• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Algorithm Simulation of Ship Dynamic Positioning Using Adaptive Fading Memory Filter

    2018-01-04 08:24:58ZHANGShnZOUZojin
    船舶力學(xué) 2017年12期
    關(guān)鍵詞:上海交通大學(xué)濾波動力

    ZHANG Shn,ZOU Zo-jin,b

    (a.School of Naval Architecture,Ocean and Civil Engineering;b.State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    Algorithm Simulation of Ship Dynamic Positioning Using Adaptive Fading Memory Filter

    ZHANG Shana,ZOU Zao-jiana,b

    (a.School of Naval Architecture,Ocean and Civil Engineering;b.State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    Due to the complexity and nonlinearity of ship motion at seas,an accurate mathematical model for ship dynamic positioning system is difficult to establish.In order to achieve efficient control,it is necessary to obtain the required signals of low frequency motion by means of a filter algorithm for state estimation.Using the conventional Kalman filter,the correction effect of new measurement data of state variables on the prediction decreases,while the influence of the old measurement data increases with the time step,which is the main reason of filter divergence.To solve the problem of inaccurate model,inaccurate expression of system noises and measurement noises when applying Kalman filter in a ship dynamic positioning system,an adaptive fading memory filter is employed to estimate the low frequency motion.By introducing the fading memory factor in the state estimation algorithm,the effect weight of the old measurement data on the state estimation is decreased,and the impact of the new measurement data is increased.Besides,according to the criterion for filter divergence,a proper fading memory factor is chosen to restrain the filter divergence and to make the controller output relatively smooth,so that the unnecessary energy consumption of the thruster system is reduced.The simulation results show that the designed adaptive filter is superior to Kalman filter in convergence and traceability,and the positioning precision and stability of the system are effectively improved.

    ship dynamic positioning;state estimation;adaptive fading memory filter;Kalman filter

    0 Introduction

    Due to the disturbance of wind,waves and current,the ship motion at seas is complicated and nonlinear.In the ship dynamic positioning system,the sensor signals are always polluted by external environment and internal physical properties itself,which has negative impact on the controller performance.In this sense,a model-based filter is necessary for the control system.A filter is used to restrain or avoid the disturbing components of input signals,and modifies the frequency values and phases to enhance the precision of the output signals.Itdeals with the signals of ship motion and eliminates the high frequency components,the system noises and measurement noises to make the output of the controller tend to be smooth and stable[1].

    Kalman filter[2]is generally restricted to a stochastic linear system with accurate model,and requires the system noises and measurement noises to be specified Gaussian white noise sequences.However,the complexity of the environment and the inertia of the vessel lead to the discrepancy between the low frequency motion model established and the actual situation,which reflects the limitations of using Kalman filter[3].Moreover,for a complex and nonlinear system like a surface vessel at seas,it is difficult to guarantee the existence of the optimal solution when using an optimal estimation algorithm.If the mean square errors of state prediction could not be updated adaptively,they will accumulate with the recursive calculation steps,which is destined to cause distortion of the gain matrix and deterioration of the global asymptotic stability.As a result,the low frequency motion tracking is hard to ensure[4].

    An adaptive filter can effectively compensate the errors as well as suppress the disturbances caused by the imprecise system model and insufficient statistical characteristic of system noises and measurement noises,so that the convergence and stability are improved with a certain reliability[5].Extended Kalman filter[6]and unscented Kalman filter[7]are mainly used to solve the problem of model nonlinearity.The adaptive filter constructed with neural network[8]requires a large quantity of training samples as foundation and has heavy computational burden.Adaptive fuzzy filter[9]is applied with prior knowledge of the environment and appropriately regulates the membership functions according to the noise characteristics.

    In this paper,an adaptive fading memory filter is designed to estimate the low-frequency motion including the position and heading information of a given vessel.Particularly,a fading memory factor is introduced into the conventional Kalman filter algorithm.A digital suboptimal filter is formed to alleviate the dependence on prior estimations and at the same time to raise the weight of current measurements of state variables.Simulation experiments using the proposed adaptive fading memory filter and the conventional Kalman filter are conducted,and the results are compared to evaluate the effects of the filters.It confirms that higher positioning precision can be achieved by using the proposed filter.

    1 Mathematic models

    Since a vessel is at a slow speed when operated under dynamic positioning control,the motions of heave,roll and pitch have little influence on the dynamic positioning operation,while the motions of surge,sway and yaw with small heading angle are usually the main concern[10].The mathematical model with disturbances in the vessel-fixed frame is expressed as[11]:where M is the inertia matrix of the system including added mass,D is the damping matrix;ν=[u,v,r]Tdenotes the velocity components and yaw rate,τ represents the force and moment acting on the vessel;η=[x,y, ψ ]Tis the position and heading in the earth-fixed frame,R(ψ)is the rotation matrix for transformation;Eυrepresents the maximum amplitudes of system noise,while ωυis a Gaussian white noise vector which reflects model uncertainty due to the wind,current and second-order waves.b is the slowly varying environment force and moment,and always presented as a one-order Gauss-Markov model:

    where Tbis a diagonal matrix which contains time constants,ωbis a Gaussian white noise vector and Ebis the maximum amplitudes of the noise.

    The linear wave-frequency motion of state space model can be described as:

    where ηw=[xw,yw,ψw]Tis the high frequency motion induced by the first-order waves;Ew=[03×3Eh]T,where Ehrepresents the maximum amplitude of Gaussian white noise ωw.The other coefficient matrices in the model are:

    where ω21and ω22are related to the main frequency of waves ω0and the relative damping ζ.They are given as:

    The measurement data of the system are always corrupted by noise.They can be expressed as:

    where ωyis the measurement noise and set as Gaussian white noise.

    Eqs.(1),(2),(3)and(6)constitute the mathematical model for the ship dynamic positioning system,which is copied by the filter for state estimation.

    The equations of state and measurement in discrete form can be written as:

    The characteristics of the initial state variables x0and ωk, υkare independent of each other,namely,

    2 Adaptive fading memory filter

    In this paper,an adaptive fading memory filter is proposed to improve the Kalman filter algorithm.It also consists of two parts:firstly,update time to estimate the low frequency motions;then,update measurement to correct the previous state estimation by utilizing the known observations.P0,the variance of the deviation between x0and the initial estimationis used to describeRk,the variance of υk,is used to describe the measurement yk.The improved filter can automatically determine the utilization of the observation samples andwhen calculating the variableswhere n is the number of the measured historic observations.In this way,the impact ofand yoncan be reduced by increasing Pand R[12].

    k0k

    A fading memory factor f,a specific scalar,is introduced in the Kalman filter for the propose of adaptively correcting P0and Rk:

    To simplify the filtering process,the system noise is put in another transformation:

    Similarly,other variables in the Kalman filter are defined by

    The converted filter equations can be written as:

    In the conventional Kalman filter,the optimal control gain matrix is solved only according to the priori variance matrix and the noise variance.The inaccuracy or extreme change of priori information may lead to filter divergence.Therefore,in order to correct the estimated values,f in the fading memory filter is applied not only to adjust weightedly the system noise and measurement noise,but also to adjust the variance of measurement noise adaptively and the control gain matrix completely.Setting f>1,it always holds thatsimultaneously.Furthermore,since

    the weight of priori estimated valuesis decreased,while the measurements ykhave higher confidence level.

    The covariance matrixes of the system errors will become infinite when the filter diverges.k→∞ may cause the gain matrixesresulting in the actual estimated errors much more higher than the theoretical values.An inequality is set up as the judgment condition to limit the divergence:

    where the left term is the sum of the squares of the new sequences,and the right term is the trace of the covariance matrix,λ is the redundancy coefficient and λ≥1;rkis the deviation of the measurements from their estimations,including errors caused by the difference between the actual ship motion and that determined by the simulation model.It can be written as:

    The judgment condition to evaluate the divergence can be further expressed as:

    where λ=1 means the most strict standard.

    If the coefficient matrix cannot satisfy Eq.(16)when circular computations are implemented by using the filter equation,Eq.(12),it suggests that the estimated values are larger than the theoretical values or are λ times of the theoretical values.

    Considering rkas the white noise term,with λ=1,it follows

    and the formula for solving fkautomatically is given as:

    where d is the dimension of the measurements.In the present study,d=3.

    Substituting Eq.(18)into Eqs.(8)-(11),it yields from Eq.(12)the complete fading memory filter process.

    3 Simulation experiment and result analysis

    The control system for ship dynamic positioning is a closed-loop system consisting of an estimator,a controller and a thrust allocation module.With the help of the measurement system,it detects the deviations between the actual positions,headings and the target ones of the vessel,as well as the impact of external disturbances such as wind,waves,and current.Then the estimator estimates the slowly varying external disturbances to which the vessel has to respond,and the controller outputs the instructions for thrust system to implement to ensure the vessel to maintain the desired position and heading as much as possible.

    To verify the effectiveness of the improved filter,simulations are carried out,and a LQ controller was connected with the improved filter in the simulations.Some parameters in the simulations are set as follows:The sampling period is 0.2 s,the simulation time is 500 s;and the variance matrix of the system noise Q,the measurement noise R and some other environment parameters are set as:

    3.1 Ship model

    Tab.1 Principal dimensions of the ship model

    Take a ship model of a 75m-platform supply vessel with scale ratio 1:20 as the study object[13].The principal dimensions of the ship model are given in Tab.1.

    The simulation begins with η0=[0 m 0 m 0°]Tas the initial position and heading,and the vessel is desired to move to the setpoint ηd=[10 m 10 m 0°]T.The inertia matrix M and hydrodynamic damping matrix D of this ship model are obtained by CFD method using Fluent software,the dimensionless M and D are given as follows[13]:

    3.2 Effects of the adaptive fading memory filter

    A description of the low frequency ship motion estimated by the designed adaptive fading memory filter is illustrated in Fig.1,where the measured position is composed of the dead reckoning of the ship,system noise,measurement noise and environment noise.The estimated position is obtained from the measured value by the filter.

    The comparison of the measured position and the estimated position indicates that the designed adaptive fading memory filter can effectively eliminate the disturbances.Particularly,the curves of the estimated position are significantly smoother than the measured position and stably converge to the vicinity of the desired values,which confirms that the filter can suppress the positioning error to a certain extent,thus improve the positioning accuracy of the control system.On the other hand,as can be seen from Fig.1(c),the filtering effect on the yaw motion is less than those on the surge and sway motions.This is mainly due to the fact that the input in the yaw motion is torque which is harder to perform than force input with equal flexibility.

    Fig.2 depicts the trajectory of the ship in the horizontal plane.It shows that the ship reaches the target location in both longitudinal and transverse directions almost simultaneously,which is in line with the law of actual ship motions.The filter operates as expected to let the vessel follow a smoother trajectory,and tend to converge to a stable state,thereby the accuracy of the control system is improved effectively.

    Fig.1 Filter effect in ship dynamic positioning

    Fig.2 Trajectory of the ship on the horizontal plane in ship dynamic positioning

    Fig.3 e varying with number n of historical observation data,when f=1.003

    In view of the fading memory factor f and the number of historical observations n,the deviation between the estimated state variables by the filter and the dead reckoning values obtained from the mathematical model is taken for further comparison,which is defined as:where xfidenotes the filtering value at time step i,xmidenotes the corresponding mathematical model value.

    As an example,Fig.3 shows the results at a fixed f(f=1.003)with a varying n.It reveals that for a fixed value of f,the deviation increases with the amount of the historical observations,which further validates the impact of the historical data on the estimated values.

    In order to testify the superiority of the proposed filter over the conventional Kalman filter,the deviations are calculated with both filters under the same initial external conditions,defined as:

    Fig.4 demonstrates that the adaptive fading memory filter has a better convergence and target position tracking performance than the conventional Kalman filter,resulting in better disturbance rejection and considerably reducing the oscillation amplitude of the control output.Consequently,the unnecessary operation of the actuators can be avoided.

    Fig.4 Comparison of adaptive fading memory filter and conventional Kalman filter

    4 Conclusions

    An improved filtering algorithm for control system of ship dynamic positioning is proposed.An adaptive fading memory filter is designed by introducing a fading memory factor f and making use of n historical observation data to estimate the ship’s position and heading in low-frequency motion.It overcomes the restrictions of needing to know the exact mathematical model while using the conventional Kalman filter.Furthermore,it can amend the unknown or uncertain model error,system noise and measurement noise in real-time or online according to environment changes,therefore the influences of the historical observations on the estimated values are reduced and more emphasis can be put on the new measurements,which provides the control system with the advantages of adaptability and higher accuracy.

    The simulation results show that the proposed algorithm has better filtering effects compared to those of the conventional Kalman filter,and the convergence and tracking ability are improved.On the other hand,the control output of the ship dynamic positioning system is optimized,reducing the unnecessary operations of the thrust system,thereby reducing the energy consumption and avoiding wear and tear of the mechanical system.

    Acknowledgements

    This work is supported by the project of the Ministry of Industry and Information Technology of China for Ships with High Technology:Independent Development of Semi-submersible Engineering Vessels of 100 000 Tonnage.

    [1]Xiong Jianbin,Wang Qinruo,Liu Yijun,et al.A linear signal filtering smoothing algorithm for ship dynamic positioning[C]//Proceedings of the 31st Chinese Control Conference,IEEE.Hefei,China,2012:3718-3722.

    [2]Fossen Thor I,Perez Tristan.Kalman filtering for positioning and heading control of ships and offshore rigs[J].IEEE Control Systems Magazine,2009,29(6):32-46.

    [3]Guo Juan,Zou Zaojian.Analysis and comparison of two filtering methods for ship dynamic positioning system[J].Journal of Ship Mechanics,2013,17(6):592-603.

    [4]Ran Chenjian,Deng Zili.Self-tuning weighted measurement fusion Kalman filter and its convergence analysis[C]//Proceedings of the 48th IEEE Conference on Decision and Control/28th Chinese Control Conference.Shanghai,China,2009:1830-1835.

    [5]Ding Weidong,Wang Jinling,Rizos Chris,et al.Improving adaptive Kalman estimation in GPS/INS integration[J].Journal of Navigation,2007,60(3):517-529.

    [6]Mauro Candeloro,S?rensen Asgeir J,et al.Observers for dynamic positioning of ROVs with experimental results[C]//Proceedings of the 9th IFAC Conference on Manoeuvring and Control of Marine Craft.Arenzano,Italy,2012:85-90.

    [7]Hu Gaoge,Gao Shesheng,Zhong Yongmin,et al.Modified strong tracking unscented Kalman filter for nonlinear state estimation with process model uncertainty[J].International Journal of Adaptive Control and Signal Processing,2015,29(12):1561-1577.

    [8]Negin Musavi,Jafar Keighobadi.Adaptive fuzzy neuro-observer applied to low cost INS/GPS[J].Applied Soft Computing,2015(9):82-94.

    [9]Sung W J,Lee S C,You K H.Ultra-precision positioning using adaptive fuzzy-Kalman filter observer[J].Precision Engineering,2010(34):195-199.

    [10]S?rensen Asgeir J.A survey of dynamic positioning control systems[J].Annual Reviews in Control,2011,35(1):123-136.

    [11]Fossen Thor I,Handbook of marine craft hydrodynamics and motion control[M].United Kingdom:John Wiley&Sons,Ltd.,2011:133-157.

    [12]Gao Shesheng,He Pengjü,Yang Bo.The principle and application of integrated navigation system[M].Xi’an:Northwestern Polytechnic University Press,2012:63-74.(in Chinese)

    [13]Ke Xiaobing,Luo Wei,Zhao Xiaosa,et al.The regression formula of location hydrodynamic derivatives of supply vessels based on CFD method[J].Chinese Journal of Ship Research,2014,9(4):50-54.(in Chinese)

    基于漸消記憶自適應(yīng)濾波的船舶動力定位算法仿真

    張 閃a, 鄒早建a,b

    (上海交通大學(xué)a.船舶海洋與建筑工程學(xué)院;b.海洋工程國家重點(diǎn)實(shí)驗(yàn)室,上海 200240)

    由于船舶在海上運(yùn)動的復(fù)雜性和非線性,精確的船舶動力定位系統(tǒng)數(shù)學(xué)模型難以建立。為了實(shí)現(xiàn)有效的動力定位控制,需要應(yīng)用一定的狀態(tài)估計(jì)濾波算法得到所需的船舶運(yùn)動低頻信號。采用常規(guī)的Kalman濾波,狀態(tài)變量的新測量值對預(yù)測值的修正作用下降,舊測量值的影響隨著計(jì)算步數(shù)的累積而相對提高,這是引起濾波發(fā)散的主要原因之一。文章針對船舶動力定位系統(tǒng)中使用常規(guī)的Kalman濾波而存在的模型不精確、不能準(zhǔn)確表達(dá)系統(tǒng)噪聲和測量噪聲等問題,采用漸消記憶自適應(yīng)濾波估算低頻運(yùn)動信息,在狀態(tài)估計(jì)算法中引入漸消記憶因子,減小舊測量值對狀態(tài)估計(jì)值的影響權(quán)重,從而增大新測量值的作用;并根據(jù)濾波發(fā)散判斷準(zhǔn)則,選擇適當(dāng)?shù)臐u消記憶因子值來抑制濾波器的發(fā)散,使控制器輸出較為平穩(wěn),從而降低推力系統(tǒng)不必要的能耗。仿真實(shí)驗(yàn)表明,所設(shè)計(jì)的自適應(yīng)濾波器的收斂性、跟蹤性優(yōu)于常規(guī)的Kalman濾波,有效地提高了系統(tǒng)的定位精度和穩(wěn)定性。

    船舶動力定位;狀態(tài)估計(jì);漸消記憶自適應(yīng)濾波;Kalman濾波

    U661.3

    A

    張 閃(1990-),女,上海交通大學(xué)碩士生;

    鄒早建(1956-),男,上海交通大學(xué)教授,博士生導(dǎo)師。

    U661.3 Document code:A

    10.3969/j.issn.1007-7294.2017.12.006

    date:2017-07-25

    Supported by the Projet of the Ministry of Industry and Information Technology of China for Ships with High Technology

    Biography:ZHANG Shan(1990-),female,master student of Shanghai Jiao Tong University,E-mail:shancheung@sjtu.edu.cn;ZOU Zao-jian(1956-),professor/tutor,E-mail:zjzou@sjtu.edu.cn.

    1007-7294(2017)12-1497-10

    猜你喜歡
    上海交通大學(xué)濾波動力
    上海交通大學(xué)
    電氣自動化(2022年2期)2023-01-07 03:51:56
    學(xué)習(xí)動力不足如何自給自足
    上海交通大學(xué)參加機(jī)器人比賽
    胖胖一家和瘦瘦一家(10)
    動力船
    RTS平滑濾波在事后姿態(tài)確定中的應(yīng)用
    基于線性正則變換的 LMS 自適應(yīng)濾波
    遙測遙控(2015年2期)2015-04-23 08:15:18
    基于多動力總成的六點(diǎn)懸置匹配計(jì)算
    基于隨機(jī)加權(quán)估計(jì)的Sage自適應(yīng)濾波及其在導(dǎo)航中的應(yīng)用
    基于Sage—Husa濾波的GNSS/INS組合導(dǎo)航自適應(yīng)濾波
    大型av网站在线播放| 蜜桃国产av成人99| 中文字幕色久视频| 一进一出抽搐动态| 一级,二级,三级黄色视频| 精品久久久久久久毛片微露脸| 激情在线观看视频在线高清 | 青草久久国产| 久久中文字幕一级| 91av网站免费观看| 精品一区二区三卡| 国产日韩欧美亚洲二区| 成人特级黄色片久久久久久久 | 日韩有码中文字幕| 高清黄色对白视频在线免费看| 免费观看人在逋| 国产精品九九99| 精品国内亚洲2022精品成人 | 交换朋友夫妻互换小说| 国产三级黄色录像| 考比视频在线观看| 亚洲美女黄片视频| 嫩草影视91久久| 999久久久精品免费观看国产| 搡老乐熟女国产| 久久天躁狠狠躁夜夜2o2o| 欧美在线黄色| 黑人巨大精品欧美一区二区mp4| 免费日韩欧美在线观看| 首页视频小说图片口味搜索| a级毛片在线看网站| 国产又爽黄色视频| 一边摸一边抽搐一进一出视频| 日本av手机在线免费观看| 亚洲av欧美aⅴ国产| www.999成人在线观看| 欧美+亚洲+日韩+国产| 亚洲精品成人av观看孕妇| 精品福利观看| 亚洲va日本ⅴa欧美va伊人久久| 中文字幕精品免费在线观看视频| 一本综合久久免费| 精品少妇内射三级| 王馨瑶露胸无遮挡在线观看| 国产免费视频播放在线视频| 成人18禁高潮啪啪吃奶动态图| 男女高潮啪啪啪动态图| 午夜老司机福利片| 亚洲av电影在线进入| 岛国毛片在线播放| 亚洲九九香蕉| 亚洲精品粉嫩美女一区| 在线观看www视频免费| 高潮久久久久久久久久久不卡| e午夜精品久久久久久久| 成人黄色视频免费在线看| 亚洲精品在线观看二区| 自线自在国产av| xxxhd国产人妻xxx| 精品午夜福利视频在线观看一区 | av福利片在线| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲熟女精品中文字幕| 日韩大码丰满熟妇| 亚洲视频免费观看视频| 国产日韩欧美视频二区| 欧美性长视频在线观看| 久久久久网色| 成人影院久久| 亚洲情色 制服丝袜| 大片电影免费在线观看免费| 欧美黄色淫秽网站| 女警被强在线播放| 99国产综合亚洲精品| av在线播放免费不卡| 极品少妇高潮喷水抽搐| 国产精品1区2区在线观看. | 亚洲美女黄片视频| 国产1区2区3区精品| 一级毛片精品| 曰老女人黄片| 99国产精品一区二区蜜桃av | 黄片播放在线免费| 最近最新免费中文字幕在线| 香蕉丝袜av| 国产精品免费一区二区三区在线 | 老汉色∧v一级毛片| 悠悠久久av| 蜜桃国产av成人99| 欧美 日韩 精品 国产| 欧美亚洲日本最大视频资源| 999精品在线视频| av免费在线观看网站| 亚洲va日本ⅴa欧美va伊人久久| av不卡在线播放| 国产亚洲精品一区二区www | 国产成人影院久久av| 12—13女人毛片做爰片一| 国产免费视频播放在线视频| 久久精品国产综合久久久| 咕卡用的链子| 亚洲精品久久午夜乱码| 操美女的视频在线观看| 国产成人一区二区三区免费视频网站| 国产日韩一区二区三区精品不卡| 黑人欧美特级aaaaaa片| 在线十欧美十亚洲十日本专区| 久久久久久免费高清国产稀缺| 精品国产一区二区三区四区第35| 国产亚洲欧美在线一区二区| 男女下面插进去视频免费观看| 亚洲天堂av无毛| 免费人妻精品一区二区三区视频| 黑丝袜美女国产一区| 亚洲,欧美精品.| 美女高潮到喷水免费观看| 五月开心婷婷网| 日本精品一区二区三区蜜桃| 亚洲第一青青草原| 人人妻人人爽人人添夜夜欢视频| 国产精品二区激情视频| 一区二区日韩欧美中文字幕| 国产精品麻豆人妻色哟哟久久| 亚洲少妇的诱惑av| 飞空精品影院首页| 女人被躁到高潮嗷嗷叫费观| 91字幕亚洲| 老司机在亚洲福利影院| 午夜两性在线视频| 日韩一区二区三区影片| 午夜两性在线视频| 999精品在线视频| 日韩一区二区三区影片| 精品一区二区三区视频在线观看免费 | 人成视频在线观看免费观看| 男女边摸边吃奶| 一边摸一边抽搐一进一小说 | cao死你这个sao货| 亚洲一码二码三码区别大吗| 男女边摸边吃奶| 在线观看免费日韩欧美大片| 这个男人来自地球电影免费观看| 69精品国产乱码久久久| 久久久久久久久久久久大奶| 久久精品亚洲av国产电影网| 精品欧美一区二区三区在线| 91精品国产国语对白视频| 亚洲国产欧美网| 欧美国产精品va在线观看不卡| 少妇 在线观看| 18禁观看日本| 亚洲第一av免费看| 欧美变态另类bdsm刘玥| 99精品欧美一区二区三区四区| 国产一区二区三区在线臀色熟女 | 国产亚洲欧美精品永久| 制服人妻中文乱码| 99精品在免费线老司机午夜| 美女福利国产在线| 丰满少妇做爰视频| 精品福利观看| 悠悠久久av| 无遮挡黄片免费观看| 91麻豆精品激情在线观看国产 | 最黄视频免费看| 亚洲伊人久久精品综合| 亚洲国产欧美在线一区| 无人区码免费观看不卡 | 在线观看免费视频日本深夜| 日本黄色视频三级网站网址 | 一本色道久久久久久精品综合| 国产av又大| 91国产中文字幕| 视频区图区小说| www.熟女人妻精品国产| 91老司机精品| 香蕉久久夜色| 欧美精品亚洲一区二区| 三上悠亚av全集在线观看| 老汉色av国产亚洲站长工具| 久久免费观看电影| 一级片'在线观看视频| 不卡av一区二区三区| 在线观看人妻少妇| 久久精品人人爽人人爽视色| 一区在线观看完整版| 久久影院123| 国产成+人综合+亚洲专区| 亚洲五月色婷婷综合| 在线亚洲精品国产二区图片欧美| 久久狼人影院| 国产在线视频一区二区| 中亚洲国语对白在线视频| 成年人黄色毛片网站| 夫妻午夜视频| 欧美人与性动交α欧美精品济南到| 老司机午夜十八禁免费视频| 老司机福利观看| 久久午夜综合久久蜜桃| 91九色精品人成在线观看| 国产精品99久久99久久久不卡| 在线十欧美十亚洲十日本专区| 国产精品.久久久| 黑丝袜美女国产一区| 日本精品一区二区三区蜜桃| 国产一区二区激情短视频| 纵有疾风起免费观看全集完整版| 久久性视频一级片| 免费在线观看黄色视频的| 丰满人妻熟妇乱又伦精品不卡| 久久国产亚洲av麻豆专区| 一边摸一边抽搐一进一出视频| 久久久久久人人人人人| 97在线人人人人妻| 99re在线观看精品视频| 一本一本久久a久久精品综合妖精| 国产亚洲精品久久久久5区| 丝袜美腿诱惑在线| 这个男人来自地球电影免费观看| 狂野欧美激情性xxxx| 人人妻人人添人人爽欧美一区卜| 丰满少妇做爰视频| 婷婷成人精品国产| 18禁观看日本| av在线播放免费不卡| 精品福利永久在线观看| 午夜久久久在线观看| 我要看黄色一级片免费的| 一个人免费看片子| 亚洲国产看品久久| 天天操日日干夜夜撸| 免费在线观看黄色视频的| 夫妻午夜视频| 午夜老司机福利片| 久久久久久久久免费视频了| 午夜福利影视在线免费观看| 亚洲熟女毛片儿| 在线观看人妻少妇| 91精品三级在线观看| 亚洲av第一区精品v没综合| 日韩有码中文字幕| 黄色丝袜av网址大全| 日韩免费高清中文字幕av| 999精品在线视频| h视频一区二区三区| 国产精品.久久久| 99riav亚洲国产免费| 午夜激情久久久久久久| 啦啦啦视频在线资源免费观看| 一级a爱视频在线免费观看| 韩国精品一区二区三区| 国产av一区二区精品久久| 国产午夜精品久久久久久| 男女床上黄色一级片免费看| 男女下面插进去视频免费观看| aaaaa片日本免费| 久久久久久久久免费视频了| 国产精品一区二区精品视频观看| 91字幕亚洲| 免费少妇av软件| 男女床上黄色一级片免费看| 久久中文字幕一级| 中文字幕人妻熟女乱码| 亚洲中文日韩欧美视频| 精品亚洲成a人片在线观看| 中文字幕人妻丝袜制服| 一进一出抽搐动态| 青青草视频在线视频观看| 高清欧美精品videossex| 久久久久久久大尺度免费视频| 在线永久观看黄色视频| 男女之事视频高清在线观看| 极品人妻少妇av视频| 久久热在线av| 精品国内亚洲2022精品成人 | 国产黄色免费在线视频| 亚洲成a人片在线一区二区| 免费在线观看日本一区| 欧美成人午夜精品| 国产在线观看jvid| 色94色欧美一区二区| 国产黄色免费在线视频| 熟女少妇亚洲综合色aaa.| 丁香六月欧美| 丰满饥渴人妻一区二区三| 精品国产超薄肉色丝袜足j| 亚洲国产毛片av蜜桃av| 国产午夜精品久久久久久| 大香蕉久久成人网| 三级毛片av免费| 高潮久久久久久久久久久不卡| 久久人人97超碰香蕉20202| 国内毛片毛片毛片毛片毛片| 精品免费久久久久久久清纯 | 国产又色又爽无遮挡免费看| 亚洲精品粉嫩美女一区| 欧美日韩成人在线一区二区| 欧美另类亚洲清纯唯美| 窝窝影院91人妻| 国产老妇伦熟女老妇高清| 欧美 日韩 精品 国产| 宅男免费午夜| 中亚洲国语对白在线视频| 狂野欧美激情性xxxx| 丰满少妇做爰视频| 纯流量卡能插随身wifi吗| 一个人免费看片子| 国产午夜精品久久久久久| 亚洲熟女精品中文字幕| 国产人伦9x9x在线观看| 一级毛片精品| 久久国产精品人妻蜜桃| 女性被躁到高潮视频| 亚洲精品中文字幕在线视频| 亚洲少妇的诱惑av| 麻豆国产av国片精品| 人妻久久中文字幕网| 啦啦啦视频在线资源免费观看| 亚洲熟女毛片儿| 亚洲精品一二三| 99国产精品免费福利视频| 久久精品成人免费网站| 久久久久久亚洲精品国产蜜桃av| 法律面前人人平等表现在哪些方面| 两个人看的免费小视频| 在线十欧美十亚洲十日本专区| 国产成人系列免费观看| a级毛片在线看网站| 亚洲国产av影院在线观看| 我的亚洲天堂| 国产精品影院久久| 亚洲精华国产精华精| 中文字幕av电影在线播放| 在线观看一区二区三区激情| 成人手机av| 91九色精品人成在线观看| 80岁老熟妇乱子伦牲交| 欧美日韩一级在线毛片| 在线十欧美十亚洲十日本专区| 一二三四社区在线视频社区8| 十分钟在线观看高清视频www| 欧美日韩黄片免| 性色av乱码一区二区三区2| 欧美大码av| 人人妻,人人澡人人爽秒播| 男女边摸边吃奶| 欧美日韩国产mv在线观看视频| 他把我摸到了高潮在线观看 | 亚洲欧美激情在线| 国产不卡av网站在线观看| e午夜精品久久久久久久| 在线观看www视频免费| 丝袜美腿诱惑在线| 真人做人爱边吃奶动态| 少妇被粗大的猛进出69影院| 两人在一起打扑克的视频| 欧美成人午夜精品| 亚洲av第一区精品v没综合| 男男h啪啪无遮挡| 午夜视频精品福利| 大香蕉久久网| 精品国产一区二区久久| 777久久人妻少妇嫩草av网站| 国产欧美亚洲国产| 久久久国产一区二区| 午夜精品国产一区二区电影| 亚洲欧美一区二区三区黑人| 国产成人av激情在线播放| 极品少妇高潮喷水抽搐| 最新的欧美精品一区二区| 一本久久精品| 精品人妻熟女毛片av久久网站| 老司机午夜福利在线观看视频 | 日韩精品免费视频一区二区三区| 一进一出抽搐动态| 亚洲国产中文字幕在线视频| 日韩制服丝袜自拍偷拍| 久久精品国产亚洲av高清一级| 国产精品一区二区在线不卡| 免费看a级黄色片| 高清毛片免费观看视频网站 | 19禁男女啪啪无遮挡网站| 欧美国产精品一级二级三级| 老熟女久久久| 超色免费av| 一区二区三区乱码不卡18| 欧美黑人欧美精品刺激| av网站在线播放免费| 久久人人97超碰香蕉20202| 中国美女看黄片| 欧美人与性动交α欧美软件| 国产欧美亚洲国产| www.熟女人妻精品国产| 无遮挡黄片免费观看| 在线观看免费午夜福利视频| 久久国产精品影院| 少妇裸体淫交视频免费看高清 | 乱人伦中国视频| 久久精品成人免费网站| 超碰成人久久| 成人亚洲精品一区在线观看| 色婷婷av一区二区三区视频| 精品少妇内射三级| 99国产精品免费福利视频| 欧美大码av| 欧美变态另类bdsm刘玥| 国产亚洲欧美精品永久| av线在线观看网站| 久久精品亚洲av国产电影网| 在线观看免费高清a一片| 考比视频在线观看| 一区二区三区精品91| 国产精品久久电影中文字幕 | 一本综合久久免费| 久久av网站| 午夜久久久在线观看| 亚洲少妇的诱惑av| 免费看十八禁软件| 精品少妇内射三级| 日韩欧美三级三区| 国产免费福利视频在线观看| 99国产精品99久久久久| 无遮挡黄片免费观看| www.自偷自拍.com| 中文欧美无线码| 下体分泌物呈黄色| 亚洲欧美一区二区三区黑人| 在线观看舔阴道视频| 亚洲精品粉嫩美女一区| 精品一区二区三区av网在线观看 | 这个男人来自地球电影免费观看| 在线 av 中文字幕| 国产精品自产拍在线观看55亚洲 | 99久久99久久久精品蜜桃| 久久久水蜜桃国产精品网| 正在播放国产对白刺激| 久久国产精品男人的天堂亚洲| 国产区一区二久久| 男人舔女人的私密视频| 免费观看a级毛片全部| 亚洲欧美日韩另类电影网站| 51午夜福利影视在线观看| 99久久99久久久精品蜜桃| 亚洲中文av在线| 黑人欧美特级aaaaaa片| 欧美午夜高清在线| 国产精品欧美亚洲77777| 日韩视频在线欧美| 中文字幕色久视频| 国产野战对白在线观看| 老司机午夜十八禁免费视频| 亚洲国产成人一精品久久久| 久久九九热精品免费| 欧美人与性动交α欧美软件| 大陆偷拍与自拍| 王馨瑶露胸无遮挡在线观看| 五月开心婷婷网| 午夜激情久久久久久久| 久久 成人 亚洲| 国产欧美日韩精品亚洲av| 欧美精品av麻豆av| 少妇 在线观看| 老鸭窝网址在线观看| 国产成人啪精品午夜网站| 久久国产精品影院| 中文字幕人妻丝袜制服| 我的亚洲天堂| 人妻一区二区av| 精品国产一区二区久久| 日韩视频一区二区在线观看| 亚洲伊人久久精品综合| 自线自在国产av| 久久这里只有精品19| 精品国产国语对白av| 日韩欧美一区视频在线观看| 大码成人一级视频| 欧美+亚洲+日韩+国产| 午夜福利在线观看吧| 丰满少妇做爰视频| 99精国产麻豆久久婷婷| 亚洲av成人一区二区三| 国产欧美亚洲国产| 黄片播放在线免费| 亚洲精品中文字幕在线视频| 久久免费观看电影| 在线十欧美十亚洲十日本专区| 成在线人永久免费视频| 国产99久久九九免费精品| 久久亚洲精品不卡| 2018国产大陆天天弄谢| 乱人伦中国视频| e午夜精品久久久久久久| 亚洲专区中文字幕在线| 麻豆国产av国片精品| 国产精品久久久久成人av| 欧美激情高清一区二区三区| 欧美国产精品一级二级三级| 国产精品久久久久久精品古装| 一级片免费观看大全| 色综合婷婷激情| 视频区欧美日本亚洲| 亚洲中文日韩欧美视频| 国产精品一区二区在线观看99| 精品高清国产在线一区| 黑丝袜美女国产一区| 夜夜骑夜夜射夜夜干| 黑丝袜美女国产一区| 丁香六月欧美| 国产亚洲欧美在线一区二区| 天堂8中文在线网| 精品少妇黑人巨大在线播放| 欧美久久黑人一区二区| 在线观看免费视频网站a站| 国产成人av教育| 在线观看免费视频日本深夜| www.自偷自拍.com| 精品福利永久在线观看| 香蕉久久夜色| 日韩欧美三级三区| 国产一区二区在线观看av| 老熟女久久久| 亚洲免费av在线视频| 日韩成人在线观看一区二区三区| 婷婷丁香在线五月| 精品一区二区三卡| 午夜成年电影在线免费观看| 他把我摸到了高潮在线观看 | 久久中文看片网| 色视频在线一区二区三区| 国产精品二区激情视频| 日日爽夜夜爽网站| 美女高潮到喷水免费观看| av天堂久久9| 亚洲精品美女久久久久99蜜臀| 日日爽夜夜爽网站| 美女高潮喷水抽搐中文字幕| 欧美日韩亚洲国产一区二区在线观看 | av一本久久久久| 80岁老熟妇乱子伦牲交| 国产人伦9x9x在线观看| 国产精品二区激情视频| 中文字幕av电影在线播放| 90打野战视频偷拍视频| 脱女人内裤的视频| 国产精品一区二区在线观看99| 亚洲精品久久午夜乱码| 欧美日韩中文字幕国产精品一区二区三区 | www.999成人在线观看| 久久国产精品人妻蜜桃| 欧美日本中文国产一区发布| 一区二区三区国产精品乱码| 日本欧美视频一区| 亚洲国产中文字幕在线视频| 久久ye,这里只有精品| 午夜福利乱码中文字幕| 多毛熟女@视频| 国产一卡二卡三卡精品| 精品第一国产精品| 日韩熟女老妇一区二区性免费视频| 国产精品一区二区免费欧美| 亚洲中文av在线| 人人澡人人妻人| 天堂动漫精品| 99久久99久久久精品蜜桃| 亚洲精品美女久久av网站| 中文字幕高清在线视频| 女人久久www免费人成看片| av电影中文网址| 视频区欧美日本亚洲| 国产精品久久久久成人av| 亚洲精华国产精华精| 一级黄色大片毛片| 亚洲熟女精品中文字幕| 999精品在线视频| 老司机午夜十八禁免费视频| 日韩视频在线欧美| 久久ye,这里只有精品| 久久精品国产a三级三级三级| 久久久久视频综合| 久久久欧美国产精品| 脱女人内裤的视频| 国产欧美日韩一区二区三| 国精品久久久久久国模美| 欧美黄色片欧美黄色片| 国产成人精品久久二区二区免费| 亚洲九九香蕉| 欧美 亚洲 国产 日韩一| 最近最新免费中文字幕在线| 又黄又粗又硬又大视频| 免费看十八禁软件| 999久久久精品免费观看国产| 无人区码免费观看不卡 | 中文字幕人妻熟女乱码| 日韩成人在线观看一区二区三区| 成人18禁在线播放| 亚洲精品美女久久av网站| 搡老乐熟女国产| 日韩三级视频一区二区三区| 久久精品国产综合久久久| 久久亚洲真实| 精品国产超薄肉色丝袜足j| 日韩一卡2卡3卡4卡2021年| 精品人妻在线不人妻| 免费在线观看日本一区| 亚洲精品美女久久久久99蜜臀| 欧美乱码精品一区二区三区| 亚洲黑人精品在线| 黄色成人免费大全| av福利片在线| 中文亚洲av片在线观看爽 | 高清黄色对白视频在线免费看| 午夜两性在线视频| 久9热在线精品视频| 久久久久久久大尺度免费视频| 国产欧美日韩一区二区精品|