reynolds stress can be defined as:

    Here,ωiis the relative velocity in the xidirection.

    Finite volume method,Roe scheme in spatial discretization and pseudo-time method are used in the unsteady numerical simulation.

    2 Turbulence model and boundary condition

    S-A turbulence model is used in the paper.It can well simulate most of attached flow and the free movement of thin shear flow.Besides,it also has good robustness and numerical convergence.The Riemann invariants in normal direction is used in Far-field boundary condition in order to achieve nonreflective boundary condition;and the no-slip condition is adopted in wall boundary condition,that is,u=v=w=0The normal pressure gradient of wall?p/?n=0,this paper assumes?T/?n=0in which n is the normal direction of wall toward outside.

    3 DES,DDES method

    In the DES method,the length of the scale in S-A turbulence model and the distance from any point in the flow field to the nearest wall surface d,can be expressed as:

    In whichΔis the maximum distance from the center of the grid center to the adjacent cells,constant coefficient CDES=0.65.The scale of grid in normal direction is small near the wall,CDESΔ>d,~d=d,model here is the standard S-A model and the model works in the RANS mode;Far from boundary layer,When CDESΔ<d,~d=CDESΔ.The model works in Large Eddy Simulation mode.Then,the generation term SPand the dissipation term SDin the equations can be respectively expressed as:

    When the generation term is equal to the dissipation term (SP=SD),the eddy viscosity coefficient can be expressed as:

    Where C is constant.This expression and the Smagorinsky subgrid stress model are very similar.

    In the same flow problem two different grid division methods are adopted near the wall.The grid area corresponding to RANS and LES region are also different and the final results of the two sets of grids vary greatly,so that the solution of the mesh is sensitive to the results.Menter pointed out that under the situation of a closely continuous grid,the prediction of the separation will occur earlier,that is,the grid induced separation problem,then Spalart reconstruct the characteristic size d,the specific form is defined as the following:

    This is the DDES method,in which fdis the function of the eddy viscosity coefficient vt,velocity gradient Uijand so on:

    The effect of fdis to take the feedback of the characteristic size d for the results into consideration.

    4 Numerical simulation of the delta wing with blunt leading edge

    The computational model uses the 65°swept delta wing with medium-scale leading-edge radius and blunt edge in the second eddy flow experiment(Eddy Flow Experiment 2,VFE2)for study.It is shown in Figure 1.

    Fig.1 Model parameters圖1 模型參數(shù)

    Figure 2shows the distribution of the grid.Structured grid is used in this paper and space is divided into 133blocks and 5.93×106grid cells.

    Fig.2 Model grid圖2 模型網(wǎng)格

    Computation state:Ma=0.4,α=13.3°,Re=3×106.The number of iteration is about 10000.

    Test data shows that the main eddy on the leading edge induces the secondary eddy,there is also an inner eddy with the same direction in rotation(relative to the eddy on leading edge,it can be called outside eddy).The small difference of the start position of outside eddy will cause the change of pressure distribution significantly.The separation region on the front of wing is the place that the inner eddy occurs,and the position and the strength of the inner eddy will affect the distribution of another suction peak.

    Since the model is a delta wing with the blunt leading edge,the start position of primary eddy is not the vertices at zenith.It is a challenge in CFD simulation to accurately capture the primary eddy along the axial front position.The location of the main eddy and the capture of suction peak can further determine the precise location of inner eddy.

    Figure 3to Figure 5are the comparison of RANS,DES and DDES pressure distribution of numerical simulation and experimental data respectively.All three methods can well catch the main eddy,while the start position of the main eddy is more forward and the calculated intensity of inner eddy is all weaker than the experimental data.Because the all-turbulence computation is used and the results are greatly influenced by grid distribution,the accuracy of turbulence model and transition.eddy in the flow field experiences a very complex process,In the beginning the initial layer is near the boundary layer,and the boundary layer becomes thicker and thicker along the downstream flows,and develops to the edge side,and ultimately roll up to inner eddy,the eddy develops inward.Inner eddy develops from the pileup of boundary layer within the eddy and inducement of outside eddy,so that it is very sensitive to the upstream flow.As shown by the comparison of results,DES,DDES can describe the internal eddy better than RANS.Figure 6is the pressure distribution of the experimental data at different slices in X direction.The pressure coefficient of RANS,DES,DDES in different slices are shown from Figure 7to Figure 9,the results of all the suction peak of leading edge and the trend of the pressure on the surface of wing are in good agreement with the experimental results.The flow around the leading edge is attached over the whole span up to 45% chord length.The pressure coefficient predicted with the same grid by RANS is too high and the strength of the inner vortex simulated by RANS is too weak where the inner eddy even smaller.However,the surface pressure predicted by DES and DDES are in better agreement with the experiment than RANS simulation.The differences between the two results and the experiment are mainly on the trailing edge of the wing in that the flow is unsteady and complicated in the region and adequately high time averaging can solve the problem in the future.As is shown in Figure 9,DDES method has a better simulation of inner eddy than DES method,because DDES does not rely on the refinement of local grid in comparison to DES method.

    Fig.3 RANS pressure distribution in comparison with experiment圖3 RANS壓力分布與實(shí)驗(yàn)結(jié)果的對(duì)比

    Fig.4 DES pressure distribution in comparison with experiment圖4 DES壓力分布與實(shí)驗(yàn)結(jié)果的對(duì)比

    Fig.5 DDES pressure distribution in comparison with experiment圖5 DDES壓力分布與實(shí)驗(yàn)結(jié)果的對(duì)比

    Fig.6 Pressure coefficient of experiment in different slices圖6 實(shí)驗(yàn)下的不同截面壓力分布

    Fig.7 Pressure coefficient of RANS in different slices圖7 RANS下的不同截面壓力分布

    Fig.8 Pressure coefficient of DES in different slices圖8 DES下的不同截面壓力分布

    Fig.9 Pressure coefficient of DDES in different slices圖9 DDES下的不同截面壓力分布

    Figure 10is the vorticity distribution of experiment,RANS,DES and DDES simulation results in different slices.What the Figure 10shows is helpful for us to understand the topology of the flow.The flow near the wing surface which corresponds to the higher vorticity forms the primary vortex in outer region.As is shown in Figure 11to 13,in comparison with the experiment data,DES and DDES show more details than RANS.

    Fig.10 The vorticity distribution of experiment in different slices圖10 實(shí)驗(yàn)下的不同截面渦量分布

    Fig.11 The vorticity distribution of RANS in different slices圖11 RANS下的不同截面渦量分布

    Fig.12 The vorticity distribution of DES in different slices圖12 DES下的不同截面渦量分布

    At high angle of attack,the boundary layer departs from the wall at the beginning of the separation line on the surface,and then the eddy rolls over on the leeward side.The eddy controls the aerodynamic characteristics of aircraft.Figure 14is the computational results of the spatial streamlines of DDES.It can be learned that the eddy can be well described from the beginning to the wake of the eddy.

    Fig.13 The vorticity distribution of DDES in different slices圖13 DDES下的不同界面渦量分布

    Fig.14 The streamlines of DDES圖14 DDES方法下的流線圖

    5 Conclusions

    In this paper,RANS,DES and DDES numerical simulation of eddy separation on the delta wing with blunt leading edge is bring into effect.The results of the numerical simulation are analyzed:

    (1)In terms of the separation eddy flow,the pressure distribution of RANS is consistent with the experimental data given,but it can not give satisfactory results on the strength of small eddy.

    (2)The pressure distribution of DES method is consistent with the experimental data,and more detail of the eddy topology can be given than RANS.DES method has obvious advantages in separated flow in comparison with RANS method.

    (3)DDES method reduces the dependence of mesh and has a outstanding performance in the numerical simulation,numerical results given are also more rational,more detail of the eddy topology can be given than DES.

    From the analysis of the mechanism of CFD,the flow around the wing experienced the process from the separation bubble on the leading edge,the instability of the flow to the rupture of the eddy.It is a complex process of change.The results of separated flow depend on the accurate simulation of boundary layer and detached eddy.While the DES uses RANS method near the wall and LES method in the area of detached eddy.The computational grid is saved near the wall and the boundary layer can also be well simulated,and LES method effectively solves the problem of numerical simulation of the separation zone.Through the study,the application of DES,DDES method leads to an increased understanding of the flow field of the delta wing with blunt leading edge at high angle of attack.

    [1]ANDREA A M,LIOU M S,LOUIS A.Povinelli integration of Navier-Stokes equations using dual time stepping and a multigrid method[J].AIAA Journal,1995,33(6):985-990.

    [2]SPALART P,ALLMARAS S.A one-equation turbulence model for aerodynamic flows[R].AIAA Paper 92-0439.

    [3]SPALART P,JOU W,STRELETS M,et al.Comments on the feasibility of LES for wings and on the hybrid RANS/LES approach[M].Greyden Press,1997:137.

    [4]PHILIPPE R.SPALART.Trends in turbulence treament[R].AIAA 2000-2306,2000.

    [5]MENTER FR,KUNTZ M.Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles[M].McCALLEN R,BROWAND F,ROSS J,editors.The aerodynamics of heavy vehicles:trucks,buses,and trains.Springer,2004.

    [6]HANSEN R P,LONG L N.Large-eddy simulation of a circular cylinder on unstructured grids[R].AIAA 2002-0982,2002.

    [7]SPALART P R,DECK S,SHUR M L,et al.A new version of detached-eddy simulation,resistant to ambiguous grid densities[J].Theory of Computational Fluid Dynamics,2006,20:181-195.

    [8]ZHI X X,HAI X C,YU F Z,et al.Study of delayeddetached eddy simulation with weakly nonlinear turbu-lence model[J].Journal of Aircraft,2006,43(5):1377-1385.

    [9]DROUGGE G.The international vortex flow experiment for computer code validation[J].ICAS Proceedings,1:35-41.

    [10]ELSENAAR A,HJELEBERG L,BUTEFISCH K A,et al.The international vortex flow experiment[R].AGARD-CP-437,1:9-1,9-23.

    [11]WAGNER B,HITZEL S,SCHMATZ M A,et al.Status of CFD validation on the vortex flow experiment[R].AGARD-CP-437.1:10-1,10-10.

    [12]HOEIJMAKERS H W M.Modelling and numerical simulation of vortex flow in aerodynamics[R].AGARD-CP-494,1991:1-1,1-46.

    [13]LUCKRING J M.Recent progress in computational vortexflow aerodynamics[R].AGARD-CP-494,1991:6-1,6-21.

    [14]HUMMEL D,REDEKER G.A new vortex flow experiment for computer code validation[A].RTO-AVT Symposium on “Vortex Flow and High Angle of Attack”[C].Loen Norway,2001.

    猜你喜歡
    渦量流線界面
    人工塑造生境條件下中華倒刺鲃的棲息偏好研究
    含沙空化對(duì)軸流泵內(nèi)渦量分布的影響
    國企黨委前置研究的“四個(gè)界面”
    幾何映射
    任意夾角交叉封閉邊界內(nèi)平面流線計(jì)算及應(yīng)用
    自由表面渦流動(dòng)現(xiàn)象的數(shù)值模擬
    基于FANUC PICTURE的虛擬軸坐標(biāo)顯示界面開發(fā)方法研究
    人機(jī)交互界面發(fā)展趨勢(shì)研究
    手機(jī)界面中圖形符號(hào)的發(fā)展趨向
    新聞傳播(2015年11期)2015-07-18 11:15:04
    航態(tài)對(duì)大型船舶甲板氣流場的影響
    亚洲欧美日韩另类电影网站| 国产一卡二卡三卡精品| 50天的宝宝边吃奶边哭怎么回事| av片东京热男人的天堂| 两人在一起打扑克的视频| 国产黄色免费在线视频| 久久久久久久久中文| 法律面前人人平等表现在哪些方面| 91国产中文字幕| videosex国产| 免费av毛片视频| 精品一区二区三卡| 国产不卡一卡二| 亚洲国产看品久久| 男女午夜视频在线观看| 国产欧美日韩一区二区三区在线| 日韩中文字幕欧美一区二区| 999精品在线视频| 亚洲av五月六月丁香网| 亚洲三区欧美一区| 免费少妇av软件| 亚洲av日韩精品久久久久久密| 高清毛片免费观看视频网站 | 午夜91福利影院| 悠悠久久av| 午夜免费观看网址| 日韩大码丰满熟妇| 国产在线精品亚洲第一网站| 水蜜桃什么品种好| 在线观看一区二区三区| 高清黄色对白视频在线免费看| 欧美人与性动交α欧美精品济南到| 操美女的视频在线观看| 精品欧美一区二区三区在线| 欧美日韩黄片免| 大陆偷拍与自拍| 亚洲精品成人av观看孕妇| 日韩欧美一区视频在线观看| 久久久久精品国产欧美久久久| 精品免费久久久久久久清纯| 91成人精品电影| 国产精品乱码一区二三区的特点 | 久久狼人影院| 又黄又粗又硬又大视频| 亚洲成国产人片在线观看| 国产av精品麻豆| 国产精品久久久av美女十八| 色老头精品视频在线观看| 身体一侧抽搐| 亚洲精品国产一区二区精华液| 在线观看免费日韩欧美大片| 欧美日韩视频精品一区| 国产精品秋霞免费鲁丝片| 国产aⅴ精品一区二区三区波| 日日爽夜夜爽网站| 99在线视频只有这里精品首页| 日韩欧美三级三区| 宅男免费午夜| 亚洲专区中文字幕在线| 最近最新中文字幕大全电影3 | 精品国内亚洲2022精品成人| 香蕉国产在线看| 高清av免费在线| 欧美中文综合在线视频| 怎么达到女性高潮| 中文字幕人妻熟女乱码| 熟女少妇亚洲综合色aaa.| 美女 人体艺术 gogo| 别揉我奶头~嗯~啊~动态视频| 波多野结衣一区麻豆| 中文欧美无线码| svipshipincom国产片| 国产高清国产精品国产三级| 欧美日韩国产mv在线观看视频| 亚洲精品中文字幕在线视频| 精品人妻1区二区| 日韩欧美一区视频在线观看| av在线天堂中文字幕 | 级片在线观看| 亚洲免费av在线视频| 怎么达到女性高潮| 又黄又粗又硬又大视频| 丝袜美足系列| 国产人伦9x9x在线观看| 国产人伦9x9x在线观看| 性少妇av在线| 丰满迷人的少妇在线观看| 热99re8久久精品国产| av视频免费观看在线观看| 久久国产精品男人的天堂亚洲| 国产99白浆流出| 国产99白浆流出| 国产精品98久久久久久宅男小说| aaaaa片日本免费| 久久影院123| 岛国在线观看网站| 精品国产超薄肉色丝袜足j| 在线观看一区二区三区| 亚洲久久久国产精品| 欧美日本中文国产一区发布| 男女床上黄色一级片免费看| 琪琪午夜伦伦电影理论片6080| 香蕉丝袜av| 这个男人来自地球电影免费观看| 热re99久久精品国产66热6| 国产伦一二天堂av在线观看| 午夜91福利影院| 久热爱精品视频在线9| 国产成+人综合+亚洲专区| a级毛片黄视频| 欧美日韩瑟瑟在线播放| 欧美人与性动交α欧美软件| 一本综合久久免费| 欧美人与性动交α欧美软件| 黄片播放在线免费| 亚洲av电影在线进入| 日本黄色日本黄色录像| 久久精品aⅴ一区二区三区四区| 老司机靠b影院| 亚洲色图av天堂| 国产伦一二天堂av在线观看| 好看av亚洲va欧美ⅴa在| netflix在线观看网站| 亚洲中文日韩欧美视频| 欧美 亚洲 国产 日韩一| 少妇的丰满在线观看| 久久天躁狠狠躁夜夜2o2o| 91av网站免费观看| 色综合站精品国产| 日韩精品免费视频一区二区三区| 国产高清视频在线播放一区| 久久精品亚洲精品国产色婷小说| 国产精品电影一区二区三区| 国产99久久九九免费精品| 色老头精品视频在线观看| 久久香蕉精品热| 999久久久精品免费观看国产| 国产精品久久电影中文字幕| 欧美久久黑人一区二区| 久久午夜综合久久蜜桃| 一边摸一边抽搐一进一小说| 日韩大码丰满熟妇| 18禁裸乳无遮挡免费网站照片 | 男女之事视频高清在线观看| 欧美成人性av电影在线观看| 国产国语露脸激情在线看| 欧美中文日本在线观看视频| 久久人人爽av亚洲精品天堂| 日韩国内少妇激情av| 丰满饥渴人妻一区二区三| 国产一区二区三区视频了| 午夜精品国产一区二区电影| 国产又色又爽无遮挡免费看| 999久久久国产精品视频| 日本 av在线| 88av欧美| 免费高清在线观看日韩| 一级片免费观看大全| 欧美色视频一区免费| 夜夜夜夜夜久久久久| 国产成人av激情在线播放| 国产免费男女视频| 亚洲欧美精品综合一区二区三区| 成人国产一区最新在线观看| 精品一区二区三卡| 久久香蕉国产精品| 亚洲五月天丁香| 国产麻豆69| 丰满迷人的少妇在线观看| 看片在线看免费视频| 欧美黄色淫秽网站| 人人妻人人添人人爽欧美一区卜| 国产精品99久久99久久久不卡| 午夜视频精品福利| 精品国产一区二区三区四区第35| 午夜a级毛片| 精品乱码久久久久久99久播| 日韩三级视频一区二区三区| 国产成人精品无人区| av福利片在线| 国产人伦9x9x在线观看| 久久精品国产综合久久久| 不卡av一区二区三区| 久久国产精品人妻蜜桃| 精品高清国产在线一区| 亚洲三区欧美一区| 一区二区日韩欧美中文字幕| 琪琪午夜伦伦电影理论片6080| 19禁男女啪啪无遮挡网站| 变态另类成人亚洲欧美熟女 | 亚洲精品国产色婷婷电影| 男男h啪啪无遮挡| 国产亚洲av高清不卡| 日本免费一区二区三区高清不卡 | www.自偷自拍.com| 国产成人系列免费观看| 亚洲成人国产一区在线观看| 日韩视频一区二区在线观看| 亚洲一区二区三区欧美精品| 久久草成人影院| 一级毛片精品| 黑人巨大精品欧美一区二区mp4| 波多野结衣高清无吗| 亚洲男人天堂网一区| 麻豆av在线久日| 亚洲成a人片在线一区二区| 免费在线观看日本一区| 亚洲国产精品合色在线| 久久欧美精品欧美久久欧美| 天堂√8在线中文| 亚洲一码二码三码区别大吗| 欧美中文日本在线观看视频| 日韩大尺度精品在线看网址 | 欧美 亚洲 国产 日韩一| 亚洲精品一区av在线观看| 高清黄色对白视频在线免费看| 国产精品久久电影中文字幕| 日韩精品中文字幕看吧| 最好的美女福利视频网| 美女高潮喷水抽搐中文字幕| 亚洲人成77777在线视频| 如日韩欧美国产精品一区二区三区| 美女扒开内裤让男人捅视频| 黄色毛片三级朝国网站| av片东京热男人的天堂| 99久久国产精品久久久| 久久久精品国产亚洲av高清涩受| 欧美日韩中文字幕国产精品一区二区三区 | 精品卡一卡二卡四卡免费| 亚洲欧美激情在线| 亚洲少妇的诱惑av| 长腿黑丝高跟| www.www免费av| 国产成人欧美在线观看| 成人精品一区二区免费| 久久香蕉精品热| av欧美777| 国产一区二区在线av高清观看| 天堂中文最新版在线下载| bbb黄色大片| 一级毛片精品| 好男人电影高清在线观看| 天天影视国产精品| 新久久久久国产一级毛片| 亚洲精品美女久久久久99蜜臀| 日韩大码丰满熟妇| 日韩大尺度精品在线看网址 | 18禁观看日本| 国产精品日韩av在线免费观看 | 99久久综合精品五月天人人| 亚洲午夜精品一区,二区,三区| 亚洲 国产 在线| 亚洲av成人av| 成人手机av| av网站在线播放免费| 9191精品国产免费久久| 999精品在线视频| 亚洲第一av免费看| 天天添夜夜摸| 欧美人与性动交α欧美精品济南到| 级片在线观看| 在线观看免费视频日本深夜| 亚洲精品一区av在线观看| 日韩三级视频一区二区三区| 大香蕉久久成人网| 国产精品久久电影中文字幕| 又黄又爽又免费观看的视频| 亚洲精品一区av在线观看| 日本免费a在线| 国产精品亚洲av一区麻豆| 美女国产高潮福利片在线看| 久久精品亚洲av国产电影网| 伦理电影免费视频| 水蜜桃什么品种好| 午夜免费观看网址| 国产成人精品无人区| 国产精品一区二区在线不卡| 国产精品98久久久久久宅男小说| 亚洲美女黄片视频| 成人亚洲精品一区在线观看| 欧美另类亚洲清纯唯美| 一级a爱视频在线免费观看| 欧美黑人欧美精品刺激| 久久天躁狠狠躁夜夜2o2o| 9色porny在线观看| 亚洲精品在线观看二区| 69av精品久久久久久| 91老司机精品| 亚洲美女黄片视频| 国产黄色免费在线视频| 免费不卡黄色视频| 一本大道久久a久久精品| 亚洲片人在线观看| 国产在线观看jvid| 日韩 欧美 亚洲 中文字幕| 日日干狠狠操夜夜爽| 自拍欧美九色日韩亚洲蝌蚪91| 91九色精品人成在线观看| 免费少妇av软件| 人成视频在线观看免费观看| 伦理电影免费视频| 纯流量卡能插随身wifi吗| 亚洲狠狠婷婷综合久久图片| 亚洲国产中文字幕在线视频| 曰老女人黄片| 欧美老熟妇乱子伦牲交| 热99re8久久精品国产| 一边摸一边抽搐一进一出视频| 久久精品aⅴ一区二区三区四区| 国产成人精品久久二区二区91| 搡老乐熟女国产| 动漫黄色视频在线观看| 国产不卡一卡二| 免费人成视频x8x8入口观看| www.熟女人妻精品国产| 国产欧美日韩一区二区三区在线| svipshipincom国产片| 老汉色∧v一级毛片| 叶爱在线成人免费视频播放| 国产精品亚洲av一区麻豆| 亚洲色图av天堂| 国产主播在线观看一区二区| 亚洲精华国产精华精| 制服人妻中文乱码| 超碰97精品在线观看| 嫩草影院精品99| 成人国语在线视频| 黄色成人免费大全| 露出奶头的视频| 99久久综合精品五月天人人| 欧美日韩黄片免| 欧美激情高清一区二区三区| 最新美女视频免费是黄的| 成人国产一区最新在线观看| 免费人成视频x8x8入口观看| 黄色毛片三级朝国网站| 国产一区在线观看成人免费| 国产精品香港三级国产av潘金莲| 一二三四社区在线视频社区8| 精品一区二区三区四区五区乱码| 亚洲欧美一区二区三区久久| 韩国精品一区二区三区| 国产午夜精品久久久久久| 免费在线观看亚洲国产| 日日爽夜夜爽网站| 老司机福利观看| 亚洲va日本ⅴa欧美va伊人久久| 巨乳人妻的诱惑在线观看| 国产精华一区二区三区| 亚洲avbb在线观看| av网站在线播放免费| 国产无遮挡羞羞视频在线观看| 国产精品爽爽va在线观看网站 | 欧美日韩精品网址| 老汉色av国产亚洲站长工具| 女人被狂操c到高潮| 中文亚洲av片在线观看爽| 大陆偷拍与自拍| 丰满迷人的少妇在线观看| 村上凉子中文字幕在线| 在线观看免费日韩欧美大片| 在线国产一区二区在线| 他把我摸到了高潮在线观看| 女警被强在线播放| 国产精品99久久99久久久不卡| 国产三级黄色录像| 亚洲国产中文字幕在线视频| 成人av一区二区三区在线看| 最近最新中文字幕大全免费视频| 午夜免费鲁丝| 欧美av亚洲av综合av国产av| 亚洲人成电影观看| 一本综合久久免费| 99热只有精品国产| aaaaa片日本免费| 国产视频一区二区在线看| 国产成人精品在线电影| 多毛熟女@视频| 乱人伦中国视频| 日韩大码丰满熟妇| 韩国av一区二区三区四区| 免费av毛片视频| 女人精品久久久久毛片| 夜夜看夜夜爽夜夜摸 | 热99re8久久精品国产| 国产精品免费视频内射| 成人免费观看视频高清| svipshipincom国产片| 亚洲伊人色综图| 1024视频免费在线观看| 91在线观看av| 一进一出好大好爽视频| 别揉我奶头~嗯~啊~动态视频| 激情在线观看视频在线高清| 国产精品日韩av在线免费观看 | 美女扒开内裤让男人捅视频| 大型黄色视频在线免费观看| 久久精品91无色码中文字幕| 国产1区2区3区精品| 久久精品国产亚洲av香蕉五月| bbb黄色大片| 黑人巨大精品欧美一区二区mp4| 亚洲人成77777在线视频| 久久久久精品国产欧美久久久| av中文乱码字幕在线| 国产精品偷伦视频观看了| 精品国产国语对白av| 在线永久观看黄色视频| 亚洲成a人片在线一区二区| 日本黄色视频三级网站网址| а√天堂www在线а√下载| 啦啦啦在线免费观看视频4| av欧美777| 亚洲成a人片在线一区二区| 热re99久久精品国产66热6| 精品久久久久久久毛片微露脸| 国产av一区在线观看免费| 黑人巨大精品欧美一区二区蜜桃| 十八禁人妻一区二区| 丁香六月欧美| 亚洲成人国产一区在线观看| 久久这里只有精品19| 亚洲人成网站在线播放欧美日韩| 91av网站免费观看| 久久热在线av| 天天影视国产精品| 99精品久久久久人妻精品| 国产精品99久久99久久久不卡| 成人亚洲精品一区在线观看| 两个人看的免费小视频| 亚洲国产精品sss在线观看 | 黄色a级毛片大全视频| 国产在线观看jvid| 国产精品美女特级片免费视频播放器 | 水蜜桃什么品种好| 亚洲精品在线观看二区| 亚洲精华国产精华精| 国产亚洲精品综合一区在线观看 | 国产成人免费无遮挡视频| 国产亚洲精品久久久久久毛片| 国产欧美日韩一区二区精品| √禁漫天堂资源中文www| 丰满饥渴人妻一区二区三| 久久人妻福利社区极品人妻图片| 久久热在线av| 99re在线观看精品视频| 99热国产这里只有精品6| 国产视频一区二区在线看| 久久精品国产亚洲av高清一级| 欧美最黄视频在线播放免费 | 在线看a的网站| 国产1区2区3区精品| a级片在线免费高清观看视频| 中出人妻视频一区二区| 99久久人妻综合| 国产色视频综合| 九色亚洲精品在线播放| 欧美日韩亚洲综合一区二区三区_| 亚洲在线自拍视频| 男女下面进入的视频免费午夜 | 黄色成人免费大全| 午夜亚洲福利在线播放| 日日爽夜夜爽网站| 日本精品一区二区三区蜜桃| 国产av一区在线观看免费| 国产又爽黄色视频| 免费不卡黄色视频| 欧美不卡视频在线免费观看 | 色尼玛亚洲综合影院| 91精品国产国语对白视频| 婷婷六月久久综合丁香| 欧美黄色淫秽网站| 身体一侧抽搐| 日韩av在线大香蕉| 亚洲午夜理论影院| 日韩欧美一区二区三区在线观看| 久久久久久亚洲精品国产蜜桃av| 三上悠亚av全集在线观看| 高清黄色对白视频在线免费看| 亚洲av片天天在线观看| 人人妻人人爽人人添夜夜欢视频| 精品久久久久久成人av| 村上凉子中文字幕在线| tocl精华| 日韩中文字幕欧美一区二区| 亚洲欧美一区二区三区黑人| 精品高清国产在线一区| 长腿黑丝高跟| 欧美成人免费av一区二区三区| 激情在线观看视频在线高清| 丰满的人妻完整版| 国产av又大| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美一区二区精品小视频在线| 欧美老熟妇乱子伦牲交| 午夜精品在线福利| 免费观看精品视频网站| 999久久久精品免费观看国产| 久久中文看片网| tocl精华| 精品高清国产在线一区| 神马国产精品三级电影在线观看 | 黄色a级毛片大全视频| 亚洲va日本ⅴa欧美va伊人久久| 在线视频色国产色| 极品教师在线免费播放| 久久香蕉激情| 黄色毛片三级朝国网站| 精品人妻1区二区| 香蕉丝袜av| 女人被狂操c到高潮| 丝袜美足系列| 老熟妇仑乱视频hdxx| videosex国产| 成人18禁高潮啪啪吃奶动态图| 日韩欧美国产一区二区入口| 久久久久久久久久久久大奶| av电影中文网址| 欧美午夜高清在线| 很黄的视频免费| 老熟妇乱子伦视频在线观看| 国产av精品麻豆| 久久国产亚洲av麻豆专区| 国产av一区二区精品久久| 精品日产1卡2卡| 巨乳人妻的诱惑在线观看| 国产精品秋霞免费鲁丝片| 激情视频va一区二区三区| a级毛片在线看网站| 亚洲专区字幕在线| 亚洲美女黄片视频| 欧美日韩一级在线毛片| 丝袜在线中文字幕| 男人的好看免费观看在线视频 | 在线观看舔阴道视频| 人人妻人人爽人人添夜夜欢视频| 制服人妻中文乱码| 1024香蕉在线观看| 久久伊人香网站| 国产精品香港三级国产av潘金莲| 久久精品亚洲av国产电影网| 精品少妇一区二区三区视频日本电影| 性色av乱码一区二区三区2| 看片在线看免费视频| 国产精品九九99| 欧美最黄视频在线播放免费 | 三级毛片av免费| 三上悠亚av全集在线观看| 男人操女人黄网站| 亚洲三区欧美一区| 国产一区二区三区在线臀色熟女 | 99精品欧美一区二区三区四区| 搡老乐熟女国产| 国产欧美日韩一区二区三| 一级片'在线观看视频| 国产不卡一卡二| 成人亚洲精品av一区二区 | 制服诱惑二区| 侵犯人妻中文字幕一二三四区| 亚洲欧美一区二区三区黑人| 在线观看舔阴道视频| 91av网站免费观看| 在线观看舔阴道视频| 嫩草影院精品99| 日日摸夜夜添夜夜添小说| 男女床上黄色一级片免费看| 丰满迷人的少妇在线观看| 欧美日本亚洲视频在线播放| 久久这里只有精品19| 欧美+亚洲+日韩+国产| 亚洲一卡2卡3卡4卡5卡精品中文| 少妇 在线观看| 在线观看午夜福利视频| 女性被躁到高潮视频| 在线看a的网站| 又黄又爽又免费观看的视频| 男女之事视频高清在线观看| 中文字幕精品免费在线观看视频| 久久中文字幕一级| 无限看片的www在线观看| 国产一区二区激情短视频| 最近最新中文字幕大全电影3 | 1024视频免费在线观看| 午夜激情av网站| 欧美在线一区亚洲| 一本大道久久a久久精品| 成在线人永久免费视频| 色播在线永久视频| 亚洲成av片中文字幕在线观看| 久久久久精品国产欧美久久久| 国产精品免费一区二区三区在线| 最近最新中文字幕大全电影3 | 亚洲三区欧美一区| 亚洲精品中文字幕一二三四区| 亚洲 欧美一区二区三区| 黄色女人牲交| 国产麻豆69| 超碰97精品在线观看| 99精国产麻豆久久婷婷| 黄片播放在线免费| 99re在线观看精品视频| aaaaa片日本免费| 国产亚洲精品久久久久久毛片| 最近最新中文字幕大全免费视频| 在线观看免费高清a一片| 他把我摸到了高潮在线观看| 操美女的视频在线观看| 悠悠久久av| a在线观看视频网站| 一本大道久久a久久精品| 美女高潮到喷水免费观看| 久久午夜综合久久蜜桃| 一区福利在线观看| 精品久久蜜臀av无| 97碰自拍视频|