(1.新疆農(nóng)業(yè)科學(xué)院微生物應(yīng)用研究所/新疆特殊環(huán)境微生物實(shí)驗(yàn)室,烏魯木齊 830091;2.新疆農(nóng)業(yè)科學(xué)院土壤肥料與農(nóng)業(yè)節(jié)水研究所,烏魯木齊 830091)
doi:10.6048/j.issn.1001-4330.2017.11.016
聚對苯二甲酸-己二酸丁二酯(PBAT)降解菌的分離鑒定和降解能力測定
霍向東1,高 雁1,林 青1,曾 軍1,張 濤1,楚 敏1,楊紅梅1,史應(yīng)武1,王 斌2,孫九勝2,王金鑫2
(1.新疆農(nóng)業(yè)科學(xué)院微生物應(yīng)用研究所/新疆特殊環(huán)境微生物實(shí)驗(yàn)室,烏魯木齊 830091;2.新疆農(nóng)業(yè)科學(xué)院土壤肥料與農(nóng)業(yè)節(jié)水研究所,烏魯木齊 830091)
目的研究能夠降解聚對苯二甲酸-己二酸丁二酯(Poly(butylene adipate-co-terephthalate),PBAT)的微生物及其降解能力。方法以PBAT粉末為唯一碳源,從南疆疏勒縣鋪覆PBAT生物降解膜的土樣中分離可有效降解PBAT聚合物的微生物,利用16S rDNA 序列對比分析進(jìn)行菌株鑒定。采用失重法和掃描電鏡觀察,測定菌株的降解能力。結(jié)果從土壤中分離獲得一株能夠明顯降解PBAT聚合物的細(xì)菌XJSL2,經(jīng)16S rDNA 序列分析鑒定為Sphingopyxisginsengisoli,經(jīng)過60 d培養(yǎng),該菌株對PBAT顆粒的實(shí)際降解率達(dá)到0.92%。結(jié)論菌株XJSL2能夠顯著降解PBAT聚合物,對于PBAT的再生利用具有潛在應(yīng)用價值,土壤中還存在著大量能夠降解PBAT的微生物。
聚對苯二甲酸-己二酸丁二酯;生物降解;Sphingopyxisginsengisoli
【研究意義】隨著農(nóng)業(yè)現(xiàn)代化的不斷發(fā)展,地膜已成為節(jié)水、防除雜草等確保農(nóng)業(yè)高產(chǎn)穩(wěn)產(chǎn)的重要手段之一。20世紀(jì)70年代末,中國引入地膜覆蓋技術(shù),隨著地膜產(chǎn)品和覆膜方式的不斷改進(jìn),我國地膜使用量和覆膜面積持續(xù)增加,2014 年我國地膜用量達(dá)到144.1×104t,覆蓋面積超過1 800×104hm2,但是隨著地膜覆蓋使用年限的增加和殘膜回收率低,土壤中殘膜量逐步增加,一些農(nóng)田的地膜殘留量超過250 kg/hm2,已造成嚴(yán)重的白色污染[1, 2]。可生物降解地膜既具有傳統(tǒng)地膜的功能和特性,又可以在完成功能使命后被環(huán)境微生物分解,已成為傳統(tǒng)地膜的理想替代品[3, 4]?!厩叭搜芯窟M(jìn)展】有許多聚合物薄膜生物降解方面的相關(guān)研究。當(dāng)前研究主要集中于可降解聚羥基丁酸酯(poly(3-hydroxybutyrate) ,PHB)、聚己內(nèi)酯(polycaprolactone,PCL)、聚己二酸亞乙基酯(poly(ethylene adipate) ,PEA)、聚己二酸丁二醇酯(Poly(1,4-butylene adipate), PBA)、聚乳酸(Polylactic acid ,PLA)、聚丁二酸丁二醇酯(poly (butylene succinate),PBS)等微生物源及合成聚合物的降解微生物分離與降解特性研究[5, 6]。聚對苯二甲酸-己二酸丁二酯(Poly(butylene adipate-co-terephthalate),PBAT)是己二酸丁二醇酯和對苯二甲酸丁二醇酯(poly(butylece terephthalate),PBT)的共聚物,兼具PBA和PBT的特性,既有較好的延展性和斷裂伸長率,也有較好的耐熱性和沖擊性能[7]。PBAT作為優(yōu)良的生物降解材料已應(yīng)用于醫(yī)藥、片材、地膜、包裝、發(fā)泡等領(lǐng)域[8]?!颈狙芯壳腥朦c(diǎn)】目前大量的研究主要集中于PBAT的合成及改性[9-12],而針對PBAT 降解菌株的分離篩選及降解特性的研究較少[13-16]。研究聚對苯二甲酸-己二酸丁二酯(PBAT)降解的分離鑒定和測定降解能力。【擬解決的關(guān)鍵問題】挖掘高效降解PBAT的菌株,研究其降解特性,提高環(huán)境中PBAT的降解效率,對其作為生物塑料薄膜的推廣應(yīng)用及其殘留的生物修復(fù)。
南疆疏勒縣鋪覆PBAT生物降解膜的土樣;PBAT顆粒,由新疆康潤潔環(huán)保科技有限公司提供;PBAT粉末,PBAT顆粒冷凍粉碎成細(xì)小顆粒并過特定目數(shù)篩網(wǎng)。
LB培養(yǎng)基(g/L):蛋白胨 10,酵母粉 5,NaCl 5,pH 7.0,121℃滅菌30 min。
MSM培養(yǎng)基(g/L):K2HPO41,KH2PO40.2,(NH4)2SO41,MgSO4·7H2O 0.5,NaCl 1,F(xiàn)eSO4·7H2O 0.01,CaCl2·2H2O 0.002,MnSO4·H2O 0.001,CuSO4·5 H2O 0.001,ZnSO4·7H2O 0.001,pH 7.0,121℃滅菌30 min。
篩選培養(yǎng)基:MSM培養(yǎng)基添加1%PBAT粉末。
1.2.1 PBAT降解菌的分離
取1 g土樣稀釋到10-5,取100 μL涂布篩選培養(yǎng)基,30℃培養(yǎng)72 h后,挑取培養(yǎng)基上生長的菌落。
1.2.2 分子鑒定
采用細(xì)菌通用引物:27F 5′-AGAGTTTGATCMTGGCTCAG-3′與1492R 5′-TACGGYTACCTTGTTACGACTT-3′。PCR擴(kuò)增反應(yīng)體系:上下游引物(50 pmol/μL)各0.5 μL,2×PCR mix(含Taq酶1.25 U/25 μL) 25 μL,模板DNA 2 μL,無菌ddH2O補(bǔ)足50 μL,陰性對照為不加模板。PCR條件:94℃ 4 min;94℃ 1 min,55℃ 1 min,72℃ 2 min,30個循環(huán);72℃ 10 min。PCR產(chǎn)物由新疆昆泰銳生物技術(shù)有限公司進(jìn)行測序。
利用BLAST 軟件,將測到的16S rDNA 序列與EzBioCloud[17]數(shù)據(jù)庫進(jìn)行序列比對分析,進(jìn)行同源性比較。利用MEGA6軟件應(yīng)用鄰接法(Neighbor-Joining) 構(gòu)建系統(tǒng)發(fā)育樹[18]。
1.2.3 失重法測定菌株降解PBAT的能力
培養(yǎng)基的PBAT顆粒和培養(yǎng)基分開處理。100 mL MSM 培養(yǎng)基在 121℃ 條件下濕熱滅菌 20 min,樹脂顆粒利用干熱滅菌法(105℃ 烘箱連續(xù)烘數(shù)天)。0.8~1.0 mm樹脂顆粒添加到培養(yǎng)基前精確稱取其質(zhì)量M始。每瓶接4 mL LB培養(yǎng)基中培養(yǎng)24 h的菌液,設(shè)3組重復(fù),對照組不加菌液,30℃,150 r/min培養(yǎng)60 d。降解培養(yǎng)結(jié)束后,用蒸餾水反復(fù)清洗收集的樹脂顆粒,洗凈后于50℃烘箱中放置3 d,精確稱量M末。利用IBM SPSS Statistics 22.0進(jìn)行統(tǒng)計(jì)分析。
樹脂顆粒降解率(%)=(M始-M末)/M始×100%。
1.2.4 電鏡觀察
降解實(shí)驗(yàn)后的PBAT顆粒經(jīng)噴金處理后,利用掃描電子顯微鏡(SEM, S-570,Japan-Hitachi Ltd,加速電壓20 kV)觀察表面形態(tài)特征。
以菌株XJSL2基因組DNA為模版,采用細(xì)菌通用引物進(jìn)行PCR擴(kuò)增,得到1 347 bp的PCR產(chǎn)物。菌株XJSL2的16S rDNA序列GenBank登錄號(MF461626)。經(jīng)與EzBioCloud數(shù)據(jù)庫中序列進(jìn)行Blast相似性分析,XJSL2菌株與SphingopyxisginsengisoliGsoil 250菌株(AB245343)[19]的核苷酸序列同源性達(dá)100%。利用MEGA6.0 軟件采用Neighbor-joining 法構(gòu)建系統(tǒng)發(fā)育樹,結(jié)果顯示菌株XJSL2與SphingopyxisginsengisoliGsoil 250菌株(AB245343)聚為一簇,說明它們與菌株XJSL2的親緣關(guān)系最近,可確定該菌株為Sphingopyxisginsengisoli。圖1
圖1 菌株XJSL2系統(tǒng)進(jìn)化樹
Fig.1 The phylogenetic tree of strain XJSL2
PBAT顆粒在無菌條件下保持0.48%左右的失重率,說明PBAT顆粒在無菌條件下不發(fā)生降解,0.48%的失重率是因?yàn)橐后w培養(yǎng)基浸泡及高溫烘干的作用。PBAT顆粒經(jīng)過 XJSL2 菌株60 d的降解作用,PBAT顆粒的降解率達(dá)到1.4%,與對照差異顯著,扣除空白降解,菌株XJSL2對PBAT顆粒的實(shí)際降解率為0.92%。圖2
經(jīng)降解培養(yǎng),取出PBAT顆粒洗凈,在50°C烘箱中烘干后利用SEM觀察顆粒表面的變化情況。圖3A(原始顆粒)和3B(對照組,無菌液體處理)的 PBAT顆粒表面平整,二者表面沒有發(fā)生明顯變化;圖3C(降解組,菌株XJSL2降解處理后)的PBAT顆??汕逦吹筋w粒表面結(jié)構(gòu)被破壞,表面形成細(xì)微坑洞。PBAT材料在自然環(huán)境中的分解是物理、化學(xué)與生物的共同作用過程,相比自然環(huán)境,單菌株液體搖瓶的降解作用有限,所以在較短時間內(nèi),PBAT顆粒不能完全被分解破壞,只在表面發(fā)生了細(xì)微變化。圖3
圖2 菌株XJSL2降解PBAT的能力
Fig.2 The degrading capability of XJSL2
圖3 (A)原始PBAT粉末顆粒 (B)無菌培養(yǎng)液中的對照PBAT粉末顆粒 (C)菌株XJSL2處理后的PBAT粉末顆粒
Fig.3 (A) Initial PBAT particle (B) PBAT particle in medium without microbia (C) PBAT particle in medium with strain XJSL2
生物降解塑料是指在自然環(huán)境及微生物的生物、物理多重作用下能夠降解或分解的可塑性材料。生物降解塑料按生產(chǎn)合成方式的不同可分為:天然高分子型生物降解塑料、微生物合成型生物降解塑料、化學(xué)合成型生物降解塑料、共混型生物降解塑料等四類[20, 21]。PBAT即屬于化學(xué)合成型生物降解塑料,由于其分子中芳香族PBT鏈段的存在而增加了PBAT的降解難度。研究者主要從堆肥及厭氧環(huán)境中分離到一些PBAT降解微生物及從微生物中克隆能夠分解PBAT的酶,如Witt分離自堆肥的耐熱放線菌Thermomonosporafusca, 55℃條件下,99.9%的PBAT粉末22 d后被降解[22]、Biundo從厭氧菌PelosinusfermentansDSM 17108克隆了可降解PBAT的脂肪酶[14]、Perz從厭氧菌ClostridiumhathewayiDSM-13479分離到可降解PBAT的酯酶Chath_Est1[23]。最近,有研究者也從土壤中分離到一些中溫PBAT降解微生物,如Kasuya從土壤中分離到了能夠降解PBAT的3株真菌和2株細(xì)菌,其中降解速度最快的菌株NKCM1712 與玫煙色棒束孢(Isariafumosorosea)的親緣關(guān)系相近,10 d的PBAT薄膜(1 cm×1 cm×100 um)降解率為8.4%,細(xì)菌NKCM2511、NKCM2512的10 d PBAT薄膜降解率分別為1.4%和1.2%[24]。Muroi從土壤中分離到3株與Bacilluspumilus親緣關(guān)系較近的可降解PBAT的細(xì)菌,其中菌株NKCM3201的降解能力最強(qiáng),10 d的PBAT薄膜(1 cm×1 cm×100 um)降解率為1.2%[13]。菌株XJSL2對PBAT的降解能力與真菌菌株NKCM1712、細(xì)菌菌株NKCM2511、NKCM2512、NKCM3201相比有一定差距,該差異可能與測試所用材料的不同有關(guān)。Wallace利用蛋白質(zhì)組篩選技術(shù)從Pseudomonaspseudoalcaligenes中發(fā)現(xiàn)一種能夠降解PBAT的酯酶PpEst[16]。Lee從韓國種植人參的土壤中分離到SphingopyxisginsengisoliGsoil 250菌株。如前所述,能夠分解PBAT的微生物主要來源于土壤和堆肥。由于土壤中約90%~99.9%的微生物仍是未培養(yǎng)的[25],土壤中一定孕育著大量還未被分離到的能夠降解PBAT的微生物。
分離到一株能夠降解PBAT的細(xì)菌菌株XJSL2,經(jīng)16 S rDNA序列進(jìn)化分析,其親緣關(guān)系與Sphingopyxisginsengisoli菌株 Gsoil 250最近,可確定菌株XJSL2屬于Sphingopyxisginsengisoli。經(jīng)液體培養(yǎng)60 d后,菌株XJSL2對PBAT顆粒的實(shí)際降解率可達(dá)0.92%,其降解PBAT的特性與降解產(chǎn)物有待進(jìn)一步的深入研究。菌株XJSL2在以PBAT為主要原料的生物降解薄膜的再生利用中具有潛在應(yīng)用價值。
參考文獻(xiàn)(References)
[1] 嚴(yán)昌榮, 劉恩科, 舒帆, 等.我國地膜覆蓋和殘留污染特點(diǎn)與防控技術(shù)[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào), 2014, 31(2): 95-102.
YAN Chang-rong,LIU En-ke,SHU Fan, et al. (2014). Review of agricultural plastic mulching and its residual pollution and prevention measures in China [J].JournalofAgriculturalResourcesandEnvironment, 31(2): 95-102. (In Chinese)
[2] 嚴(yán)昌榮, 何文清, 薛穎昊, 等. 生物降解地膜應(yīng)用與地膜殘留污染防控[J]. 生物工程學(xué)報(bào), 2016, 32(6): 746-760.
YAN Chang-rong, HE Wen-qing, XUE Ying-hao, et al. (2016). Application of biodegradable plastic film to reduce plastic film residual pollution in Chinese agriculture [J].ChineseJournalofBiotechnology, 32(6): 748-760. (In Chinese)
[3] 李淑芬,于九皋,宋永霞,等. 可降解塑料的研究進(jìn)展[J]. 化學(xué)工業(yè)與工程, 1994, (3): 1-10.
LI Shu-fen,YU Jiu-gao, SONG Yong-xia, et al. (1994). Progress in Study of Degradable Plastics[J].ChemicalIndustryandEngineering, (3):1-10. (In Chinese)
[4]錢伯章, 朱建芳. 生物可降解塑料發(fā)展現(xiàn)狀與前景[J]. 現(xiàn)代化工, 2008, (11):82-85, 87.
QIAN Bo-zhang, ZHU Jian-fang. (2008). Current status and prospect for biodegradable plastics[J].ModernChemicalIndustry, (11):82-85, 87. (In Chinese)
[5]Kim, D. Y., & Rhee, Y. H. (2003). Biodegradation of microbial and synthetic polyesters by fungi.AppliedMicrobiology&Biotechnology,61(4): 300-308.
[6]毛海龍, 白俊巖, 姜虎生, 等.可降解塑料的微生物降解研究進(jìn)展[J]. 微生物學(xué)雜志, 2014, 34(4):80-84.
MAO Hai-long,BAI Jun-yan,JIANG Hu-sheng,et al. (2014). Research progress on microbial degradation of degradable plastics [J].JournalofMicrobiology, 34(4):80-84.(InChinese)
[7]馬一萍, 張乃文, 楊軍偉, 等.PBAT的制備與性能[J]. 塑料, 2010, 39(4): 98-101.
MA Yi-ping, ZHANG Nai-wen, YANG Jun-wei, et al. (2010). Preparation and properties of PBAT [J].Plastics, 39(4):98-101.(In Chinese)
[8]王有超. 新型生物降解材料-PBAT的連續(xù)生產(chǎn)工藝[J]. 聚酯工業(yè), 2016, 29(1): 28-29.
WANG You-chao. (2016). A new biodegradable plastic-polybutylene terephthalate adipate continuous production process [J].PolyesterIndustry, 29(1):28-29. (In Chinese)
[9]王秋艷, 許國志, 翁云宣.PPC/PBAT生物降解材料熱性能和力學(xué)性能的研究 [J]. 塑料科技, 2011, 39(6): 51-54.
WANG Qiu-yan,XU Zhi-guo,WENG Yun-xuan. (2011). Research on thermal and mechnical properties of PPC/PBAT biodegradable material [J].PlasticsScienceandTechnology, 39(6):51-54. (In Chinese)
[10]王勛林, 吳勝先. PPC/PBAT共混復(fù)合材料性能的研究[J]. 塑料科技, 2012, 40(10): 70-73.
WANG Xun-lin ,WU Sheng-xian. (2012). Study on Properties of PPC/PBAT Blends [J].PlasticsScienceandTechnology, 40(10):70-73. (In Chinese)
[11]楊冰, 張自強(qiáng), 張以河, 等.PBAT/PLA薄膜的制備及性能研究[J]. 中國塑料, 2015, 29(3):5-50.
YANG Bing, ZHANG Zi-qiang, ZHANG Yi-he, et al. (2015). Preparation and properties of PBAT/PLA film [J].ChinaPlastics, 29(3):45-50. (In Chinese)
[12]劉偉, 任粒, 張純, 等.硅酸鈣對PBAT流變性能與發(fā)泡行為的影響[J]. 工程塑料應(yīng)用, 2017, 45(3):116-120, 141.
LIU Wei, REN Li, ZHANG Chun, et al. (2017). Rheology properties and foaming behavior of PBAT/Calcium silicate composite [J].EngineeringPlasticsApplication, 45(3):116-120, 141.
[13]Muroi F, Tachibana Y, Soulenthone P, et al. (2017). Characterization of a poly (butylene adipate-co -terephthalate) hydrolase from the aerobic mesophilic bacterium bacillus pumilus.PolymerDegradationandStability, (137): 11-22.
[14]Biundo, A., Hromic, A., Pavkovkeller, T., Gruber, K., Quartinello, F., & Haernvall, K., et al. (2016). Characterization of a poly(butylene adipate-co-terephthalate)-hydrolyzing lipase from pelosinus fermentans.AppliedMicrobiology&Biotechnology, 100(4): 1,753-1,764.
[15]Müller, C. A., Perz, V., Provasnek, C., Quartinello, F., Guebitz, G. M., & Berg, G. (2017). Discovery of polyesterases from moss-associated microorganisms.ApplEnvironMicrobiol, 83(4): AEM. 2,641-2,616.
[16]Wallace, P. W., Haernvall, K., Ribitsch, D., Zitzenbacher, S., Schittmayer, M., & Steinkellner, G., et al. (2017). Ppest is a novel pbat degrading polyesterase identified by proteomic screening ofpseudomonas pseudoalcaligenes:.AppliedMicrobiology&Biotechnology, 101(6): 2,291-2,303.
[17]Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., & Seo, H., et al. (2017). Introducing ezbiocloud: a taxonomically united database of 16s rrna gene sequences and whole-genome assemblies.InternationalJournalofSystematic&EvolutionaryMicrobiology, 67(5):1,613-1,617.
[18] Tamura, K., Stecher, G., Peterson, D., Filipski ,A. & Kumar S. (2013).MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0.MolBiolEvol. 30(12): 2,725-2,729.
[19] Lee M, Ten LN, Lee HW, et al. (2008). Sphingopyxis ginsengisoli sp. Nov., isolated from soil of a ginseng field in south korea.IntJSystEvolMicrobiol, (58): 2,342-2,347.
[20]張遠(yuǎn), 陶樹明, 邱小云, 等.生物降解塑料及其性能評價方法研究進(jìn)展[J]. 化工進(jìn)展, 2010, 29(9):1 666-1 674.
ZHANG Yuan,TAO Shu-ming,QIU Xiao-yun, et al. (2010). Research progress in biodegradable plastics and their properties characterization [J].ChemicalIndustryAndEngineeringProgress, 29(9):1,666-1,674. (In Chinese)
[21]魏曉曉, 張梅, 李琴梅, 等. 生物降解塑料國內(nèi)外標(biāo)準(zhǔn)概況[J]. 標(biāo)準(zhǔn)科學(xué), 2016, (11):58-64.
WEI Xiao-xiao, ZHANG Mei, LI Qin-mei, et al. (2016). Review of biodegradable plastics standards [J].StandardScience, (11):58-64. (In Chinese)
[22]Witt, U., Einig, T., Yamamoto, M., Kleeberg, I., Deckwer, W. D., & Müller, R. J. (2001). Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates.Chemosphere, 44(2): 289-299.
[23]Perz, V., Hromic, A., Baumschlager, A., Steinkellner, G., Pavkovkeller, T., & Gruber, K., et al. (2016). An esterase from anaerobic clostridium hathewayi can hydrolyze aliphatic-aromatic polyesters.EnvironmentalScience&Technology, 50(6): 2,899-2,907.
[24]Kasuya, K., Ishii, N., Inoue, Y., Yazawa, K., Tagaya, T., & Yotsumoto, T., et al. (2009). Characterization of a mesophilic aliphatic-aromatic copolyester-degrading fungus.PolymerDegradation&Stability, 94(8): 1,190-1,196.
[25]Cowan, D. A., Arslanoglu, A., Burton, S. G., Baker, G. C., Cameron, R. A., & Smith, J. J., et al. (2004). Metagenomics, gene discovery and the ideal biocatalyst.BiochemicalSocietyTransactions, 32(Pt 2): 298-302.
IsolationandidentificationofPoly(butyleneadipate-co-terephthalate) -degradingBacteria
HUO Xiang-dong1, GAO Yan1, LIN Qing1, ZENG Jun1, ZHANG Tao1, CHU Min1,YANG Hong-mei1, SHI Ying-wu1, WANG Bin2, SUN Jiu-sheng2, WANG Jin-xin2
(1.ResearchInstituteofAppliedMicrobiology/XinjiangSpecialEnvironmentalMicrobiologyLaboratory,XinjiangAcademyofAgriculturalSciences,Urumqi830091,China; 2.ResearchInstituteofSoil,FertilizerandAgriculturalWaterConservation,XinjiangAcademyofAgriculturalSciences,Urumqi830091,China)
ObjectiveTo isolate poly (butylene adipate-co-terephthalate)-degrading bacteria and study the capability of biodegradation of the bacteria.MethodUsing PBAT powder as the sole carbon source to isolate Poly (butylene adipate-co-terephthalate)-degrading bacteria from the soil which was covered with PBAT mulch. The strain was identified by 16S rDNA sequence comparative analysis. The degradation capability of strain in the liquid medium was evaluated by weight loss method and scanning electron microscope.Result1 Poly (butylene adipate-co-terephthalate) - degrading bacteria was isolated and identified asSphingopyxisginsengisoli. In the liquid medium, degradation rate of PBAT reached up to 0.92% after 60 days.ConclusionTheSphingopyxisginsengisolistrain XJSL2 can be used to recycle of PBAT mulch. There are still a lot of soil microorganisms able to degrade PBAT, This still needs further research.
poly (butylene adipate-co-terephthalate); biodegradation;Sphingopyxisginsengisoli
Supported by: The Key Research and Development Program of Xinjiang Uygur Autonomous Region "Biodegradable Plastic Film Innovation Project"(2016B02017-4); The National Natural Science Foundation of China"Metagenomic Library Construction of the Rumen Microbe from Xinjiang Bactrian Camel and cellulase Family Research" ( 31160027);The Special Funding for Enhancing the Agricultural Scientific and Technological Research Innovation Platform of Xinjiang Academy of Agricultural Sciences-Xinjiang Laboratory of Special Environmental Microbiology"(XJNKYPT-2017-002)
Huo xiang-dong(1974-),male,Gansu province,associate professor,microbial resources,(E-mail)xiangdonghuo@163.com
S188
A
1001-4330(2017)11-2086-06
2017-09-30
新疆維吾爾自治區(qū)重點(diǎn)研發(fā)項(xiàng)目“生物降解地膜創(chuàng)新工程”(2016B02017-4); 國家自然科學(xué)基金項(xiàng)目“新疆雙峰駝瘤胃微生物宏基因組文庫構(gòu)建和纖維素酶系的研究”(31160027);“新疆農(nóng)業(yè)科學(xué)院農(nóng)業(yè)科技創(chuàng)新平臺能力提升建設(shè)專項(xiàng)-新疆特殊環(huán)境微生物實(shí)驗(yàn)室”(XJNKYPT-2017-002)
霍向東(1974-),男,甘肅人,副研究員,研究方向?yàn)槲⑸镔Y源,(E-mail)xiangdonghuo@163.com