• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive leader-following rendezvous and flocking for a class of uncertain second-order nonlinear multi-agent systems

    2017-12-22 06:12:26WeiLIUJieHUANG
    Control Theory and Technology 2017年4期

    Wei LIU,Jie HUANG

    Department of Mechanical and Automation Engineering,The Chinese University of Hong Kong,Shatin,N.T.,Hong Kong,China

    Adaptive leader-following rendezvous and flocking for a class of uncertain second-order nonlinear multi-agent systems

    Wei LIU,Jie HUANG?

    Department of Mechanical and Automation Engineering,The Chinese University of Hong Kong,Shatin,N.T.,Hong Kong,China

    In this paper,we study the leader-following rendezvous and flocking problems for a class of second-order nonlinear multiagent systems,which contain both external disturbances and plant uncertainties.What differs our problems from the conventional leader-following consensus problem is that we need to preserve the connectivity of the communication graph instead of assuming the connectivity of the communication graph.By integrating the adaptive control technique,the distributed observer method and the potential function method,the two problems are both solved.Finally,we apply our results to a group of van der Pol oscillators.

    Adaptive control,connectivity preservation,multi-agent systems,nonlinear systems

    1 Introduction

    Over the past few years,the study of cooperative control problems for multi-agent systems has attracted extensive attention.In many cooperative control problems such as the consensus problem,the communication graph is predefined and has to satisfy certain connectivity assumption[1–5].However,in some real applications such as rendezvous problem and flocking problem,the communication graph is defined by the distance of various agents,and is thus state-dependent.It is more practical to enable a control law to not only achieve consensus but also preserve the connectivity of the graph instead of assuming the connectivity of the graph.Such a problem is called rendezvous with connectivity preservation problem.If the objective of collision avoidance is also imposed,then the problem can be further called flocking.

    Depending on whether or not a multi-agent system has a leader,the rendezvous/flocking problem can be further divided into two classes:leaderless and leader-following.The leaderless rendezvous/flocking problem aims to make the state(or partial state)of all agents approach a same location,while the leader-following rendezvous/flocking problem further requires the state(or partial state)of all agents to track a desired trajectory generated by some leader system.The leaderless rendezvous/flocking problem has been studied for single-integrator multi-agent systems in[6–8]and double-integrator multi-agent systems in[9–11]while the leader-following rendezvous/flocking problem has also been studied for single-integrator multi-agent systems in[12,13]and double-integrator multi-agent systems in[10,13–16].

    More recently,the leader-following rendezvous/flocking problem has been further studied for some second-order nonlinear multi-agent systems under various assumptions in [17–20].Specifically,in[17],the connectivity preserving leader-following consensus problem for uncertain Euler-Lagrange multi-agent systems is studied.In[18],the differences between the nonlinear functions of all agents are assumed to be bounded for all time.In[19,20],the nonlinear functions are assumed to satisfy global Lipschitz-like condition and all followers know the information of the virtual leader.

    In this paper,we will study both the leader-following rendezvous problem and the leader-following flocking problem for a class of second-order nonlinear multiagent systems by a distributed state feedback control law with different potential functions.Our problems differ from existing works in at least two aspects.First,our system as given in next section is subject to not only external disturbances but also plant uncertainties.Second,the nonlinear functions in our system do not have to satisfy some bounded condition or global Lipschitz-like condition.To overcome these difficulties,we need to combine the adaptive control technique,the distributed observer method and the potential function method to solve our problems.

    The rest of this paper is organized as follows.In Section 2,we give two problem formulations and some preliminaries.In Sections 3 and 4,we give the main results.In Section 5,we provide an example to illustrate our design.Finally,in Section 6,we conclude the paper with some remarks.It is noted that the preliminary version of this paper without any proof was presented in[21].

    NotationFor any column vectors ai,i=1,...,s,denote col(a1,...,as)=[aT1,...,aTs]T.?denotes the Kronecker product of matrices.?x?denotes the Euclidean norm of vector x.?A?denotes the induced norm of matrix A by the Euclidean norm.For any real symmetric matrix A, λmin(A)and λmax(A)denote the minimum and maximum eigenvalues of A,respectively.For any two symmetric matrices A and B,the symbol A≥B means the matrix A?B is positive semi-definite.

    2 Problem formulation

    Consider a class of second-order nonlinear multiagent systems as follows:

    where qi,pi∈Rnare the states,ui∈Rnis the input,fi(qi,pi)∈ Rm×nis a known matrix with every element being continuous function,θi∈ Rmis an unknown constant parameter vector,di(w)∈Rndenotes the disturbance with di(·)being some C1function,and w is generated by the linear exosystem as follows:

    with w ∈ Rnwand Sb∈ Rnw×nw.It is assumed that the reference signal is generated by the following linear exosystem

    The plant(1)and the exosystem(4)together can be viewed as a multi-agent system of(N+1)agents with(4)as the leader and the N subsystems of(1)as N followers.As in[15,17],define a time-varying graph(t)=(V,E(t))with respect to(1)and(4),whereV={0,1,...,N}with 0 associated with the leader system and with i=1,...,N associated with the N followers,respectively,andE(t)?V×V is defined by different rules for rendezvous and flocking problem.The graphis said to be connected at time t if there is a directed path from node 0 to every other node.

    Remark 1Compared with the second-order nonlinear systems studied in[18–20],our system contains not only the external disturbances but also the parameter uncertainties,and the boundaries of the uncertainties are allowed to be arbitrarily large,while the systems in[18,20]contain neither external disturbances nor plant uncertainties,and the system in[19]contains only plant uncertainties but no external disturbances.Moreover,the nonlinear function fiin(1)does not need to be bounded as assumed in[18],or satisfy the global Lipschitz-like condition as assumed in[19,20].

    2.1 Leader-Following Rendezvous Problem

    For leader-following rendezvous problem,E(t)is defined by the following rules:Given any r>0 and∈∈(0,r),for any t≥0,E(t)={(i,j)|i,j∈V,i≠j}is defined such that

    1)E(0)={(i,j)|?qi(0)?qj(0)?<r?∈,i=0,1,...,N,j=1,...,N};

    2)for i=0,1,...,N,j=1,...,N,if?qi(t)?qj(t)?≥ r,then(i,j)?E(t);

    3)for i=0,1,...,N,(i,0)?E(t);

    4)for i=0,1,...,N,j=1,...,N,if(i,j)?E(t?)and?qi(t)?qj(t)?<r?∈,then(i,j)∈(t);

    5)for i=0,1,...,N,j=1,...,N,if(i,j)∈E(t?)and?qi(t)?qj(t)?<r,then(i,j)∈(t).

    Note that the above rules are similar to those in[15].We denote the neighbor set of the ith agent at time t byi(t)={j|(j,i)∈(t)}.Then,we consider a control law of the following form:

    where hiand liare some nonlinear functions,and ζi∈ Rnζiwith nζito be defined later.A control law of the form(5)is called a dynamic distributed state feedback control law,since uionly depends on the state information of its neighbors and itself.Then,we define the leader-following rendezvous problem for system(1)as follows.

    Problem 1Given the plant(1),the exosystem(4),any r>0 and∈∈(0,r),find a distributed control law of the form(5),such that,for any w∈W with W being some compact subset of Rnwand any initial condition qi(0),i=0,1,...,N,making(0)connected,theclosedloop system composed of(1)and(5)has the following properties:

    2.2 Leader-following f l ocking problem

    For leader-following flocking problem,E(t)is defined by the following rules:Given any r> 0,∈∈(0,r)and R∈[0,r?∈),for any t≥0,E(t)={(i,j)|i,j∈V,i≠j}is defined such that

    2)for i=0,1,...,N,j=1,...,N,if?qi(t)?qj(t)?≥r,then(i,j)?E(t);

    4)for i=0,1,...,N,j=1,...,N,if(i,j)?and R<?qi(t)?qj(t)?<r?∈,then(i,j)∈E(t);

    5)for i=0,1,...,N,j=1,...,N,if(i,j)∈and R<?qi(t)?qj(t)?<r,then(i,j)∈(t).

    Note that the above rules are similar to those in Section IV of[17].Then,we define the leader-following flocking problem for system(1)as follows.

    Problem 2Given the plant(1),the exosystem(4),any r> 0,∈∈(0,r)and R ∈[0,r? ∈),find a distributed control law of the form(5),such that,for any w∈W with W being some compact subset of Rnwand any initial condition qi(0),i=0,1,...,N,satisfying?qi(0)?qj(0)?> R for i≠ j,i,j=0,1,...,N,and making(0)connected,the closed-loop system composed of(1)and(5)has the following properties:

    3)Collision can be avoided among all agents,that is?qi(t)?qj(t)?> R for i,j=0,1,...,N,i≠ j and all t≥ 0.

    2.3 One assumption

    To solve the above two problems,we need one assumption as follows.

    Assumption 1The exosystem(4)is neutrally stable,i.e.,all the eigenvalues of S are semi-simple with zero real parts.

    Remark 2Under Assumption 1,the exosystem(4)can generate some fundamental types of reference signals and disturbance signals such as step signals,sinusoidal signals and their finite combinations.Moreover,under Assumption 1,given any compact set V0,there exists a compact set V such that,for any v(0)∈V0,the trajectory v(t)of the exosystem(4)remains in V for all t≥0.

    3 Leader-following rendezvous

    In this section,we will consider the leader-following rendezvous problem.We first recall the concept of the distributed observer for the leader system(4)proposed in[22]as follows:

    By Theorem 1 and Remark 4 of[22],under Assumption 1 and the condition that the graph(t)is fixed and connected,we haveexponentially.That is why(6)is called the distributed observer for(4).

    To achieve connectivity preservation,we will adopt the same potential function used in[17]as follows:

    Now we propose our distributed dynamic control law as follows:

    where kiis some positive constant,and

    with C1=[0nw×2nInw]and C2=[0n×nIn0n×nw].

    Letqi=qi?q0andpi=pi?p0for i=0,1,...,N.Note thatqi?qj=qi?qjandpi?pj=pi?pj.Thus,for i=1,...,N,we have

    which implies

    The closed-loop system composed of(1)and(10)is as follows:

    Under Assumption 1,by Remark 2,w∈W for all t≥0 with W being some compact subset of Rnw.Together withwe can conclude that there exists some smooth function?d(?v)≥0 such that,for all w∈W,

    Now we give our result as follows.

    Theorem1Under Assumption1,the leaderfollowing rendezvous problem for the multi-agent system composed of(1)and(4)is solvable by the distributed state feedback control law(10)with the potential function(9).

    ProofBy the continuity of the solution of the closedloop system(14),there exists 0<t1≤+∞such that(t)=(0)for all 0≤t<t1.Thus,ij(t)=ij(0)and H(t)=H(0)for all 0≤t<t1.Let

    Then,from(15)and(16),along the trajectory of the closed-loop system(14),for 0≤t<t1,we have

    Since the number of agents is finite,the number of connected graphs associated with these N+1 agents is also finite.Denote all connected graphs by{1,...,n0}and denote the H matrix associated with these connected graphs by{H1,...,Hn0}which are all symmetric and positive definite.Let

    Then,along the trajectory of the distributed observer(8),for 0≤t<t1,we have

    where λ1= λmax(ST+S)and λ2=min{λmin(H1),...,λmin(Hn0)}.Choose(λ1+1).Then,for 0 ≤ t<t1,we have

    Choosesomesmoothfunctionρ(??v?2)≥?C2?2+?d(?v)+1.Let

    Then,from(23)and(24),for 0≤t<t1,we have

    Finally,let

    Then,it can be seen that for all initial condition qi(0),i=0,1,...,N,that makes(0)connected,

    If t1=+∞,thenfor all t≥0,and thus(28)holds for all t≥0.

    for any t∈[ti,ti+1)with i=0,1,...,k,t0=0 and tk+1=+∞.

    Since V(t)≥0 is lower bounded,by(30),exists and for i=1,...,N,j∈i(tk)are bounded.Since the graphis connected for all t≥tk,qi?qjwith j∈are bounded and q0is bounded by Remark 2,we can easily obtain that qiis bounded for i=0,1,...,N.By Remark 2,v is bounded,thus?vi=v+?viis also bounded.From the second equation of(11),priis bounded for i=0,1,...,N.Then,fromthethirdequationof(11),piisalsobounded.By Remark 2,p0is bounded and thuspi=pi?p0is bounded.

    Next,we will show that¨V is bounded for all t≥tkwhich implies that˙V is uniformly continuous for all t≥ tk.Note that,for t≥ tk

    Now,for i=1,2,...,N,j=0,1,...,N and j≠i,and t≥0,let

    which can be further put into the following form:

    4 Leader-following f l ocking

    In this section,we will consider the leader-following flocking problem.The technique is similar to that used in Section 3.However,what makes the flocking problem different from rendezvous problem is that we need to avoid collision among agents.For this purpose,we need to use a different potential function as follows:

    which is similar to that in[9].Then,we give the result as follows.

    Theorem2Under Assumption1,the leaderfollowing flocking problem for the multi-agent system composed of(1)and(4)is solvable by the distributed state feedback control law(10)with the potential function(40).

    ProofThe proof is similar to the proof of Theorem1,the only difference is that we need to show that the collision can be avoided in the sense that?qi(t)?qj(t)?>R,i,j=0,1,...,N and i≠ j for all t≥ 0.

    If the collision happens at a finite time tl,which impliesV(t)=+∞.However,by(30),we have V(t)≤V(0)<+∞ for all t≥0,which makes the contradiction.Thus the collision can be avoided in the sense that?qi(t)?qj(t)?>R,i,j=0,1,...,N and i≠ j for all t≥ 0.

    Thus the proof is completed.

    5 An example

    In this section,we will apply our results to the leaderfollowing rendezvous/flocking problem for a group of van der Pol systems as follows:

    where qi=[q1i,q2i]T∈R2and pi=[p1i,p2i]T∈R2for i=1,...,4,w=[w1,w2]T,and

    Clearly,system(41)is in the form(1)with

    The exosystem is in the form(4)with

    Clearly,Assumption 1 is satisfied.

    The initial communication graph(0)is described by Fig.1 where node 0 is associated with the leader and other nodes are associated with the followers.

    Fig.1 The initial communication graph.

    5.1 Leader-following rendezvous

    By Theorem 1,we design a distributed state feedback control law of the form(10)with the potential function given by(9),r=3,∈=0.2,μ0=10 and ki=4 for i=1,2,3,4.

    Simulation is performed with

    and the following initial conditions:

    It is easy to see that the initial diagraph(0)is connected under the first five rules defined in Section 2.

    Figs.2,3 and 4 show that all followers approach the position of the leader asymptotically with the same velocity of the leader while preserving the connectivity,that is to say,the leader-following rendezvous problem for system(41)is solved by the distributed state feedback control law of the form(10)with the potential function given by(9).

    Fig.2 Distances between leader and all followers.

    Fig.3 Distances between all followers.

    Fig.4 Velocity errors between leader and all followers.

    5.2 Leader-following f l ocking

    By Theorem 2,we design a distributed state feedback control law of the form(10)with the potential function given by(40),r=3,R=1,∈=0.2,μ0=10 and ki=4 for i=1,2,3,4.

    Simulation is performed with the same θi,i=1,2,3,4,and initial conditions as given in the simulation for the leader-following rendezvous problem.It is also easy to see that the initial diagraph(0)is connected under the second five rules defined in Section2.

    Figs.5 and 6 show that the connectivity is preserved and the collision is avoided.Fig.7 further shows that the velocities of all followers approach the velocity of the leader asymptotically.That is to say,the leader-following flocking problem for system(41)is solved by the distributed state feedback control law of the form(10)with the potential function given by(40).

    Fig.5 Distances between leader and all followers.

    Fig.6 Distances between all followers.

    Fig.7 Velocity errors between leader and all followers.

    6 Conclusions

    In this paper,we have studied both the leaderfollowing rendezvous problem and flocking problem for a class of second-order nonlinear multi-agent systems.Compared with the existing results,our systems contain not only external disturbances but also parameter uncertainties,and the parameter uncertainties are allowed to be arbitrarily large.By combining the adaptive control technique,the distributed observer method and the potential function method,we have solved the two problems by the distributed state feedback control law.

    [1]A.Jadbabaie,J.Lin,A.S.Morse.Coordination of groups of mobile agents using nearest neighbor rules.IEEE Transactions on Automatic Control,2003,48(6):988–1001.

    [2]R.Olfati-Saber,R.M.Murray.Consensus problems in networks of agents with switching topology and time-delays.IEEE Transactions on Automatic Control,2004,49(9):1520–1533.

    [3]J.Hu,Y.Hong.Leader-following coordination of multi-agent systems with coupling time delays.Physica A:Statistical Mechanics and its Applications,2007,374(2):853–863.

    [4]W.Ren.On consensus algorithms for double-integrator dynamics.IEEE Transactions on Automatic Control,2008,53(6):1503–1509.

    [5]W.Liu,J.Huang.Adaptive leader-following consensus for a class of higher-order nonlinear multi-agent systems with directed switching networks.Automatica,2017,79:84–92.

    [6]M.Ji,M.Egerstedt.Distributed coordination control of multiagent systems while preserving connectedness.IEEE Transactions on Robotics,2007,23(4):693–703.

    [7]D.V.Dimarogonas,S.G.Loizou,K.J.Kyriakopoulos,et al.A feedback stabilization and collision avoidance scheme for multipleindependentnon-pointagents.Automatica,2006,42(2):229–243.

    [8]M.M.Zavlanos,G.J.Pappas.Potential fields for maintaining connectivity of mobile networks.IEEE Transactions on Robotics,2007,23(4):812–816.

    [9]M.M.Zavlanos,A.Jadbabaie,G.J.Pappas.Flocking while preserving network connectivity.Proceedings of the 46th IEEE Conference on Decision and Control,New Orleans:IEEE,2007:2919–2924.

    [10]H.Su,X.Wang,G.Chen.Rendezvous of multiple mobile agents with preserved network connectivity.Systems&Control Letters,2010,59(5):313–322.

    [11]Y.Dong,J.Huang.Flocking with connectivity preservation of multiple double integrator systems subject to external disturbances by a distributed control law.Automatica,2015,55:197–203.

    [12]T.Gustavi,D.V.Dimarogonas,M.Egerstedt,et al.Sufficient conditions for connectivity maintenance and rendezvous in leader-follower networks.Automatica,2010,46(1):133-139.

    [13]Y.Cao,W.Ren.Distributed coordinated tracking with reduced interaction via a variable structure approach.IEEE Transactions on Automatic Control,2012,57(1):33–48.

    [14]H.Su,X.Wang,Z.Lin.Flocking of multi-agents with a virtual leader.IEEE Transactions on Automatic Control,2009,54(2):293–307.

    [15]Y.Dong,J.Huang.A leader-following rendezvous problem of double integrator multi-agent systems.Automatica,2013,49(5):1386–1391.

    [16]Y.Su.Leader-following rendezvous with connectivity preservation and disturbance rejection via internal model approach.Automatica,2015,57:203–212.

    [17]Y.Dong,J.Huang.Leader-following consensus with connectivity preservation of uncertain Euler-lagrange multi-agent systems.Proceedings of the 53rd IEEE Conference on Decision and Control,Los Angeles:IEEE,2014:3011–3016.

    [18]M.Wang,H.Su,M.Zhao,et al.Flocking of multiple autonomous agents with preserved network connectivity and heterogeneous nonlinear dynamics.Neurocomputing,2013,115:169–177.

    [19]Q.Zhang,P.Li,Z.Yang,et al.Adaptive flocking of non-linear multi-agents systems with uncertain parameters.IET Control Theory and Applications,2015,9(3):351–357.

    [20]P.Yu,L.Ding,Z.Liu,et al.Leader-follower flocking based on distributed envent-triggered hybrid control.International Journal of Robust and Nonlinear Control,2016,26(1):143–153.

    [21]W.Liu,J.Huang.Leader-following rendezvous and flocking for second-order nonlinear multi-agent systems.The4th International Conference on Control,Decision and Information Technologies,Barcelona,Spain,2017.

    [22]Y.Su,J.Huang.Cooperative output regulation of linear multiagent systems.IEEE Transactions on Automatic Control,2012,57(4):1062–1066.

    [23]Z.Chen,J.Huang.Stabilization and Regulation of Nonlinear Systems:A Robust and Adaptive Approach.Switzerland:Springer,2015.

    27 June 2017;revised 1 September 2017;accepted 1 September 2017

    DOIhttps://doi.org/10.1007/s11768-017-7083-0

    ?Corresponding author.

    E-mail:jhuang@mae.cuhk.edu.hk.Tel.:+852-39438473;fax:+852-26036002.

    This paper is dedicated to Professor T.J.Tarn on the occasion of his 80th birthday.

    This work was supported by the Research Grants Council of the Hong Kong Special Administration Region(No.14200515).

    ?2017 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag GmbH Germany

    Wei LIUreceived the B.Eng.degree in 2009 from Southeast University,Nanjing,China,the M.Eng.degree in 2012 from University of Science and Technology of China,Hefei,China,and the Ph.D.degree in 2016 from The Chinese University of Hong Kong,Hong Kong,China.He is currently a Postdoctoral Fellow at The Chinese University of Hong Kong.His research interests include output regulation,event-triggered control,nonlinear control,multi-agent systems,and switched systems.E-mail:wliu@mae.cuhk.edu.hk.

    Jie HUANGis Choh-Ming Li professor and chairman of the Department of Mechanical and Automation Engineering,The Chinese University of Hong Kong,Hong Kong,China.His research interests include nonlinear control theory and applications,multi-agent systems,and flight guidance and control.Dr.Huang is a Fellow of IEEE,IFAC,CAA,and HKIE.E-mail:jhuang@mae.cuhk.edu.hk.

    国产v大片淫在线免费观看| 在线观看66精品国产| 国内久久婷婷六月综合欲色啪| 99热这里只有是精品在线观看| 男人和女人高潮做爰伦理| 亚洲va在线va天堂va国产| 久久久久九九精品影院| 免费观看的影片在线观看| 亚洲精华国产精华精| 亚洲精华国产精华精| 一区二区三区免费毛片| 99久久无色码亚洲精品果冻| 亚洲最大成人av| 欧美精品国产亚洲| 国产精品一区二区三区四区久久| 我的女老师完整版在线观看| 少妇丰满av| 久久这里只有精品中国| 国产精品国产三级国产av玫瑰| 久久久久久久久久黄片| or卡值多少钱| 欧美日韩乱码在线| 国产精品日韩av在线免费观看| 久久久久久大精品| 国产 一区精品| 国产一区二区三区在线臀色熟女| a级毛片a级免费在线| 久久精品综合一区二区三区| 欧美成人免费av一区二区三区| 男女之事视频高清在线观看| 日本精品一区二区三区蜜桃| 亚洲一级一片aⅴ在线观看| 国产精品国产三级国产av玫瑰| 国产一区二区激情短视频| 最近中文字幕高清免费大全6 | 国产中年淑女户外野战色| 美女高潮的动态| 欧美极品一区二区三区四区| 亚洲av电影不卡..在线观看| 中文字幕免费在线视频6| 亚洲av不卡在线观看| 最后的刺客免费高清国语| 国产亚洲精品久久久com| 成人av在线播放网站| 一进一出抽搐动态| 99热这里只有是精品在线观看| 啦啦啦啦在线视频资源| 欧美丝袜亚洲另类 | 欧美又色又爽又黄视频| 自拍偷自拍亚洲精品老妇| 搡老岳熟女国产| 九九久久精品国产亚洲av麻豆| 97超视频在线观看视频| 免费高清视频大片| 日本爱情动作片www.在线观看 | 国产精品久久久久久av不卡| 美女cb高潮喷水在线观看| 好男人在线观看高清免费视频| 久久久国产成人免费| 麻豆成人av在线观看| 国产一级毛片七仙女欲春2| 国产三级中文精品| 97人妻精品一区二区三区麻豆| 一级黄色大片毛片| 成人特级黄色片久久久久久久| 亚洲av中文av极速乱 | 国产精品一区www在线观看 | 亚洲 国产 在线| 久久欧美精品欧美久久欧美| 91av网一区二区| 久久久久久久久大av| 91久久精品国产一区二区三区| 91久久精品国产一区二区三区| 亚洲国产精品成人综合色| 给我免费播放毛片高清在线观看| 成人av在线播放网站| 在线看三级毛片| 亚洲男人的天堂狠狠| 成人综合一区亚洲| 亚洲午夜理论影院| 国内精品一区二区在线观看| 成年版毛片免费区| 亚洲一区二区三区色噜噜| 99国产极品粉嫩在线观看| 日本与韩国留学比较| 亚洲美女黄片视频| 精品一区二区免费观看| 亚洲熟妇熟女久久| 亚洲无线在线观看| 欧美激情在线99| 成人无遮挡网站| 久久久色成人| xxxwww97欧美| 精品午夜福利视频在线观看一区| 国产色爽女视频免费观看| 中国美白少妇内射xxxbb| 欧美日韩瑟瑟在线播放| 两个人的视频大全免费| 久久精品夜夜夜夜夜久久蜜豆| 99热只有精品国产| or卡值多少钱| 免费大片18禁| 性色avwww在线观看| 91麻豆av在线| 国产色婷婷99| 国产精品国产高清国产av| 日韩欧美 国产精品| 色噜噜av男人的天堂激情| 精品久久久久久久久av| 免费观看人在逋| 日本 欧美在线| 国产成人av教育| 日本在线视频免费播放| 高清在线国产一区| 在线播放无遮挡| 夜夜看夜夜爽夜夜摸| 91久久精品电影网| 日本与韩国留学比较| 88av欧美| 一夜夜www| 久久九九热精品免费| 国内精品久久久久久久电影| 成年女人毛片免费观看观看9| 精品久久久久久成人av| 午夜视频国产福利| 亚洲av二区三区四区| 日韩精品青青久久久久久| 国产一区二区在线观看日韩| 91麻豆精品激情在线观看国产| 久久久久久久午夜电影| 我要搜黄色片| 性色avwww在线观看| 一级av片app| 亚洲在线自拍视频| 欧美最黄视频在线播放免费| 少妇熟女aⅴ在线视频| 国产高清视频在线播放一区| 草草在线视频免费看| 俄罗斯特黄特色一大片| 久久天躁狠狠躁夜夜2o2o| 麻豆成人午夜福利视频| 精品久久久久久成人av| 国产亚洲精品av在线| 国内精品美女久久久久久| 亚洲欧美日韩无卡精品| 精品午夜福利在线看| av视频在线观看入口| 国产精品嫩草影院av在线观看 | 伊人久久精品亚洲午夜| 一级黄色大片毛片| 神马国产精品三级电影在线观看| 免费av毛片视频| 国产精品女同一区二区软件 | 熟女电影av网| 无遮挡黄片免费观看| 麻豆国产97在线/欧美| 男插女下体视频免费在线播放| 99久国产av精品| 看片在线看免费视频| 黄色一级大片看看| 日韩精品青青久久久久久| 久久中文看片网| 男女之事视频高清在线观看| 精品人妻熟女av久视频| 国内久久婷婷六月综合欲色啪| 在线播放无遮挡| 1000部很黄的大片| 91午夜精品亚洲一区二区三区 | 久久精品国产亚洲网站| 老女人水多毛片| 欧美不卡视频在线免费观看| 欧美+亚洲+日韩+国产| 无遮挡黄片免费观看| 亚洲一级一片aⅴ在线观看| 一区二区三区四区激情视频 | 国产三级在线视频| 国产成年人精品一区二区| 日日干狠狠操夜夜爽| 欧美xxxx性猛交bbbb| 亚洲精品乱码久久久v下载方式| 中文资源天堂在线| 久久精品91蜜桃| 3wmmmm亚洲av在线观看| av在线天堂中文字幕| 1024手机看黄色片| 中文字幕免费在线视频6| 在线播放无遮挡| 午夜福利高清视频| 国产精品人妻久久久影院| 性插视频无遮挡在线免费观看| 男人狂女人下面高潮的视频| 天堂av国产一区二区熟女人妻| 看十八女毛片水多多多| av中文乱码字幕在线| 天堂动漫精品| 国产精品久久视频播放| 最新在线观看一区二区三区| 日本一本二区三区精品| 变态另类成人亚洲欧美熟女| 2021天堂中文幕一二区在线观| 欧美一区二区国产精品久久精品| 国产精品嫩草影院av在线观看 | 不卡视频在线观看欧美| 大型黄色视频在线免费观看| 高清日韩中文字幕在线| 一个人观看的视频www高清免费观看| 女人被狂操c到高潮| 中文字幕av在线有码专区| 国产乱人视频| 国产一区二区亚洲精品在线观看| 性色avwww在线观看| 国产精品永久免费网站| 欧美精品啪啪一区二区三区| 色在线成人网| 亚洲av日韩精品久久久久久密| 99在线视频只有这里精品首页| 亚洲国产精品久久男人天堂| 色5月婷婷丁香| 国产女主播在线喷水免费视频网站 | 老熟妇仑乱视频hdxx| 久久中文看片网| 性色avwww在线观看| 亚洲第一电影网av| av天堂中文字幕网| av国产免费在线观看| 女人十人毛片免费观看3o分钟| 一级av片app| 久久精品国产亚洲av涩爱 | 日韩大尺度精品在线看网址| 亚洲中文字幕日韩| 国产精品,欧美在线| 亚洲四区av| 亚洲欧美日韩高清在线视频| 精品人妻偷拍中文字幕| 十八禁网站免费在线| 少妇人妻精品综合一区二区 | 日日撸夜夜添| 国产成人影院久久av| av黄色大香蕉| 网址你懂的国产日韩在线| 美女免费视频网站| 欧美日韩乱码在线| 欧美丝袜亚洲另类 | 欧美性猛交黑人性爽| 亚洲国产色片| 大又大粗又爽又黄少妇毛片口| 动漫黄色视频在线观看| 高清日韩中文字幕在线| 中国美女看黄片| 亚洲精品乱码久久久v下载方式| 久久久久国产精品人妻aⅴ院| 一级a爱片免费观看的视频| 中文字幕熟女人妻在线| 夜夜夜夜夜久久久久| 色5月婷婷丁香| 精品久久久久久久久亚洲 | 国产精品98久久久久久宅男小说| 热99在线观看视频| 69av精品久久久久久| 久久人妻av系列| 永久网站在线| 久久久久久久午夜电影| 18禁黄网站禁片午夜丰满| av专区在线播放| 精品一区二区三区人妻视频| 国产精品久久久久久精品电影| 免费观看的影片在线观看| 精品久久久噜噜| 日韩精品青青久久久久久| 欧美性猛交╳xxx乱大交人| 两人在一起打扑克的视频| 日韩精品中文字幕看吧| 黄片wwwwww| 欧美性感艳星| 美女高潮的动态| 天天一区二区日本电影三级| 久久精品久久久久久噜噜老黄 | 久久久国产成人精品二区| 黄色配什么色好看| 男女下面进入的视频免费午夜| 久久久久国内视频| 亚洲va日本ⅴa欧美va伊人久久| 深夜a级毛片| 亚洲黑人精品在线| 最近最新中文字幕大全电影3| 欧美三级亚洲精品| 天堂动漫精品| 亚洲国产色片| 搞女人的毛片| 日韩欧美一区二区三区在线观看| 毛片女人毛片| 国产精品不卡视频一区二区| 精品国产三级普通话版| 在现免费观看毛片| 中国美白少妇内射xxxbb| 男女下面进入的视频免费午夜| 毛片女人毛片| 中文资源天堂在线| 久久婷婷人人爽人人干人人爱| 国产亚洲av嫩草精品影院| 久久久久久久久中文| 热99在线观看视频| 日韩亚洲欧美综合| 国产伦在线观看视频一区| 亚洲综合色惰| 欧美xxxx性猛交bbbb| 黄色配什么色好看| 国产亚洲91精品色在线| 麻豆av噜噜一区二区三区| 免费av不卡在线播放| 亚洲熟妇熟女久久| 91精品国产九色| 免费观看在线日韩| 国内毛片毛片毛片毛片毛片| 九色国产91popny在线| 村上凉子中文字幕在线| 禁无遮挡网站| 欧美激情国产日韩精品一区| 国产精品久久久久久亚洲av鲁大| 日韩国内少妇激情av| 日韩欧美三级三区| 最近在线观看免费完整版| 中文字幕高清在线视频| 国产 一区精品| 99riav亚洲国产免费| 成人欧美大片| 91狼人影院| 日韩精品青青久久久久久| 最近最新免费中文字幕在线| 日日摸夜夜添夜夜添小说| av国产免费在线观看| 男人和女人高潮做爰伦理| 日韩,欧美,国产一区二区三区 | 日韩欧美精品v在线| 国模一区二区三区四区视频| 可以在线观看毛片的网站| 深夜a级毛片| 国产成人影院久久av| 在线国产一区二区在线| 欧美bdsm另类| 亚洲欧美日韩高清专用| 精品久久久久久久人妻蜜臀av| 成年女人看的毛片在线观看| a级毛片免费高清观看在线播放| 久久久色成人| av专区在线播放| 国产主播在线观看一区二区| 精品人妻熟女av久视频| 一个人看的www免费观看视频| 十八禁网站免费在线| 亚洲avbb在线观看| 中文字幕av成人在线电影| 欧美成人一区二区免费高清观看| 看黄色毛片网站| 一进一出好大好爽视频| 色视频www国产| 国产一级毛片七仙女欲春2| 最后的刺客免费高清国语| 亚洲专区国产一区二区| 日本 欧美在线| 国语自产精品视频在线第100页| 狠狠狠狠99中文字幕| 搞女人的毛片| 丝袜美腿在线中文| 三级男女做爰猛烈吃奶摸视频| 最近最新免费中文字幕在线| 在线天堂最新版资源| 久久久久九九精品影院| 国内精品美女久久久久久| 日本欧美国产在线视频| 麻豆久久精品国产亚洲av| 日本欧美国产在线视频| 在线观看av片永久免费下载| 麻豆精品久久久久久蜜桃| 亚洲精品一区av在线观看| x7x7x7水蜜桃| 亚洲精品日韩av片在线观看| 免费黄网站久久成人精品| 男人舔女人下体高潮全视频| av黄色大香蕉| 国产亚洲91精品色在线| 少妇的逼水好多| a级毛片a级免费在线| 亚洲成av人片在线播放无| 99九九线精品视频在线观看视频| 熟妇人妻久久中文字幕3abv| 少妇猛男粗大的猛烈进出视频 | 在线播放无遮挡| 18禁在线播放成人免费| 久久久久国产精品人妻aⅴ院| 欧美在线一区亚洲| 欧美区成人在线视频| 春色校园在线视频观看| 我的老师免费观看完整版| 乱系列少妇在线播放| 日韩欧美国产一区二区入口| 免费看日本二区| 国产一区二区在线观看日韩| 久久精品国产亚洲av天美| 99久久精品热视频| 精品久久久噜噜| 麻豆国产97在线/欧美| 小蜜桃在线观看免费完整版高清| 欧美性猛交╳xxx乱大交人| 亚洲,欧美,日韩| 男女之事视频高清在线观看| 欧美激情久久久久久爽电影| 国产成人影院久久av| 一个人看的www免费观看视频| 日韩欧美精品免费久久| 不卡一级毛片| 精品无人区乱码1区二区| 久久人人精品亚洲av| 免费看av在线观看网站| 草草在线视频免费看| 亚洲图色成人| 免费高清视频大片| 成人一区二区视频在线观看| 狂野欧美激情性xxxx在线观看| 亚洲国产日韩欧美精品在线观看| 国产伦人伦偷精品视频| h日本视频在线播放| 高清毛片免费观看视频网站| 国产免费一级a男人的天堂| 51国产日韩欧美| 亚洲美女黄片视频| 亚洲图色成人| 久久精品影院6| 免费av观看视频| 日韩欧美免费精品| 国产黄片美女视频| 久久国内精品自在自线图片| 日韩精品青青久久久久久| 国产单亲对白刺激| 婷婷六月久久综合丁香| 黄色欧美视频在线观看| 国产精品自产拍在线观看55亚洲| 日韩精品中文字幕看吧| 美女cb高潮喷水在线观看| 国内少妇人妻偷人精品xxx网站| 97超级碰碰碰精品色视频在线观看| 深夜a级毛片| 日本在线视频免费播放| 国产高清视频在线观看网站| 亚洲精华国产精华液的使用体验 | a级毛片a级免费在线| 国产免费男女视频| 性色avwww在线观看| 成人av一区二区三区在线看| 性欧美人与动物交配| 男女下面进入的视频免费午夜| 国产aⅴ精品一区二区三区波| 亚洲精品粉嫩美女一区| 精品久久久久久久久久久久久| 免费电影在线观看免费观看| 成人精品一区二区免费| 亚洲av第一区精品v没综合| av天堂中文字幕网| 乱系列少妇在线播放| 亚洲美女黄片视频| 级片在线观看| 色综合站精品国产| 亚洲va日本ⅴa欧美va伊人久久| 一区二区三区免费毛片| 亚洲国产高清在线一区二区三| 亚洲av免费高清在线观看| 在线观看av片永久免费下载| 女的被弄到高潮叫床怎么办 | netflix在线观看网站| 久久6这里有精品| 亚洲国产高清在线一区二区三| 狂野欧美白嫩少妇大欣赏| av国产免费在线观看| 国产综合懂色| 久久久精品欧美日韩精品| 婷婷亚洲欧美| 精品一区二区三区视频在线| 日本与韩国留学比较| 久久久久久久久久久丰满 | 男女那种视频在线观看| 亚洲最大成人av| 白带黄色成豆腐渣| 真人一进一出gif抽搐免费| 国产精品综合久久久久久久免费| 国产v大片淫在线免费观看| 国产精品,欧美在线| 少妇的逼水好多| 69av精品久久久久久| 999久久久精品免费观看国产| aaaaa片日本免费| 草草在线视频免费看| 啦啦啦韩国在线观看视频| 欧美一区二区亚洲| 中文亚洲av片在线观看爽| 无人区码免费观看不卡| 婷婷六月久久综合丁香| a级一级毛片免费在线观看| 亚洲av第一区精品v没综合| av.在线天堂| 亚洲人成伊人成综合网2020| 久久99热这里只有精品18| 欧美最黄视频在线播放免费| 亚洲av第一区精品v没综合| 日本黄色视频三级网站网址| 夜夜夜夜夜久久久久| 亚洲av.av天堂| 麻豆一二三区av精品| 日韩av在线大香蕉| 欧美一区二区精品小视频在线| 99久国产av精品| 五月玫瑰六月丁香| 欧美+日韩+精品| 男人的好看免费观看在线视频| av天堂在线播放| 亚洲国产精品久久男人天堂| 久久久久久久午夜电影| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产色片| 国产不卡一卡二| 日日夜夜操网爽| 久久久久久久精品吃奶| 久久久久久九九精品二区国产| 老司机午夜福利在线观看视频| 色吧在线观看| 亚洲,欧美,日韩| 禁无遮挡网站| 美女大奶头视频| 午夜精品一区二区三区免费看| 一个人免费在线观看电影| 午夜福利在线观看免费完整高清在 | 免费不卡的大黄色大毛片视频在线观看 | 久久精品国产亚洲av涩爱 | 18禁裸乳无遮挡免费网站照片| 亚洲精品在线观看二区| 国产又黄又爽又无遮挡在线| 日韩欧美免费精品| 国内精品美女久久久久久| 国产v大片淫在线免费观看| 波多野结衣高清作品| 熟妇人妻久久中文字幕3abv| 亚洲av免费高清在线观看| 一级a爱片免费观看的视频| 日韩大尺度精品在线看网址| 久久久久久久精品吃奶| 久久精品人妻少妇| 日本在线视频免费播放| 国产精品精品国产色婷婷| 欧美最新免费一区二区三区| 欧美色欧美亚洲另类二区| 久久中文看片网| 欧美激情国产日韩精品一区| 国产欧美日韩一区二区精品| 少妇丰满av| 窝窝影院91人妻| 免费人成视频x8x8入口观看| 亚洲精品亚洲一区二区| 一本精品99久久精品77| 欧美性感艳星| 日本黄大片高清| 国产v大片淫在线免费观看| 国产黄a三级三级三级人| 一个人看的www免费观看视频| 国产中年淑女户外野战色| 国产精品一及| 国产成人一区二区在线| 欧美色视频一区免费| 一区福利在线观看| 少妇的逼水好多| 国产成人影院久久av| 精品人妻视频免费看| 免费人成在线观看视频色| 性插视频无遮挡在线免费观看| 欧美又色又爽又黄视频| 男女那种视频在线观看| 亚洲欧美日韩卡通动漫| 亚洲精品亚洲一区二区| 国产综合懂色| 狠狠狠狠99中文字幕| 大型黄色视频在线免费观看| 一本精品99久久精品77| 嫩草影院新地址| 国产乱人视频| 国产 一区 欧美 日韩| 最近中文字幕高清免费大全6 | 国产精华一区二区三区| 精品久久久久久久久亚洲 | 毛片一级片免费看久久久久 | 熟女人妻精品中文字幕| 久久久久久伊人网av| 成人永久免费在线观看视频| 在现免费观看毛片| 搡女人真爽免费视频火全软件 | 九九在线视频观看精品| 老司机午夜福利在线观看视频| 亚洲国产欧美人成| 在线天堂最新版资源| 亚洲av不卡在线观看| 亚洲最大成人av| 精品一区二区三区人妻视频| 亚洲精品乱码久久久v下载方式| 美女xxoo啪啪120秒动态图| 国产女主播在线喷水免费视频网站 | 免费观看精品视频网站| 中亚洲国语对白在线视频| 亚洲欧美日韩无卡精品| 天堂av国产一区二区熟女人妻| 嫁个100分男人电影在线观看| 3wmmmm亚洲av在线观看| 亚洲精华国产精华液的使用体验 | 亚洲va在线va天堂va国产| 少妇人妻一区二区三区视频| 亚洲av中文字字幕乱码综合| 午夜福利视频1000在线观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲午夜理论影院|