,,
(1.浙江省生物有機(jī)合成技術(shù)研究重點(diǎn)實(shí)驗(yàn)室,浙江 杭州 310014;2.浙江工業(yè)大學(xué) 生物工程學(xué)院,浙江 杭州 310014)
微生物醛酮還原酶結(jié)構(gòu)、功能及其在生物催化中的應(yīng)用
史麗珍1,2,應(yīng)彬彬1,2,王亞軍1,2
(1.浙江省生物有機(jī)合成技術(shù)研究重點(diǎn)實(shí)驗(yàn)室,浙江 杭州 310014;2.浙江工業(yè)大學(xué) 生物工程學(xué)院,浙江 杭州 310014)
微生物醛酮還原酶(AKR)作為醛酮還原酶超家族的重要構(gòu)成之一,廣泛存在于自然界的各種微生物中,可對(duì)一系列天然和非天然的底物進(jìn)行代謝.通常,微生物AKR是大小約為37 kDa的單體蛋白,具有典型的(α/β)8桶狀結(jié)構(gòu)和保守的輔酶結(jié)合區(qū)域.微生物AKR是NAD(P)H依賴型氧化還原酶,遵循由催化四聯(lián)體Asp-Tyr-Lys-His推動(dòng)的強(qiáng)制順序反應(yīng)機(jī)制.許多微生物AKR被應(yīng)用于不同的生物轉(zhuǎn)化中,主要包括木糖醇、維生素C前體2-酮-L-古龍酸和各類醫(yī)藥、化工中間體手性醇的合成.
醛酮還原酶;分類;結(jié)構(gòu);生物催化;手性醇
醛酮還原酶(Aldo-keto reductase,AKR)家族是三個(gè)氧化還原酶超家族之一,到目前為止,已超過(guò)190 個(gè)蛋白被命名分類,并且還有新成員不斷地被鑒定確認(rèn).AKR的來(lái)源十分廣泛,幾乎分布于自然界所有的生物體內(nèi),包括哺乳動(dòng)物、兩棲動(dòng)物、植物、酵母,原生動(dòng)物和細(xì)菌等[1].AKR具有寬廣的作用底物譜,包括脂肪醛、芳香醛、單糖、類固醇和前列腺素等,在輔酶的參與下,能進(jìn)行羰基還原、碳碳雙鍵還原、內(nèi)酯還原和半縮醛氧化[2].微生物來(lái)源的AKR涵蓋最廣,是AKR的主要組成之一,盡管大多數(shù)AKR體內(nèi)生理功能未被解析,但因其擁有普遍性、豐富性和多功能性的特性,在生物催化與生物轉(zhuǎn)化方面的應(yīng)用越來(lái)越廣泛.
Penning在1997年首次提出了AKR的命名法則,并經(jīng)過(guò)多次修訂后,形成了較為完善的命名體系[3-4].具體命名方法如下:以醛酮還原酶的縮寫(xiě)詞根AKR作為開(kāi)頭,后跟表示所屬家族的阿拉伯?dāng)?shù)字,之后為亞家族的大寫(xiě)英文單詞的首字母,最后為表示蛋白質(zhì)序列編號(hào)的阿拉伯?dāng)?shù)字,例如AKR1A1表示為AKR第一家族中的亞家族A的第一個(gè)蛋白質(zhì);由于真核生物翻譯mRNA時(shí)存在可變剪切,得到功能上有差異的同種蛋白質(zhì),故采用加后綴如AKR1A5.1的形式命名;此外,對(duì)于命名多聚體AKR時(shí),采用特殊的比例形式如AKR7A1∶AKR7A4(1∶3)進(jìn)行命名,表示該四聚體AKR由一分子AKR7A1和三分子AKR7A4組成;以上所有的阿拉伯?dāng)?shù)字,以提交的先后次序排序.
根據(jù)AKR分類法則[1],同源性低于40%時(shí),AKR超家族分為16 個(gè)家族;再以同源性60%為界,同源性高于60%的屬于同一亞家族,同源性低于60%的屬于不同的亞家族;但同源性達(dá)到97%及以上時(shí),一般認(rèn)為是同一個(gè)蛋白質(zhì).在16 個(gè)家族中,AKR1,AKR6和AKR7主要分布于哺乳動(dòng)物中,AKR4主要存在于植物中[5].微生物AKR橫跨12 個(gè)家族,包括AKR2,AKR3,AKR5,AKR8,AKR9,AKR10,AKR11,AKR12,AKR13,AKR14,AKR15和AKR16,這表明微生物細(xì)胞內(nèi)含有豐富的AKR,在細(xì)胞內(nèi)催化多個(gè)代謝過(guò)程,具有重要的生理生化功能.
大多數(shù)已知的微生物AKR都是單體蛋白,但也存在多聚蛋白,如二聚體AKR2B5,AKR5C3和四聚體CPR-C1,CPR-C2[2, 6-7].類似于其他生物來(lái)源AKR,微生物AKR大小約為300~350 個(gè)氨基酸,分子量約為34~37 kDa,都具有相同的核心蛋白折疊——磷酸丙糖異構(gòu)酶(Triose phosphate isomerase,TIM)結(jié)構(gòu),也稱為(α/β)8桶狀結(jié)構(gòu),有些酶蛋白還帶有2 個(gè)額外的α螺旋結(jié)構(gòu)[8-9].如圖1所示[10],來(lái)自棒狀桿菌的2,5-二酮-D-葡萄糖酸還原酶的主體中心有8 個(gè)相互平行的β折疊,其外層存在著8 個(gè)α螺旋,而且每個(gè)α螺旋與對(duì)應(yīng)的β折疊相互交替和反向平行,前者的氨基端與后者的羧基端通過(guò)可變長(zhǎng)度的環(huán)連接.在桶狀結(jié)構(gòu)的背面,有三個(gè)具有柔性的可變環(huán)A,B和C,能識(shí)別、結(jié)合不同的底物,控制催化反應(yīng).這些羧基端的可變環(huán)是決定酶底物特異性的關(guān)鍵,在鑒定不同功能的AKR時(shí)具有重要的參考價(jià)值.通過(guò)多重序列比對(duì)確認(rèn)的高度保守的催化四聯(lián)體Asp-Tyr-Lys-His在酶蛋白三維結(jié)構(gòu)中的位置比較固定,主要位于組成核心的β折疊上,并在桶狀結(jié)構(gòu)開(kāi)口處形成底物結(jié)合口袋.
圖1 來(lái)自棒狀桿菌的2,5-二酮-D-葡萄糖酸還原酶結(jié)構(gòu) Fig.1 Crystal structure of 2,5-diketo-D-gluconic acid reductase from Corynebacterium sp.
絕大多數(shù)的微生物AKR是NADP(H)專一性依賴型,但酵母中的有些木糖還原酶是NAD(H)和NADP(H)雙依賴型[11],僅有少數(shù)為NAD(H)專一依賴型[12].微生物AKR蛋白N端含有保守的LxxxGxxxPxxGxG輔酶結(jié)合區(qū)域,輔酶以伸展的狀態(tài)橫跨桶狀結(jié)構(gòu),輔酶的煙酰胺環(huán)位于催化口袋的中心,催化四聯(lián)體的下方.焦磷酸基團(tuán)橫跨β7和β8之間的裂口,腺嘌呤單磷酸基團(tuán)則嵌在α7和α8結(jié)構(gòu)中間.當(dāng)輔酶結(jié)合后,酶蛋白的β7和β8部分結(jié)構(gòu)發(fā)生變化,將輔酶固定在合適的位置[13].到目前為止,微生物AKR偏好不同輔酶類型的結(jié)構(gòu)和機(jī)理仍在探索當(dāng)中,只有少量的報(bào)道提供了一定的研究思路.AKR5C3作為嚴(yán)格的NADP(H)依賴,其晶體結(jié)構(gòu)中有12 個(gè)與輔酶結(jié)合相關(guān)的氨基酸,最為重要的是高度保守的Trp30和Trp191與NADP(H)的煙酰胺環(huán)形成氫鍵,Lys234與NADP(H)的焦磷酸基團(tuán)形成氫鍵[7].NAD(H)和NADP(H)雙依賴的Pichiastipitis木糖還原酶XYLO的輔酶結(jié)合口袋由16 個(gè)氨基酸組成,不同的輔酶結(jié)合產(chǎn)生不同的酶構(gòu)象:當(dāng)其與NAD(H)結(jié)合時(shí),Glu223和Phe236與輔酶形成氫鍵;當(dāng)其與NADP(H)結(jié)合時(shí),Lys21和Phe236與輔酶形成氫鍵[14].
微生物AKR在進(jìn)行還原反應(yīng)時(shí),遵循強(qiáng)制順序反應(yīng)機(jī)制[15],具體催化歷程如下:1) AKR酶分子首先與還原型輔酶NAD(P)H結(jié)合形成全酶,誘導(dǎo)蛋白構(gòu)象發(fā)生變化,這是整個(gè)還原過(guò)程的第一個(gè)限速步驟;2) 底物進(jìn)入催化口袋,與全酶結(jié)合形成三元復(fù)合物;3) NAD(P)H上的H轉(zhuǎn)移到底物羰基C原子上形成產(chǎn)物醇,隨后產(chǎn)物離開(kāi)催化口袋;4) 最后,酶釋放氧化型輔酶NAD(P)+,AKR酶分子恢復(fù)初始構(gòu)象,成為單酶,酶蛋白構(gòu)象回復(fù),這是第二個(gè)限速步驟.上述過(guò)程中,催化四聯(lián)體Asp-Tyr-Lys-His起到至關(guān)重要的作用(圖2[2]),Tyr51作為質(zhì)子供體具有催化酸的作用,Asp46和Lys80的羧基相互作用形成鹽橋,且Lys80和Tyr51之間形成氫鍵,最終降低Tyr51的pKa值,促進(jìn)質(zhì)子轉(zhuǎn)移,His113在質(zhì)子轉(zhuǎn)移和底物分子的定向方面發(fā)揮重要作用[16-18].按照AKR獨(dú)特的“推-拉”原理,反應(yīng)分為兩部分:Tyr51和His113作用底物羰基使其極性化,同時(shí)煙酰胺C4位上的pro-R氫(HR)發(fā)生轉(zhuǎn)移;Tyr51提供質(zhì)子,保證還原反應(yīng)的完成.
圖2 AKR2B5還原羰基底物的機(jī)理Fig.2 Mechanism for AKR2B5 catalyzing the reduction of a carbonyl group
木糖醇是一類糖類多元醇,由于其具有特殊的化學(xué)和生物學(xué)性質(zhì)被大量應(yīng)用于食品和藥品.在食品工業(yè)中,木糖醇既可作為甜味劑增味,又可作為防腐劑延長(zhǎng)保質(zhì)期,還能作為吸熱劑加速冷卻[19].另外,木糖醇還具有抗氧化、潤(rùn)膚、防凍和降低冰點(diǎn)等能力,所以市場(chǎng)需求逐漸增加,已成為一種重要的添加劑.現(xiàn)今,大規(guī)模生產(chǎn)木糖醇通過(guò)金屬鎳等催化劑的催化加氫法,過(guò)程需高溫高壓,生產(chǎn)成本高,環(huán)境壓力大.因此,利用環(huán)境友好和高產(chǎn)率的生物法制備木糖醇是一種前景廣闊的替代方式[20].
生物法合成木糖醇過(guò)程中,起關(guān)鍵作用的一步即為木糖還原酶轉(zhuǎn)化木糖合成木糖醇.木糖還原酶屬于AKR家族中的亞家族AKR2,且均來(lái)源于微生物,大量存在于酵母和絲狀真菌中,相關(guān)報(bào)道如表1所示.大多數(shù)木糖還原酶是NADPH嚴(yán)格依賴型,僅有少數(shù)是NADPH和NADH同等偏好,極少數(shù)是NADH偏好或嚴(yán)格依賴.木糖還原酶通常在各類酵母系統(tǒng)中表達(dá),并通過(guò)發(fā)酵不同生物質(zhì)原料得到產(chǎn)物木糖醇.Kogje和Ghosalkar[21]構(gòu)建了4種過(guò)表達(dá)木糖還原酶基因的Saccharomycescerevisiae,以玉米芯半纖維素水解液為原料和葡萄糖作為NADPH再生的輔底物,發(fā)酵生產(chǎn)木糖醇.其中,過(guò)表達(dá)GRE3的S.cerevisiae菌株的產(chǎn)物時(shí)空產(chǎn)率和單位菌體產(chǎn)率分別為0.28 g/(L·h)和34 mg/(g·h).Pratter等[22]以表達(dá)Candidatenuis木糖還原酶基因的S.cerevisiae為生物催化劑,40 g/L的木糖可被完全轉(zhuǎn)化,產(chǎn)物時(shí)空產(chǎn)率達(dá)到1.16 g/(L·h).Kim等[23]采用定向進(jìn)化和隨機(jī)突變改造Kluyveromycesmarxianus36907,最優(yōu)突變株的產(chǎn)物質(zhì)量濃度提高了120%,達(dá)到53 g/L,產(chǎn)物時(shí)空產(chǎn)率為0.36 g/(L·h).此外,Phanerochaetesordida,Candidaglycerinogenes和P.spitis也可作為木糖醇發(fā)酵生產(chǎn)的表達(dá)系統(tǒng)[20].
表1 不同來(lái)源木糖還原酶動(dòng)力學(xué)參數(shù)Table 1 Kinetic parameters of XRs from various microorganisms
維生素C主要用于維生素保健品和藥物制劑.近年來(lái),由于其具有抗氧化和促進(jìn)膠原蛋白產(chǎn)生的特性,逐漸被應(yīng)用于食品和飲料生產(chǎn)中[34].2-酮-L-古龍酸(2-KLG)作為維生素C的合成前體,可由2,5-二酮-D-葡萄糖酸(2,5-DKG)C5的酮基還原生成,2-KLG再經(jīng)酯化和內(nèi)酯化反應(yīng)生成維生素C.從D-葡萄糖出發(fā),兩步法制備維生素C(圖3)是現(xiàn)今工業(yè)上的主要生產(chǎn)工藝路線[35].因此具有高選擇性還原2,5-DKG活性的還原酶對(duì)制備維生素C極為關(guān)鍵.兩步發(fā)酵法制備維生素C的途徑為
根據(jù)現(xiàn)有文獻(xiàn)報(bào)道可知:2,5-DKG還原酶屬于AKR5,分布于17 種不同的細(xì)菌屬中,廣泛應(yīng)用于2-KLG的合成.Miller等[36]首次從Corynebacteriumsp.中分離純化到可一步還原2,5-DKG生成2-KLG的2,5-DKG還原酶A并進(jìn)行了表征.Sonoyama等[37]也從突變的Corynebacteriumsp.中純化得到AKR5C和AKR5D,但酶的底物親和性和催化效率較差.為獲得高性能的2,5-DKG還原酶,Eschenfeldt等[38]采用宏基因組的方法從土壤樣品宏基因組中克隆得到兩個(gè)不同的2,5-DKG還原酶基因,在大腸桿菌中異源表達(dá),發(fā)現(xiàn)其對(duì)2,5-DKG的親和性較好,Km值分別為57, 67 μmol/L,可以同時(shí)利用NADH和NADPH.在生產(chǎn)上,Sonoyama等[39]則首次采用兩步法生產(chǎn)2-KLG,先由Erwiniasp.氧化D-葡萄糖生成2,5-DKG,再經(jīng)具有2,5-DKG還原酶活性的Corynebacteriumsp.還原生成2-KLG.Anderson等[40]將Corynebacterium中的2,5-DKG還原酶基因?qū)氲剿拗鱁rwiniaherbicola中,構(gòu)建了從D-葡萄糖一步發(fā)酵生產(chǎn)2-KLG的基因工程菌,雖然簡(jiǎn)化了步驟,但2-KLG的產(chǎn)率只有5%左右.目前,生產(chǎn)效率最高的為Kaswurm等[41]建立的兩步法,通過(guò)引入葡萄糖脫氫酶催化的NADPH原位再生系統(tǒng),C.glutamicum的2,5-DKG還原酶可完全還原200 mmol/L的2,5-DKG,2-KLG時(shí)空產(chǎn)率達(dá)到21.5 g/(L·h).
手性醇是指在手性碳上連接有一個(gè)羥基基團(tuán)的化合物,在藥物、農(nóng)用化學(xué)品和特殊材料生產(chǎn)領(lǐng)域中廣泛應(yīng)用,是重要的合成中間體[42].相比傳統(tǒng)重金屬催化合成技術(shù),微生物AKR不對(duì)稱還原前手性酮生產(chǎn)手性醇技術(shù)具有立體選擇性高、轉(zhuǎn)化率高和環(huán)境污染少等優(yōu)點(diǎn),越來(lái)越受到產(chǎn)學(xué)界的關(guān)注.如圖3所示,微生物AKR進(jìn)行不對(duì)稱還原時(shí),輔酶煙酰胺環(huán)C上的H原子進(jìn)攻底物羰基時(shí)遵循Prelog規(guī)則或反Prelog規(guī)則[43].大多數(shù)微生物AKR在不對(duì)稱還原羰基化合物時(shí)遵循Prelog規(guī)則,也有少數(shù)酶遵循反Prelog規(guī)則.
圖3 NAD(P)H煙酰胺環(huán)的C4氫轉(zhuǎn)移到底物羰基碳上Fig.3 Hydride transfer from NAD(P)H to the substrate carbonyl C
前手性4-氯-3-羰基丁酸乙酯經(jīng)不對(duì)稱還原生成4-氯-(3R)-羥基丁酸乙酯或4-氯-(3S)-羥基丁酸乙酯,分別為L(zhǎng)-肉堿和阿托伐他汀鈣的重要手性中間體.日本學(xué)者Kita等[44]從SporobolomycessalmonicolorAKU4429中分離純化得到三種AKR——ARI,ARII和ARIII,均能不對(duì)稱還原4-氯-3-羰基丁酸乙酯.其中ARI和ARIII可將4-氯-3-羰基丁酸乙酯還原成4-氯-(3R)-羥基丁酸乙酯,e.e.值分別為100%和38.4%;與之相反,ARII則將底物還原成4-氯-(3S)-羥基丁酸乙酯,e.e.值為92.7%.還有學(xué)者從CandidamagnoliaeAKU4643純化得到一種能夠?qū)?-氯-3-羰基丁酸乙酯100%轉(zhuǎn)化成4-氯-(3R)-羥基丁酸乙酯的AKR,但其穩(wěn)定性較差,在干燥空氣中很快失活.4-溴-(3S)-羥基丁酸甲酯作為他汀類藥物的中間體,可類似地采用不對(duì)稱還原4-溴-3-羰基丁酸甲酯制備得到.Asako等[45]從PenicilliumcitrinumIFO4631中篩選并分離純化得到AKR3E1,根據(jù)部分氨基酸序列反轉(zhuǎn)錄得到編碼AKR3E1的基因,并在大腸桿菌中表達(dá),AKR3E1對(duì)4-溴-3-羰基丁酸甲酯表現(xiàn)出不對(duì)稱還原能力,AKR3E1催化合成的4-溴-(3S)-羥基丁酸甲酯e.e.值為96%.
隨著生物信息學(xué)的發(fā)展,越來(lái)越多的微生物AKR通過(guò)基因挖掘技術(shù)被發(fā)現(xiàn),并用于手性醇的研究.Ma等[46]通過(guò)序列及蛋白三維結(jié)構(gòu)分析,在嗜熱菌Thermotogamaritima基因組中篩選得到AKRTm1743基因,并在大腸桿菌中表達(dá),用于2,2,2-三氟苯乙酮不對(duì)稱還原,得到的S-1-苯基-2,2,2-三氟乙醇e.e.值達(dá)到99.8%.Ning等[47]通過(guò)挖掘Lodderomyceselongisporus基因組,發(fā)現(xiàn)3 個(gè)推測(cè)AKR基因,并在大腸桿菌中異源表達(dá),命名為L(zhǎng)EAKR48,LEAKR49和LEAKR50,并表征了它們對(duì)4-氯-3-羰基丁酸乙酯的活性,LEAKR48的催化活力最高,產(chǎn)物4-氯-(3R)-羥基丁酸乙酯e.e.值為98%.Guo等[48]通過(guò)基因挖掘技術(shù)從C.parapsilosis中克隆得到8株推測(cè)的AKR,并以此作為生物催化工具盒,不對(duì)稱還原一系列的酮酯和苯乙酮衍生物,得到e.e.值超過(guò)99%的多個(gè)手性醇.
微生物AKR是一類結(jié)構(gòu)功能相似、種屬來(lái)源廣泛、涉及生物體內(nèi)各種代謝過(guò)程的氧化還原酶,含有高度保守的(α/β)8桶狀結(jié)構(gòu),催化四聯(lián)體、輔酶結(jié)合區(qū)域和三個(gè)可變的底物識(shí)別環(huán).明確其結(jié)構(gòu)和催化機(jī)理,有助于了解酶蛋白在體內(nèi)的生理生化作用,也可作為分子改造的理論基礎(chǔ).盡管一些AKR晶體結(jié)構(gòu)已被解析,部分微生物AKR已被開(kāi)發(fā)用于制備一些高附加值精細(xì)化學(xué)品,但關(guān)于微生物AKR如何識(shí)別不同底物、不同輔酶結(jié)合的結(jié)構(gòu)基礎(chǔ)及反應(yīng)機(jī)理有待完善,尤其針對(duì)新型AKR挖掘、AKR理性設(shè)計(jì)、AKR催化新反應(yīng)發(fā)現(xiàn)和高效輔酶再生系統(tǒng)構(gòu)建等方面的研究有待進(jìn)一步深入.
[1] PENNING T M. The aldo-keto reductases (AKRs): overview[J]. Chemico-biological interactions, 2015,234:236-246.
[2] KRATZER R, WILSON D K, NIDETZKY B. Catalytic mechanism and substrate selectivity of aldo-keto reductases: insights from structure-function studies ofCandidatenuisxylose reductase[J]. IUBMB life, 2006,58(9):499-507.
[3] HYNDMAN D, BAUMAN D R, HEREDIA V V, et al. The aldo-keto reductase superfamily homepage[J]. Chemico-biological interactions, 2003, 143:621-631.
[4] BARSKI O A, MINDNICH R, PENNING T M. Alternative splicing in the aldo-keto reductase superfamily: implications for protein nomenclature[J]. Chemico-biological interactions, 2013,202(1/3):153-158.
[5] SENGUPTA D, NAIK D, REDDY A R. Plant aldo-keto reductases (AKRs) as multi-tasking soldiers involved in diverse plant metabolic processes and stress defense: a structure-function update[J]. Journal of plant physiology, 2015,179:40-55.
[6] QIN H M., YAMAMURA A, MIYAKAWA T, et al. Structure of conjugated polyketone reductase fromCandidaparapsilosisIFO 0708 reveals conformational changes for substrate recognition upon NADPH binding[J]. Applied microbiology and biotechnology, 2014,98(1):243-249.
[7] LIU X, WANG C, ZHANG L, et al. Structural and mutational studies on an aldo-keto reductase AKR5C3 fromGluconobacteroxydans[J]. Protein science, 2014,23(11):1540-1549.
[8] HOOG S S, PAWLOWSKI J E, ALZARI P M, et al. Three-dimensional structure of rat liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase: a member of the aldo-keto reductase superfamily[J]. Proceedings of the national academy of sciences of the United States of America, 1994,91(7):2517-2521.
[9] WILSON D K, BOHREN K M, GABBAY K H, et al. An unlikely sugar substrate site in the 1.65 A structure of the human aldose reductase holoenzyme implicated in diabetic complications[J]. Science, 1992,257(5066):81-84.
[10] KHURANA S, POWERS D B, ANDERSON S, et al. Crystal structure of 2,5-diketo-D-gluconic acid reductase a complexed with nadph at 2.1-angstrom resolution[J]. Proceedings of the national academy of sciences of the United States of America, 1998,95(12):6768-6773.
[11] ELLIS E M. Microbial aldo-keto reductases[J]. Fems microbiology letters, 2002,216(2):123-131.
[12] LUO X, WANG Y J, ZHENG Y G. Cloning and characterization of a NADH-dependent aldo-keto reductase from a newly isolatedKluyveromyceslactisXP1461[J]. Enzyme and microbial technology, 2015,77:68-77.
[13] JEZ J M, BENNETT M J, SCHLEGEL B P, et al. Comparative anatomy of the aldo-keto reductase superfamily[J]. Biochemical journal, 1997, 326(2):625-636.
[14] WANG J F, WEI D Q, LIN Y, et al. Insights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase ofPichiastipitisand its binding interactions with NAD and NADP[J]. Biochemical & biophysical research communications, 2007,359(2):323-329.
[15] COOPER W C, JIN Y, PENNING T M. Elucidation of a complete kinetic mechanism for a mammalian hydroxysteroid dehydrogenase (HSD) and identification of all enzyme forms on the reaction coordinate: the example of rat liver 3 alpha-HSD (AKR1C9)[J]. The journal of biological chemistry, 2007,282(46):33484-33493.
[16] REYES A C, AMYES T L, RICHARD J P. Enzyme architecture: a startling role for Asn270 in glycerol 3-phosphate dehydrogenase-catalyzed hydride transfer[J]. Biochemistry, 2016,55(10):1429-1432.
[17] HONG S H, NAM H K, KIM K R, et al. Molecular characterization of an aldo-keto reductase fromMarivirgatractuosathat converts retinal to retinol[J]. Journal of biotechnology, 2014,169(1):23-33.
[18] LIU X, WANG C, ZHANG L J, et al. Structural and mutational studies on an aldo-keto reductase AKR5C3 fromGluconobacteroxydans[J]. Protein science, 2014,23(11):1540-1549.
[19] MOHAMAD N L, KAMAL S M, MOKHTAR M N. Xylitol biological production: a review of recent studies[J]. Food reviews international, 2015,31(1):74-89.
[20] DASGUPTA D, BANDHU S, ADHIKARI D K, et al. Challenges and prospects of xylitol production with whole cell bio-catalysis: a review[J]. Microbiological research, 2017,197:9-21.
[21] KOGJE A, GHOSALKAR A. Xylitol production bySaccharomycescerevisiaeoverexpressing different xylose reductases using non-detoxified hemicellulosic hydrolysate of corncob[J]. 3 Biotechnology, 2016,6(2):127.
[22] PRATTER S M, EIXELSBERGER T, NIDETZKY B. Systematic strain construction and process development: xylitol production bySaccharomycescerevisiaeexpressingCandidatenuisxylose reductase in wild-type or mutant form[J]. Bioresource technology, 2015,198:732-738.
[23] KIM J S, PARK J B, JANG S W. Enhanced xylitol production by mutantKluyveromycesmarxianus36907-FMEL1 due to improved xylose reductase activity[J]. Applied biochemistry and biotechnology, 2015,176(7):1975-1984.
[24] ZHANG Y, LEE H. Site-directed mutagenesis of the cysteine residues in thePichiastipitisxylose reductase[J]. Fems microbiology letters, 1997,147(2):227-232.
[25] DAVIS R A, DERUITER J. Comparison of the catalytic and inhibitory properties ofPachysolentannophilusxylose reductase to rat lens aldose reductase[J]. Applied microbiology and biotechnology, 1992,37(1):109-113.
[26] YOKOYAMA S I, SUZUKI T, KAWAI K, et al. Purification, characterization and structure analysis of NADPH-dependent D-xylose reductases fromCandidatropicalis[J]. Journal of fermentation and bioengineering, 1995,79(3):217-223.
[27] MAYR P, NIDETZKY B. Catalytic reaction profile for NADH-dependent reduction of aromatic aldehydes by xylose reductase fromCandidatenuis[J]. Biochemical journal, 2002,366(3):889-899.
[28] WOODYER R, SIMURDIAK M, WA V D D, et al. Heterologous expression, purification, and characterization of a highly active xylose reductase fromNeurosporacrassa[J]. Applied and environmental microbiology, 2005,71(3):1642-1647.
[29] KUMAR S, GUMMADI S N. Purification and biochemical characterization of a moderately halotolerant NADPH dependent xylose reductase fromDebaryomycesnepalensisNCYC 3413[J]. Bioresource technology, 2011,102(20):9717.
[30] LEE J K, KOO B S, KIM S Y. Cloning and characterization of thexyl1 gene, encoding an NADH-preferring xylose reductase fromCandidaparapsilosis, and its functional expression inCandidatropicalis[J]. Applied environment and microbiology, 2003,69(10):6179-6188.
[31] KOMEDA H, YAMASAKI-YASHIKI S, HOSHINO K, et al. Identification and characterization of D-xylose reductase involved in pentose catabolism of the zygomycetous fungusRhizomucorpusillus[J]. Journal of bioscience and bioengineering, 2015,119(1):57-64.
[32] ZHANG M, JIANG S T, ZHENG Z, et al. Cloning, expression, and characterization of a novel xylose reductase fromRhizopusoryzae[J]. Journal of basic microbiology, 2015,55(7):907-921.
[33] DASGUPTA D, GHOSH D, BANDHU S, et al. Purification, characterization and molecular docking study of NADPH dependent xylose reductase from thermotolerantKluyveromycessp. IIPE453[J]. Process biochemistry, 2007,51(1):124-133.
[34] HANCOCK R D, VIOLA R. Biotechnological approaches for L-ascorbic acid production[J]. Trends in biotechnology, 2002,20(7):299-305.
[35] BREMUS C, HERRMANN U, BRINGER S. The use of microorganisms in L-ascorbic acid production[J]. Journal of biotechnology, 2006,124(1):196-205.
[36] MILLER J V, ESTELL D A, LAZARUS R A. Purification and characterization of 2,5-diketo-D-gluconate reductase fromCorynebacteriumsp.[J]. Journal of biological chemistry, 1987,262(19):9016-9020.
[37] SONOYAMA T, KOBAYASHI K. Purification and properties of two 2,5-diketo-D-gluconate reductases from a mutant strain derived fromCorynebacteriumsp.[J]. Journal of fermentation technology, 1987,65(3):311-317.
[38] ESCHENFELDT W H, STOLS L, ROSENBAUM H, et al. DNA from uncultured organisms as a source of 2,5-diketo-L-gluconic acid reductases[J]. Applied and environmental microbiology, 2001,67(9):4206-4214.
[39] SONOYAMA T, TANI H, MATSUDA K, et al. Production of 2-keto-l-gulonic acid from D-glucose by two-stage fermentation[J]. Applied and environmental microbiology, 1982,43(5):1064-1069.
[40] ANDERSON S, MARKS C B, LAZARUS R, et al. Production of 2-Keto-L-gulonate, an intermediate in L-ascorbate synthesis, by a genetically modifiedErwiniaherbicola[J]. Science, 1985,230(4722):144-149.
[41] KASWURM V, PACHER C, KULBE K D, et al. 2,5-Diketo-gluconic acid reductase fromCorynebacteriumglutamicum: characterization of stability, catalytic properties and inhibition mechanism for use in vitamin C synthesis[J]. Process biochemistry, 2012,47(12):2012-2019.
[42] NESTL B M, NEBEL B A, HAUER B. Recent progress in industrial biocatalysis[J]. Current opinion in chemical biology, 2011,15(2):187-193.
[43] MATSUDA T, YAMANAKA R, NAKAMURA K. Recent progress in biocatalysis for asymmetric oxidation and reduction[J]. Tetrahedron-asymmetry, 2009,20(5):513-557.
[44] KITA K, NAKASE K, YANASE H. Purification and characterization of new aldehyde reductases fromSporobolomycessalmonicolorAKU4429[J]. Journal of molecular catalysis B: enzymatic, 1999,6(3):305-313.
[45] ASAKO H, WAKITA R, MATSUMURA K, et al. Purification and cDNA cloning of NADPH-dependent aldoketoreductase, involved in asymmetric reduction of methyl 4-bromo-3-oxobutyrate, fromPenicilliumcitrinumIFO4631[J]. Applied and environmental microbiology, 2005,71(2):1101-1104.
[46] MA Y H, LV D Q, ZHOU S, et al. Characterization of an aldo-keto
reductase fromThermotogamaritimawith high thermostability and a broad substrate spectrum[J]. Biotechnology letters, 2013,35(5):757-762.
[47] NING C, SU E, WEI D. Characterization and identification of three novel aldo-keto reductases fromLodderomyceselongisporusfor reducing ethyl 4-chloroacetoacetate[J]. Archives of biochemistry and biophysics, 2014,564:219-228.
[48] GUO R Y, NIE Y, MU X Q, et al. Genomic mining-based identification of novel stereospecific aldo-keto reductases toolbox fromCandidaparapsilosisfor highly enantioselective reduction of carbonyl compounds[J]. Journal of molecular catalysis B: enzymatic, 2014,105:66-73.
Structure,functionandbiocatalyticapplicationsofmicrobialaldo-ketoreductases
SHI Lizhen1,2, YING Bingbing1,2, WANG Yajun1,2
(1.Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Hangzhou 310014, China; 2.College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China)
As an important member of the aldo-keto reductase (AKR) superfamily, microbial AKRs exist in a wide range of microorganisms and perform oxidoreduction on a broad variety of natural and artificial ketone compounds. Usually, microbial AKRs are monomeric proteins with molecular weights around 37 kDa, containing the typical (α/β)8-barrel fold and a conserved coenzyme binding domain. All microbial AKRs obey the ordered bi-bi mechanism, driven by a tetrad of Asp-Tyr-Lys-His. Currently, microbial AKRs have been applied in the synthesis of xylitol, vitamin C immediate precursor 2-keto-L-gulonic acid and pharmaceutical intermediate chiral alcohols.
aldo-keto reductase; classification; structure; biocatalysis; chiral alcohol
2017-05-08
國(guó)家自然科學(xué)基金資助項(xiàng)目(21476209);浙江省公益技術(shù)研究項(xiàng)目(2014C33223)
史麗珍(1992—),女,河南洛陽(yáng)人,碩士研究生,研究方向?yàn)樯锘ぃ珽-mail:13588399962@163.com.通信作者:王亞軍教授,E-mail:wangyj@zjut.edu.cn.
Q814.2;O643.3
A
1674-2214(2017)04-0198-07
朱小惠)