• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The application of numerical simulation of delta wing with blunt leading edge using RANS/LES hybrid method

    2014-04-06 12:48:36BAIJunqiangWANGBoSUNZhiwei
    關(guān)鍵詞:渦量流線界面

    BAI Jun-qiang,WANG Bo,SUN Zhi-wei

    0 Foreword

    In order to obtain good maneuverability and agility,modern aircraft always flies at high angle of attack,sometimes even larger than the stall angle.The aerodynamic efficiency of conventional aircraft is low at large angle of attack,and it is unable to provide the necessary lift and moment.In this case,the movement and flight control of aircraft become very difficult and it often leads to accident directly.In order to improve the maneuverability of aircraft at high angle of attack,separated flow at high angle of attack is researched in recent years,and its formation mechanism is also conducted in-depth exploration.

    For the calculation of separated flow,Reynolds averaged method often can not describe the details of the development and the change of different scale's eddy[1-2].Large Eddy Simulation (LES)and Direct Numerical Simulation(DNS)in complex geometries and high Reynolds number(more than 1.0×105)is difficult to bring into effect in engineering because of the huge problem in the computation with the level of the current computer.In Large Eddy Simulation[3]a large part of computation is used to simulate the small-scale,high-frequency motion in boundary layer.If this part can be eliminated from computation and only the movement of largescale eddy that mainly influence on the flow is computed,it will greatly reduce the computation.DES,DDES are produced as a mixture of Reynolds averaged and large eddy simulation method against this background.

    DES[4]uses Reynolds averaged N-S method in the boundary layer near the wall,and turbulence model is used to simulate the small-scale fluctuation motion in the flow;The turbulence scale parameter of the turbulence model dissipation term will be modified in the flow separation zone[5].If the grid scale can meet the requirements,it plays the role of subgrid scale stress model[6]in Smagorinski Large Eddy Simulation.DES method does not take a large number of small-scale fluctuation motion into account in the turbulent boundary layer,so the number of grid required is greatly reduced.The method not only takes advantage of the small computation amount using Reynolds averaged method in the boundary layer,but also well simulate large scale detached eddy in the flow separation.

    DDES method[7-8]solves the problem on mesh dependence of DES.In the mesh refinement process Modeled-Stress Depletion phenomenon and the grid induced separation problems may occur.Spalart,Strelets and others improved the original DES method:the Delay Control of the function of boundary layer is introduced to determine the parameters.The method ensures that the RANS method in boundary layer is used in calculation regardless of Large Eddy Simulation.

    Nowadays the simulation using DES and DDES around delta wing configurations with sharp leading edges has been well known,many experimental and numerical investigations[9-13]have been published to simulating the flow using high fidelity numerical methods.However,the flow around delta wing configurations with blunt leading edge is still not entirely understood.Therefore,several experimental data in the Second International Vortex Flow Experiment were provided and generated within the NATO RTO/AVT-113task group for a 65°swept delta wing with sharp and various blunt/rounded leading edges[14].

    The paper focuses on the flow around the delta wing with blunt leading edge using RANS and hybrid models such as DES and DDES methods.The overall goal is to simulate the flow more fully a-round these non-sharp leading edge delta wings and gain more about the mechanism.

    1 Governing equations

    In the paper,the unsteady three dimensional compressible Navier Stokes equation in integral form under inertial Cartesian coordinates is adopted.The equation can be written as:

    In order to close RANS equations,based on Boussinesq assumption,the Reynolds stress can be defined as:

    Here,ωiis the relative velocity in the xidirection.

    Finite volume method,Roe scheme in spatial discretization and pseudo-time method are used in the unsteady numerical simulation.

    2 Turbulence model and boundary condition

    S-A turbulence model is used in the paper.It can well simulate most of attached flow and the free movement of thin shear flow.Besides,it also has good robustness and numerical convergence.The Riemann invariants in normal direction is used in Far-field boundary condition in order to achieve nonreflective boundary condition;and the no-slip condition is adopted in wall boundary condition,that is,u=v=w=0The normal pressure gradient of wall?p/?n=0,this paper assumes?T/?n=0in which n is the normal direction of wall toward outside.

    3 DES,DDES method

    In the DES method,the length of the scale in S-A turbulence model and the distance from any point in the flow field to the nearest wall surface d,can be expressed as:

    In whichΔis the maximum distance from the center of the grid center to the adjacent cells,constant coefficient CDES=0.65.The scale of grid in normal direction is small near the wall,CDESΔ>d,~d=d,model here is the standard S-A model and the model works in the RANS mode;Far from boundary layer,When CDESΔ<d,~d=CDESΔ.The model works in Large Eddy Simulation mode.Then,the generation term SPand the dissipation term SDin the equations can be respectively expressed as:

    When the generation term is equal to the dissipation term (SP=SD),the eddy viscosity coefficient can be expressed as:

    Where C is constant.This expression and the Smagorinsky subgrid stress model are very similar.

    In the same flow problem two different grid division methods are adopted near the wall.The grid area corresponding to RANS and LES region are also different and the final results of the two sets of grids vary greatly,so that the solution of the mesh is sensitive to the results.Menter pointed out that under the situation of a closely continuous grid,the prediction of the separation will occur earlier,that is,the grid induced separation problem,then Spalart reconstruct the characteristic size d,the specific form is defined as the following:

    This is the DDES method,in which fdis the function of the eddy viscosity coefficient vt,velocity gradient Uijand so on:

    The effect of fdis to take the feedback of the characteristic size d for the results into consideration.

    4 Numerical simulation of the delta wing with blunt leading edge

    The computational model uses the 65°swept delta wing with medium-scale leading-edge radius and blunt edge in the second eddy flow experiment(Eddy Flow Experiment 2,VFE2)for study.It is shown in Figure 1.

    Fig.1 Model parameters圖1 模型參數(shù)

    Figure 2shows the distribution of the grid.Structured grid is used in this paper and space is divided into 133blocks and 5.93×106grid cells.

    Fig.2 Model grid圖2 模型網(wǎng)格

    Computation state:Ma=0.4,α=13.3°,Re=3×106.The number of iteration is about 10000.

    Test data shows that the main eddy on the leading edge induces the secondary eddy,there is also an inner eddy with the same direction in rotation(relative to the eddy on leading edge,it can be called outside eddy).The small difference of the start position of outside eddy will cause the change of pressure distribution significantly.The separation region on the front of wing is the place that the inner eddy occurs,and the position and the strength of the inner eddy will affect the distribution of another suction peak.

    Since the model is a delta wing with the blunt leading edge,the start position of primary eddy is not the vertices at zenith.It is a challenge in CFD simulation to accurately capture the primary eddy along the axial front position.The location of the main eddy and the capture of suction peak can further determine the precise location of inner eddy.

    Figure 3to Figure 5are the comparison of RANS,DES and DDES pressure distribution of numerical simulation and experimental data respectively.All three methods can well catch the main eddy,while the start position of the main eddy is more forward and the calculated intensity of inner eddy is all weaker than the experimental data.Because the all-turbulence computation is used and the results are greatly influenced by grid distribution,the accuracy of turbulence model and transition.eddy in the flow field experiences a very complex process,In the beginning the initial layer is near the boundary layer,and the boundary layer becomes thicker and thicker along the downstream flows,and develops to the edge side,and ultimately roll up to inner eddy,the eddy develops inward.Inner eddy develops from the pileup of boundary layer within the eddy and inducement of outside eddy,so that it is very sensitive to the upstream flow.As shown by the comparison of results,DES,DDES can describe the internal eddy better than RANS.Figure 6is the pressure distribution of the experimental data at different slices in X direction.The pressure coefficient of RANS,DES,DDES in different slices are shown from Figure 7to Figure 9,the results of all the suction peak of leading edge and the trend of the pressure on the surface of wing are in good agreement with the experimental results.The flow around the leading edge is attached over the whole span up to 45% chord length.The pressure coefficient predicted with the same grid by RANS is too high and the strength of the inner vortex simulated by RANS is too weak where the inner eddy even smaller.However,the surface pressure predicted by DES and DDES are in better agreement with the experiment than RANS simulation.The differences between the two results and the experiment are mainly on the trailing edge of the wing in that the flow is unsteady and complicated in the region and adequately high time averaging can solve the problem in the future.As is shown in Figure 9,DDES method has a better simulation of inner eddy than DES method,because DDES does not rely on the refinement of local grid in comparison to DES method.

    Fig.3 RANS pressure distribution in comparison with experiment圖3 RANS壓力分布與實(shí)驗(yàn)結(jié)果的對(duì)比

    Fig.4 DES pressure distribution in comparison with experiment圖4 DES壓力分布與實(shí)驗(yàn)結(jié)果的對(duì)比

    Fig.5 DDES pressure distribution in comparison with experiment圖5 DDES壓力分布與實(shí)驗(yàn)結(jié)果的對(duì)比

    Fig.6 Pressure coefficient of experiment in different slices圖6 實(shí)驗(yàn)下的不同截面壓力分布

    Fig.7 Pressure coefficient of RANS in different slices圖7 RANS下的不同截面壓力分布

    Fig.8 Pressure coefficient of DES in different slices圖8 DES下的不同截面壓力分布

    Fig.9 Pressure coefficient of DDES in different slices圖9 DDES下的不同截面壓力分布

    Figure 10is the vorticity distribution of experiment,RANS,DES and DDES simulation results in different slices.What the Figure 10shows is helpful for us to understand the topology of the flow.The flow near the wing surface which corresponds to the higher vorticity forms the primary vortex in outer region.As is shown in Figure 11to 13,in comparison with the experiment data,DES and DDES show more details than RANS.

    Fig.10 The vorticity distribution of experiment in different slices圖10 實(shí)驗(yàn)下的不同截面渦量分布

    Fig.11 The vorticity distribution of RANS in different slices圖11 RANS下的不同截面渦量分布

    Fig.12 The vorticity distribution of DES in different slices圖12 DES下的不同截面渦量分布

    At high angle of attack,the boundary layer departs from the wall at the beginning of the separation line on the surface,and then the eddy rolls over on the leeward side.The eddy controls the aerodynamic characteristics of aircraft.Figure 14is the computational results of the spatial streamlines of DDES.It can be learned that the eddy can be well described from the beginning to the wake of the eddy.

    Fig.13 The vorticity distribution of DDES in different slices圖13 DDES下的不同界面渦量分布

    Fig.14 The streamlines of DDES圖14 DDES方法下的流線圖

    5 Conclusions

    In this paper,RANS,DES and DDES numerical simulation of eddy separation on the delta wing with blunt leading edge is bring into effect.The results of the numerical simulation are analyzed:

    (1)In terms of the separation eddy flow,the pressure distribution of RANS is consistent with the experimental data given,but it can not give satisfactory results on the strength of small eddy.

    (2)The pressure distribution of DES method is consistent with the experimental data,and more detail of the eddy topology can be given than RANS.DES method has obvious advantages in separated flow in comparison with RANS method.

    (3)DDES method reduces the dependence of mesh and has a outstanding performance in the numerical simulation,numerical results given are also more rational,more detail of the eddy topology can be given than DES.

    From the analysis of the mechanism of CFD,the flow around the wing experienced the process from the separation bubble on the leading edge,the instability of the flow to the rupture of the eddy.It is a complex process of change.The results of separated flow depend on the accurate simulation of boundary layer and detached eddy.While the DES uses RANS method near the wall and LES method in the area of detached eddy.The computational grid is saved near the wall and the boundary layer can also be well simulated,and LES method effectively solves the problem of numerical simulation of the separation zone.Through the study,the application of DES,DDES method leads to an increased understanding of the flow field of the delta wing with blunt leading edge at high angle of attack.

    [1]ANDREA A M,LIOU M S,LOUIS A.Povinelli integration of Navier-Stokes equations using dual time stepping and a multigrid method[J].AIAA Journal,1995,33(6):985-990.

    [2]SPALART P,ALLMARAS S.A one-equation turbulence model for aerodynamic flows[R].AIAA Paper 92-0439.

    [3]SPALART P,JOU W,STRELETS M,et al.Comments on the feasibility of LES for wings and on the hybrid RANS/LES approach[M].Greyden Press,1997:137.

    [4]PHILIPPE R.SPALART.Trends in turbulence treament[R].AIAA 2000-2306,2000.

    [5]MENTER FR,KUNTZ M.Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles[M].McCALLEN R,BROWAND F,ROSS J,editors.The aerodynamics of heavy vehicles:trucks,buses,and trains.Springer,2004.

    [6]HANSEN R P,LONG L N.Large-eddy simulation of a circular cylinder on unstructured grids[R].AIAA 2002-0982,2002.

    [7]SPALART P R,DECK S,SHUR M L,et al.A new version of detached-eddy simulation,resistant to ambiguous grid densities[J].Theory of Computational Fluid Dynamics,2006,20:181-195.

    [8]ZHI X X,HAI X C,YU F Z,et al.Study of delayeddetached eddy simulation with weakly nonlinear turbu-lence model[J].Journal of Aircraft,2006,43(5):1377-1385.

    [9]DROUGGE G.The international vortex flow experiment for computer code validation[J].ICAS Proceedings,1:35-41.

    [10]ELSENAAR A,HJELEBERG L,BUTEFISCH K A,et al.The international vortex flow experiment[R].AGARD-CP-437,1:9-1,9-23.

    [11]WAGNER B,HITZEL S,SCHMATZ M A,et al.Status of CFD validation on the vortex flow experiment[R].AGARD-CP-437.1:10-1,10-10.

    [12]HOEIJMAKERS H W M.Modelling and numerical simulation of vortex flow in aerodynamics[R].AGARD-CP-494,1991:1-1,1-46.

    [13]LUCKRING J M.Recent progress in computational vortexflow aerodynamics[R].AGARD-CP-494,1991:6-1,6-21.

    [14]HUMMEL D,REDEKER G.A new vortex flow experiment for computer code validation[A].RTO-AVT Symposium on “Vortex Flow and High Angle of Attack”[C].Loen Norway,2001.

    猜你喜歡
    渦量流線界面
    人工塑造生境條件下中華倒刺鲃的棲息偏好研究
    含沙空化對(duì)軸流泵內(nèi)渦量分布的影響
    國企黨委前置研究的“四個(gè)界面”
    幾何映射
    任意夾角交叉封閉邊界內(nèi)平面流線計(jì)算及應(yīng)用
    自由表面渦流動(dòng)現(xiàn)象的數(shù)值模擬
    基于FANUC PICTURE的虛擬軸坐標(biāo)顯示界面開發(fā)方法研究
    人機(jī)交互界面發(fā)展趨勢(shì)研究
    手機(jī)界面中圖形符號(hào)的發(fā)展趨向
    新聞傳播(2015年11期)2015-07-18 11:15:04
    航態(tài)對(duì)大型船舶甲板氣流場的影響
    亚洲综合精品二区| 青春草视频在线免费观看| 日本黄色日本黄色录像| 99视频精品全部免费 在线| 国内少妇人妻偷人精品xxx网站| 亚洲伊人久久精品综合| 人人妻人人添人人爽欧美一区卜| 精品人妻熟女av久视频| 美女中出高潮动态图| av福利片在线观看| 国产精品福利在线免费观看| 国产成人精品婷婷| 亚洲婷婷狠狠爱综合网| 国产精品久久久久久久久免| 日韩欧美一区视频在线观看 | 国模一区二区三区四区视频| 99久久人妻综合| 久久av网站| 欧美精品一区二区大全| 亚州av有码| 一级二级三级毛片免费看| 在线 av 中文字幕| 青春草视频在线免费观看| 人体艺术视频欧美日本| 精品一区二区免费观看| 国产高清有码在线观看视频| 麻豆精品久久久久久蜜桃| 一级毛片aaaaaa免费看小| 欧美日韩一区二区视频在线观看视频在线| 精品国产一区二区久久| 中文字幕av电影在线播放| 三级国产精品片| 成年女人在线观看亚洲视频| 国产永久视频网站| 国产亚洲午夜精品一区二区久久| 狂野欧美激情性bbbbbb| 久久精品熟女亚洲av麻豆精品| 熟女电影av网| 各种免费的搞黄视频| 黄色毛片三级朝国网站 | 少妇丰满av| 欧美性感艳星| 国产精品久久久久久久久免| 久久久久久久久久久免费av| 哪个播放器可以免费观看大片| 亚洲一级一片aⅴ在线观看| 日韩大片免费观看网站| 大片电影免费在线观看免费| 久久久精品94久久精品| 男女边吃奶边做爰视频| 青春草亚洲视频在线观看| 9色porny在线观看| 一级毛片久久久久久久久女| 高清不卡的av网站| 99久久综合免费| 国产免费一区二区三区四区乱码| 最近手机中文字幕大全| 国产淫片久久久久久久久| 青春草国产在线视频| 欧美日韩亚洲高清精品| 亚洲av综合色区一区| 日韩精品有码人妻一区| 在线观看三级黄色| 日日爽夜夜爽网站| 2021少妇久久久久久久久久久| av不卡在线播放| 亚洲精品日本国产第一区| 国产精品国产三级国产专区5o| 亚洲精品中文字幕在线视频 | 91精品一卡2卡3卡4卡| 肉色欧美久久久久久久蜜桃| 69精品国产乱码久久久| 国国产精品蜜臀av免费| xxx大片免费视频| 伊人亚洲综合成人网| 国产免费一级a男人的天堂| 国产精品国产三级专区第一集| 少妇人妻久久综合中文| 国产男女内射视频| 午夜福利视频精品| 日本爱情动作片www.在线观看| 一本一本综合久久| 亚洲国产欧美日韩在线播放 | 你懂的网址亚洲精品在线观看| 十八禁网站网址无遮挡 | 啦啦啦在线观看免费高清www| 国产亚洲欧美精品永久| 国产男人的电影天堂91| 狂野欧美激情性xxxx在线观看| 精品久久久久久久久av| 一二三四中文在线观看免费高清| 日本欧美国产在线视频| 最近2019中文字幕mv第一页| 51国产日韩欧美| 蜜桃久久精品国产亚洲av| www.av在线官网国产| 国内少妇人妻偷人精品xxx网站| 视频区图区小说| 桃花免费在线播放| 偷拍熟女少妇极品色| 一本大道久久a久久精品| 极品教师在线视频| 色5月婷婷丁香| 色94色欧美一区二区| 亚洲欧美精品专区久久| 九九久久精品国产亚洲av麻豆| 97超视频在线观看视频| 十分钟在线观看高清视频www | 久久韩国三级中文字幕| 2021少妇久久久久久久久久久| 最近的中文字幕免费完整| 性色av一级| 国产日韩欧美亚洲二区| 亚洲人成网站在线观看播放| 波野结衣二区三区在线| 天天躁夜夜躁狠狠久久av| 只有这里有精品99| 女人精品久久久久毛片| 噜噜噜噜噜久久久久久91| 少妇熟女欧美另类| 欧美激情国产日韩精品一区| 少妇人妻久久综合中文| 国产精品久久久久成人av| 99热这里只有是精品50| 亚洲精品视频女| 一级二级三级毛片免费看| 超碰97精品在线观看| 欧美日本中文国产一区发布| 人人妻人人澡人人看| 我的老师免费观看完整版| 一级a做视频免费观看| 国产精品99久久99久久久不卡 | 男女免费视频国产| 青春草亚洲视频在线观看| 嘟嘟电影网在线观看| 伦理电影大哥的女人| 美女国产视频在线观看| 精品人妻熟女av久视频| 日韩熟女老妇一区二区性免费视频| 菩萨蛮人人尽说江南好唐韦庄| 一本久久精品| 成年女人在线观看亚洲视频| 国产一区二区在线观看日韩| 亚洲婷婷狠狠爱综合网| 久久久欧美国产精品| 欧美日韩在线观看h| 亚洲欧美日韩卡通动漫| 国产淫语在线视频| 在线观看av片永久免费下载| 久久久久人妻精品一区果冻| 丝瓜视频免费看黄片| 欧美日韩一区二区视频在线观看视频在线| 日本猛色少妇xxxxx猛交久久| 麻豆乱淫一区二区| 亚洲国产日韩一区二区| 99久久精品热视频| av在线播放精品| 日韩欧美精品免费久久| 日本与韩国留学比较| 精品一区二区免费观看| 久久ye,这里只有精品| 国产成人a∨麻豆精品| a级毛色黄片| 精品视频人人做人人爽| 波野结衣二区三区在线| 亚洲激情五月婷婷啪啪| 日韩中文字幕视频在线看片| 国产av国产精品国产| 免费黄色在线免费观看| 中文字幕免费在线视频6| 成年女人在线观看亚洲视频| 欧美日韩综合久久久久久| 一级,二级,三级黄色视频| 一本色道久久久久久精品综合| 日本爱情动作片www.在线观看| 亚洲精品日本国产第一区| 欧美日韩亚洲高清精品| 熟女av电影| 成人毛片60女人毛片免费| 视频区图区小说| 久久午夜综合久久蜜桃| 日日摸夜夜添夜夜爱| 国产精品久久久久久精品电影小说| 精品亚洲成国产av| 亚洲无线观看免费| 亚洲精品aⅴ在线观看| 久久精品国产自在天天线| 欧美少妇被猛烈插入视频| 午夜福利影视在线免费观看| 极品教师在线视频| 少妇裸体淫交视频免费看高清| 成人特级av手机在线观看| 在线免费观看不下载黄p国产| 熟妇人妻不卡中文字幕| 国产精品99久久久久久久久| 国产免费一级a男人的天堂| 色婷婷av一区二区三区视频| 午夜福利视频精品| 久热久热在线精品观看| 日韩在线高清观看一区二区三区| 免费观看在线日韩| 自拍欧美九色日韩亚洲蝌蚪91 | 国产淫语在线视频| 欧美精品一区二区大全| 精品午夜福利在线看| 日韩亚洲欧美综合| 久久狼人影院| 国产永久视频网站| 一级二级三级毛片免费看| 18禁动态无遮挡网站| 五月开心婷婷网| 一级毛片 在线播放| 日韩免费高清中文字幕av| 国产免费又黄又爽又色| 男女啪啪激烈高潮av片| 成人漫画全彩无遮挡| 国产精品伦人一区二区| 不卡视频在线观看欧美| 亚洲怡红院男人天堂| 亚洲av电影在线观看一区二区三区| 91精品国产九色| 成人免费观看视频高清| 久久99蜜桃精品久久| 人人妻人人添人人爽欧美一区卜| 热re99久久精品国产66热6| 色5月婷婷丁香| 成人国产麻豆网| 亚洲综合精品二区| 日韩一区二区视频免费看| 永久免费av网站大全| 成人漫画全彩无遮挡| 国产中年淑女户外野战色| 成人午夜精彩视频在线观看| 我的老师免费观看完整版| 少妇人妻久久综合中文| 久热久热在线精品观看| 亚洲无线观看免费| 中文欧美无线码| 久久影院123| 久久精品国产亚洲网站| 精品一区二区三卡| 欧美最新免费一区二区三区| av福利片在线| 天堂8中文在线网| 三级国产精品片| 尾随美女入室| 久久久午夜欧美精品| 国产国拍精品亚洲av在线观看| 亚洲四区av| 丁香六月天网| 国产高清不卡午夜福利| 亚洲欧洲国产日韩| 美女福利国产在线| 国产黄色视频一区二区在线观看| 久久久欧美国产精品| 国内少妇人妻偷人精品xxx网站| 伦理电影免费视频| 国产精品久久久久成人av| 精品一区二区三卡| 中文欧美无线码| 美女内射精品一级片tv| 免费黄频网站在线观看国产| 日韩人妻高清精品专区| 日本av手机在线免费观看| 亚洲国产成人一精品久久久| 国产在线视频一区二区| 精品国产一区二区久久| 99久国产av精品国产电影| a级一级毛片免费在线观看| 只有这里有精品99| 美女内射精品一级片tv| 欧美精品高潮呻吟av久久| 久久免费观看电影| 国产高清国产精品国产三级| 18禁动态无遮挡网站| 色94色欧美一区二区| 久久久久视频综合| 久久人人爽人人片av| 国产精品99久久久久久久久| 国产熟女午夜一区二区三区 | 校园人妻丝袜中文字幕| 熟妇人妻不卡中文字幕| 亚洲中文av在线| 精品久久久久久电影网| 99久国产av精品国产电影| 精品一区二区三区视频在线| 春色校园在线视频观看| 国产免费又黄又爽又色| 亚洲国产精品一区二区三区在线| 伦理电影免费视频| 在线亚洲精品国产二区图片欧美 | 国产在线男女| 亚洲国产精品一区二区三区在线| 精品一区二区免费观看| 午夜福利影视在线免费观看| 少妇精品久久久久久久| 高清黄色对白视频在线免费看 | 丝袜喷水一区| 亚洲中文av在线| 视频区图区小说| 国产精品久久久久久av不卡| 亚洲精品一区蜜桃| 99视频精品全部免费 在线| 大码成人一级视频| 简卡轻食公司| 国产精品国产av在线观看| 日产精品乱码卡一卡2卡三| 人人澡人人妻人| 亚洲精品中文字幕在线视频 | 欧美精品国产亚洲| 日日爽夜夜爽网站| 久久久a久久爽久久v久久| 91精品国产九色| 精品久久久噜噜| 国产成人精品无人区| 成人国产av品久久久| av一本久久久久| 性色avwww在线观看| 一级爰片在线观看| 在线看a的网站| 国产精品人妻久久久影院| 精品人妻熟女av久视频| av有码第一页| 我要看日韩黄色一级片| 三上悠亚av全集在线观看 | 亚洲av电影在线观看一区二区三区| 日日啪夜夜爽| 丁香六月天网| 亚洲欧美一区二区三区黑人 | 欧美精品亚洲一区二区| 国产毛片在线视频| 极品人妻少妇av视频| 国产精品99久久99久久久不卡 | 王馨瑶露胸无遮挡在线观看| videos熟女内射| 午夜福利,免费看| 欧美成人午夜免费资源| av有码第一页| 国产日韩欧美亚洲二区| 天天操日日干夜夜撸| 免费av中文字幕在线| 国产精品伦人一区二区| 色94色欧美一区二区| 一边亲一边摸免费视频| 日韩 亚洲 欧美在线| 国产欧美亚洲国产| 亚洲美女视频黄频| 2021少妇久久久久久久久久久| 久热这里只有精品99| 精品久久久久久久久亚洲| 亚洲欧美日韩卡通动漫| 99热这里只有是精品50| 亚洲av国产av综合av卡| 久久国产亚洲av麻豆专区| 亚洲精品一区蜜桃| 日韩欧美 国产精品| 人人妻人人添人人爽欧美一区卜| 丝袜喷水一区| 国产精品成人在线| 婷婷色av中文字幕| 3wmmmm亚洲av在线观看| 在线亚洲精品国产二区图片欧美 | 中国三级夫妇交换| 少妇精品久久久久久久| 自拍欧美九色日韩亚洲蝌蚪91 | 丰满迷人的少妇在线观看| 午夜免费男女啪啪视频观看| 夫妻午夜视频| 亚洲欧美成人精品一区二区| 亚洲精品国产色婷婷电影| a级一级毛片免费在线观看| 国产精品免费大片| 赤兔流量卡办理| 免费av中文字幕在线| 久热这里只有精品99| 一级a做视频免费观看| 在线观看免费视频网站a站| 免费久久久久久久精品成人欧美视频 | 精品国产乱码久久久久久小说| 久热久热在线精品观看| 成人国产麻豆网| 熟妇人妻不卡中文字幕| 久久久久久久久大av| 又爽又黄a免费视频| 99热网站在线观看| 国产成人精品一,二区| 777米奇影视久久| 欧美97在线视频| 高清av免费在线| av专区在线播放| 久久久精品94久久精品| 国产毛片在线视频| 亚洲欧美日韩卡通动漫| 黄色日韩在线| 中文字幕精品免费在线观看视频 | 九草在线视频观看| 亚洲婷婷狠狠爱综合网| 久久人妻熟女aⅴ| 色婷婷久久久亚洲欧美| 男女边摸边吃奶| 亚洲精品成人av观看孕妇| 最新的欧美精品一区二区| 国产中年淑女户外野战色| 国产精品国产三级专区第一集| 人妻系列 视频| 免费人妻精品一区二区三区视频| 国产精品伦人一区二区| 搡女人真爽免费视频火全软件| 熟妇人妻不卡中文字幕| 99久久中文字幕三级久久日本| 丝袜喷水一区| √禁漫天堂资源中文www| 国产又色又爽无遮挡免| 嫩草影院新地址| 人妻制服诱惑在线中文字幕| 99九九在线精品视频 | 99热6这里只有精品| 久久99精品国语久久久| 亚洲精品国产av蜜桃| 日本wwww免费看| 乱码一卡2卡4卡精品| 五月玫瑰六月丁香| 亚洲人成网站在线观看播放| 午夜免费鲁丝| 看免费成人av毛片| 午夜91福利影院| 成年美女黄网站色视频大全免费 | 国产伦精品一区二区三区四那| 成人特级av手机在线观看| 中文资源天堂在线| 国精品久久久久久国模美| 日日摸夜夜添夜夜添av毛片| 国产男人的电影天堂91| 中文在线观看免费www的网站| av福利片在线| 国产精品国产三级国产专区5o| 你懂的网址亚洲精品在线观看| 高清不卡的av网站| 色5月婷婷丁香| 国产精品三级大全| 精品亚洲乱码少妇综合久久| 国产极品天堂在线| 夜夜骑夜夜射夜夜干| 日本黄色日本黄色录像| 国产亚洲91精品色在线| 内地一区二区视频在线| 国产精品无大码| 久久精品夜色国产| 久久女婷五月综合色啪小说| 青青草视频在线视频观看| 久久久a久久爽久久v久久| 看非洲黑人一级黄片| 少妇人妻精品综合一区二区| 你懂的网址亚洲精品在线观看| 亚洲av.av天堂| 噜噜噜噜噜久久久久久91| 久久国产精品男人的天堂亚洲 | 久久精品国产鲁丝片午夜精品| 国产精品偷伦视频观看了| 简卡轻食公司| 欧美三级亚洲精品| 国产免费一区二区三区四区乱码| 精品人妻熟女毛片av久久网站| 国产亚洲最大av| 中文字幕久久专区| av免费观看日本| 99热全是精品| 22中文网久久字幕| 最近手机中文字幕大全| 女性生殖器流出的白浆| 观看美女的网站| 蜜桃在线观看..| 国产亚洲午夜精品一区二区久久| 成人综合一区亚洲| 亚洲一级一片aⅴ在线观看| 免费黄网站久久成人精品| 91aial.com中文字幕在线观看| 亚洲欧美日韩另类电影网站| 日韩欧美 国产精品| 我要看黄色一级片免费的| 夫妻性生交免费视频一级片| 久久国产亚洲av麻豆专区| 日韩,欧美,国产一区二区三区| 久久影院123| 国产精品国产av在线观看| 欧美少妇被猛烈插入视频| 日韩精品免费视频一区二区三区 | 中文字幕免费在线视频6| 精华霜和精华液先用哪个| 91精品国产九色| 国产真实伦视频高清在线观看| 99热6这里只有精品| 男人舔奶头视频| 欧美丝袜亚洲另类| 精华霜和精华液先用哪个| 亚洲国产成人一精品久久久| 国产无遮挡羞羞视频在线观看| 日本-黄色视频高清免费观看| 午夜老司机福利剧场| 国产男女超爽视频在线观看| 一区二区三区四区激情视频| 在线精品无人区一区二区三| 亚洲情色 制服丝袜| 国产白丝娇喘喷水9色精品| 国产精品嫩草影院av在线观看| 国产精品偷伦视频观看了| 乱人伦中国视频| 午夜久久久在线观看| 国产精品99久久久久久久久| 婷婷色综合www| 日日啪夜夜撸| 亚洲国产精品国产精品| 亚洲欧洲日产国产| 久久久久国产网址| 色婷婷久久久亚洲欧美| 亚洲精品日韩av片在线观看| av在线老鸭窝| 久久综合国产亚洲精品| 黑丝袜美女国产一区| 日韩免费高清中文字幕av| 国产极品天堂在线| av黄色大香蕉| 国产高清国产精品国产三级| 国产男女超爽视频在线观看| 国产中年淑女户外野战色| 一区二区av电影网| 日韩欧美一区视频在线观看 | 欧美三级亚洲精品| 国产亚洲一区二区精品| 99久久中文字幕三级久久日本| 欧美高清成人免费视频www| 亚洲成人手机| 亚洲av中文av极速乱| 内地一区二区视频在线| 国国产精品蜜臀av免费| 成人亚洲精品一区在线观看| 51国产日韩欧美| 草草在线视频免费看| 国产av一区二区精品久久| 美女福利国产在线| 91午夜精品亚洲一区二区三区| 自线自在国产av| 免费av中文字幕在线| 色94色欧美一区二区| 久久久久国产精品人妻一区二区| 精品国产一区二区久久| 久久毛片免费看一区二区三区| 99久久综合免费| 亚洲精品视频女| 亚洲国产精品国产精品| 中国国产av一级| 国产有黄有色有爽视频| 久久99热6这里只有精品| 丰满人妻一区二区三区视频av| 日日摸夜夜添夜夜添av毛片| 夜夜骑夜夜射夜夜干| 欧美日韩在线观看h| .国产精品久久| 最近的中文字幕免费完整| 国产伦精品一区二区三区视频9| 少妇被粗大的猛进出69影院 | 极品人妻少妇av视频| 亚洲精华国产精华液的使用体验| videossex国产| 欧美亚洲 丝袜 人妻 在线| 老女人水多毛片| 欧美日韩视频高清一区二区三区二| 午夜福利在线观看免费完整高清在| 免费看日本二区| 一级片'在线观看视频| 欧美激情极品国产一区二区三区 | 插阴视频在线观看视频| 国产午夜精品久久久久久一区二区三区| 国产高清三级在线| 久久精品久久精品一区二区三区| 日韩欧美 国产精品| 亚洲精品乱码久久久v下载方式| 亚洲精品国产成人久久av| 美女脱内裤让男人舔精品视频| 国产精品熟女久久久久浪| a级毛片在线看网站| 欧美丝袜亚洲另类| 少妇被粗大猛烈的视频| 自线自在国产av| 一级毛片 在线播放| 日韩精品免费视频一区二区三区 | 少妇精品久久久久久久| 大片电影免费在线观看免费| a级片在线免费高清观看视频| 国产黄片视频在线免费观看| 久久久国产精品麻豆| 王馨瑶露胸无遮挡在线观看| 免费av不卡在线播放| 六月丁香七月| 久久国产精品大桥未久av | 日韩在线高清观看一区二区三区| 激情五月婷婷亚洲| 久久久欧美国产精品| 免费观看性生交大片5| 欧美日韩一区二区视频在线观看视频在线| 欧美日韩av久久| 深夜a级毛片| 久久精品国产a三级三级三级| 国产成人精品婷婷| 亚洲精华国产精华液的使用体验| 亚洲色图综合在线观看| 亚洲欧美一区二区三区黑人 | 中文字幕免费在线视频6| 少妇丰满av| 国产在线一区二区三区精| 日本vs欧美在线观看视频 | 美女主播在线视频| 精品99又大又爽又粗少妇毛片| 国产一区二区在线观看av| 欧美97在线视频|