• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distributed and recursive blind channel identification to sensor networks

    2017-12-22 06:12:00RuiLIUHanFuCHEN
    Control Theory and Technology 2017年4期

    Rui LIU,Han-Fu CHEN

    Key Laboratory of Systems and Control,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China

    Distributed and recursive blind channel identification to sensor networks

    Rui LIU?,Han-Fu CHEN

    Key Laboratory of Systems and Control,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China

    In this paper,the distributed and recursive blind channel identification algorithms are proposed for single-input multi-output(SIMO)systems of sensor networks(both time-invariant and time-varying networks).At any time,each agent updates its estimate using the local observation and the information derived from its neighboring agents.The algorithms are based on the truncated stochastic approximation and their convergence is proved.A simulation example is presented and the computation results are shown to be consistent with theoretical analysis.

    Blind channel identification,distributed and recursive algorithm,truncated stochastic approximation,sensor networks

    1 Introduction

    Because of its potential application in wireless communication and other areas,blind channel identification has attracted great research interest in signal processing and communication(see,e.g.,[1,2]),and many estimation algorithms have been proposed(see,e.g.,[3–11]).Most results published so far are concerned with the centralized algorithms,i.e.,the estimation for channel coefficients is carried out after having output data of all channels been collected.In contrast to this,motivated by the emergence of large-scale and inexpensive sensor networks,the distributed algorithms are proposed in the recent papers[10,11],where the estimate for channel coefficients is updated by using the local observation and the information derived from neighboring agents.As discussed in[12],compared with the centralized approach,the distributed approach is more robust,better to protect privacy,easier to be extended,less complicated in computation,and less expansive in communication.

    For system parameter estimation,there usually are two approaches:block algorithms and on-line recursive algorithms.This is also the case for blind channel identification.For the block algorithms(see,e.g.,[3,5,6]),a block of data samples is collected first and then processed together to obtain the estimate.It is clear that the block algorithms require huge storage space and endure heavy instantaneous computational burden.Several on-line recursive algorithms have been proposed,such as adaptive least squares smoothing algorithm[7]and stochastic approximation based algorithm[8,9].

    In this paper,we develop the distributed and recursive blind identification algorithms for SIMO systems of sensor networks for both time-invariant and time-varying networks.Compared with the existing works,the proposed approach can handle more complicated situations,for example,not only noise-free but also noisy observations;not only deterministic but also statistic input signals;not only the time-invariant but also the randomly time-varying sensor networks.The algorithms proposed in the paper are recursive and they have the obvious advantage over the block algorithms,because they are continuously improving the estimate while receiving new signals and they require less computation.

    The main thought is to design a global function,which is a sum of local functions and whose root is the parameters to be estimated.Consequently,parameter estimation for blind identification is transformed to a distributed stochastic approximation problem.To achieve this,a diagonal matrix is designed for sensor networks,and the local function for each sensor is obtained with the help of the designed matrix.Each sensor estimates the root by the observations of local functions(with or without noise)and information derived from its neighbors.

    The proposed algorithms are based on the distributed truncated stochastic approximation algorithm and convergence of the algorithms is proved for the following four cases:a)time-invariant network with finite number of noise-free observations;b)time-invariant network with finite number of noisy observations;c)timeinvariant network with infinite number of noisy observations;and d)time-varying network with infinite number of noisy observations.A simulation example is presented and it is shown that the computation results are consistent with theoretical analysis.

    This paper is organized as follows.Section2 presents the blind channel identification problem of sensor networks.In Section3,the problem is transformed to root seeking for an unknown function.Identifiability of parameters is discussed in Section4.The estimation algorithms and their convergence are presented in Section5.A simulation example is presented in Section6and some concluding remarks are given in Section7.

    The following notations will be used throughout this paper.Am×nrepresents an m × n-dimensional matrix with its elements denoted as aij(i=1,2,...,m;j=1,2,...,n).Particularly,Inrepresents an n×n dimensional identity matrix,1n×1represents an n dimensional vector with all entries equal to 1,0n×1represents an n-dimensional vector with all entries equal to 0.Rm×ndenotes the set of m × n-dimensional real matrices.?denotes the Kronecker product[13].For a given vector or matrix x,xTdenotes its transpose,?x?denotes its Euclidean norm.E(x)stands for the expectation of a random variable x,and tr(A)is the trace of a square matrix A.

    2 Problem formulation

    Consider a system consisting of N finite impulse response(FIR)channels with L being the maximum order of the channels.Let sk,k=0,1,2,...,M,be one dimensional input signal,andk=L,L+1,...,M,be the output signal,where M is the number of samples and may not be fixed;the superscript(i)denotes the output signal of the ith channel,and the subscript k is the time index.Then

    are unknown channel coefficients.Denote by

    the coefficients of the ith channel,i=1,2,...,N,and by a long vector

    the coefficients of the whole system.

    Assume the observation of the output is corrupted by noise,and the observation at time k is

    where

    is the observation noise and where

    The problem of the distributed blind channel identification is to estimate h?at any i∈ V={1,2,...,N}on the basis of its local observation and the information obtained from its neighbors.Let us denote by h(ki)the estimate for h?given by sensor i at time k.It is desired that all estimates h(i)ki=1,2,...,N as k→∞tend to the same limit equal to h?possibly with a constant multiplier.

    The information exchanging among the N sensors at time k is described by a digraph G(k)=(V,E(k),A(k)),where V={1,2,...,N}denotes the node set with node i representing sensor i;E(k)?V×V is the edge set with(j,i)∈E(k)if sensor i can obtain information from sensor j at time k by assuming(i,i)∈E(k);is the associated adjacent matrix with aij(k)>0 if and only if(j,i)∈E(k),and aij(k)=0 otherwise.Denote by Ni(k)={j∈ V|(j,i)∈E(k)}={j(1i)(k),...,j(nii)(k)}the neighbors(neighboring sensors)of sensor i at time k.

    A time-independent digraph G=(V,E,A)is called strongly connected if for any i,j∈V there exists a directed path from i to j.By this we mean a sequence of edges(i,i1),(i1,i2),...,(ip?1,j)in the digraph with distinct nodes ik∈V ?k:0≤l≤ p?1,where pis called the length of the directed path.A non-negative square matrix A is called doubly stochastic if A1=1,1TA=1T.

    3 Transforming problem to root-seeking

    In the case of the centralized channel parameter estimation,i.e.,the estimation is based on output data of all channels,it is known that the problem in question can be transformed to root-seeking of a linear regression function[8,9].Let us briefly describe the approach.

    For any i∈V,equation(1)can be written as

    with z being the backward shift operator

    From equation(3),we have

    Using the output data of the ith and jth channels,the above set of equations can be written in a matrix form

    is an(L+1)× (L+1)–dimensional matrix ?k=3L,3L+1,...,M.

    Using all the output data of the system,we have

    Therefore,to estimate h?is equivalent to find the root of(6).

    We are now in the distributed estimation situation.In a network,sensor i can only receive the information from itself and its neighboring sensors.Can the problem still be transformed to root-seeking for some regression functions?We state the answer as a theorem.

    Theorem 1The distributed channel estimation of h?can be transformed to distributed seeking root h?of the following function:

    where f(i)(h)=R(i)h is a linear function observed possibly with noise by sensor i at h(ki)at time k.

    ProofLet us first consider the case where the number of input signals is finite and the observation is free of noise.

    It is clear that whether or not the functioncan be observed by sensor i atat time k it depends on the digraph G(k).At time k,the answer is positive if and only if both sensors p and q are the neighbors of i,which in turn is equivalent to aip(k)aiq(k)>0.Based on this observation,we define the following-dimensionaldiagonal matrixconsisting of diagonal sub-matrices.Each of them is an L+1-dimensional identity matrix multiplied by a coefficient.The total number of coefficients is,which are as follows:

    where I[inequality]is an indicator function,i.e.,I[inequality]=1 if the inequality is satisfied,otherwise,I[inequality]=0.Thus,we have

    ?i=1,2,...,N,k=3L,3L+1,...,M.

    Since recursive algorithms cannot reach the true value in a finite number of steps,we need to repeatedly use the data.Set

    The sequence is periodical with period length equal to M?3L+1.

    Define

    and set

    Therefore,h?is a root of the following function:

    In the noisy observation case(2),similar to X(ki)and Φk,we define Y(ki)and Ψk,and Nk(i)and Ξk,which have the same structure as X(ki)and Φkbut with x(ki)replaced byrespectively.By(2)we have

    Thus,the corresponding observation noiseis

    In the case of infinite number of input signals,assuming that for any i∈ V,satisfies the ergodicity property:

    we then have that h?is a root of equation(9),but the observationis with noise(12).

    4 Identifiability

    When the centralized algorithms are concerned,the sufficient conditions for identifiability of the SIMO system with deterministic input signal are presented in[6],while with statistical input signal in[8].In these papers,two issues were considered:a)the conditions for channel to be identifiable and b)the conditions for inputs to be informative.Since we are planning to propose a distributed algorithm,the conditions on the sensor networks should also be taken into consideration.

    Let us list conditions to be used.

    Conditions on channels and sensors are as follows:

    In this section,we consider under which conditions equation(9)has a unique solution,or what types of sensor networks,channels,and input signals are identifiable.

    A2)h(j)(z),j=1,2,...,p given by(3)have no common factor.

    A3)The(M?2L+1)×(2L+1)-dimensional Hankel matrix(2L+1)is of full rank(=2L+1),which is formed from the input sequence{s0,s1,...,sM,M≥4L}as follows:

    For the sequence of infinite number of input data{sk}k≥0,we need the following condition:

    A4)The input{sk}k≥0is a sequence of mutually independent random variables with E?sk?2≠0.

    The conditions on the graph are as follows:

    B1)For the time-invariant sensor networksthe graph G is strongly connected and the associated adjacent matrix A is a doubly stochastic matrix.

    B2)For the time-varying sensor networks G(k),

    a)A(k),k≥1 are doubly stochastic matrices;

    b)there exists a constant 0<θ<1 such that

    where

    d)there exists a positive integer B such that

    for all(j,i)∈E∞and any k≥ 0.

    Lemma 1Assume B1,A2,and A3 hold.Thenis the unique nonzero vector simultaneously satisfying

    ProofAssume there is another solution

    Similar to h(i)(z),let us define(i)(z).From(15)it follows that

    By(3),we then have

    From here it follows that

    where by h(i,j)we denote the(2L+1)-dimensional vector composed of coefficients of the polynomial(i)(z)kh(j)(z)?(j)(z)h(i)(z)written in the form of increasing orders of z.

    For a fixed j,(16)is valid for all i∈Nj,i≠ j.Therefore,all roots of h(j)(z)should be roots of(j)(z)h(i)(z).By Assumption 3,all roots of h(j)(z)must be roots of(j)(z).Consequently,there is a constant cjsuch that(j)(z)=cjh(j)(z),?j=1,...,N.Substituting this into(16)leads to

    and hence ci=cj,?(i,j)∈ {(i,j)|i≠ j,ai,j> 0,i,j=1,2,...,N}.

    Then by B1),there exists a directed path from p to q,and hence cp=cq=c,?p,q=1,2,...,N.Thus,we conclude that

    If the input signal{sk}is a sequence of infinitely many mutually independent random variables,then we have the following lemma.

    Lemma2AssumeB1),A2),andA4)hold.Thenis the unique unit eigenvector corresponding to zero eigenvalue for the matrices

    and the rank of Bj,kis N(L+1)?1.

    ProofSince{si}is a sequence of mutually independent random variables and E|si|2≠0,it follows that

    is a(2L+1)×(2L+1)-dimensional matrix.

    Proceeding along the lines of the proof of Lemma 1,we arrive at

    This show s that Bj,kis of rank N(L+1)?1?j≥ 0,?k≥ 0,andis the unique unit eigenvector corresponding to the zero eigenvalue.

    Remark 1For the time-varying sensor networks G(k)Lemmas 1 and 2 are still valid if B1)is replaced by B2)in their formulation.

    5 Estimation algorithms and their convergence

    In Theorem 1 the blind channel identification problem is converted to seeking root of the sum function(9).The algorithms for solving this problems are based on the distributed stochastic approximation with fixed truncation given in the appendix.

    In the noise-free case,we take an initial value h3L?1≠0.For any i∈V,the estimate is generated by the following algorithm:

    In the noisy observation case,the estimate is generated by the following algorithm:

    We need the following conditions.

    C1){ηk}is a sequence of mutually independent random variables with

    where γ is given in C1).

    C3){sk}and{ηk}are mutually independent and each of them is a sequence of mutually independent random variables such that

    Before establishing theorems,let us cite some results from[12]and present them as lemmas.

    Lemma 3([12],Lemma 7)For a sequence of matrices{Ek},if

    then for any constant T>0,

    Lemma 4([12],Lemma 8)If A1)and B2)hold,then the sequence of estimates{hk}given by(18)–(21)contains at least a bounded sub-sequence{hnk}with

    Lemma 5([12],Lemma 9)Let{hnk}be a bounded sub-sequence with σ(i)nk= σnk,?i∈ V.Assume A1)and B2)hold.Then there exist c1>0,c2>0,M′0>0,T>0 such that for sufficient large k:

    Remark 2It is noteworthy that the above three lemmas are still valid if B2)is replaced by B1).

    For the time-invariant network with finite number of noise-free observations,we have:

    Theorem 2Letbe produced by(18)–(21)with an arbitrary initial valueAssume B1),A2),A3)and C2)(without(26)).Then

    ProofSince the algorithm(18)–(21)is in the same form as the distributed stochastic algorithm with fixed truncation,we use Corollary 1 given in the appendix to prove Theorem 2.For this it suffices to verify B2),D1)–D4)required by Corollary 1.Notice that B2)obviously follows from B1).

    In(18)–(21),

    Thus the observation noise is

    where

    It is sufficient to prove

    Define

    and

    There exists T∈(0,1)such that

    By Lemma 5,{hs:nk≤s≤m(nk,T)+1}is bounded for sufficient large k.Thus,there exists a positive constant c3such that

    for sufficient large k.Notice that

    Hence for sufficient large k and?s:nk≤s≤m(nk,T),there exist constants c4,c5,c6such that

    where θ is defined in B2)b).Since0<θ<1,there exists a positive constant m′such that θm′

    sufficient large k.Hence,we have

    Hence,we see

    Then,we have

    for sufficient large k and?Tk∈[0,T].

    Thus,by Lemma 3 we know

    Then,it follows that

    by Lemma 3 we have

    In summary,we see

    Thus,we conclude

    Thus,we have shown that B2),D1)–D4)hold.Then

    a)there exists a positive integer σ such that

    or in the compact form:

    By Lemma 1,we have

    Then,we see

    By conclusion d)d(〈hk〉we have

    Thus,we need only to consider

    Therefore,we have

    For the time-invariant network with finite number of noisy observations,we have:

    Theorem 3Letbe produced by(22)–(25)with an arbitrary initial valueAssume B1),A2),A3),C1),and C2)hold.Then

    ProofSet

    and then we have

    and hence

    From the proof of Theorem 2,we have

    Therefore,we need only to prove

    By C1),D(ki)is a martingale difference sequence,and by Eη2+γ< ∞ it follows that

    So far,we have shown that B2)and D1)–D4)hold.Then we have the following assertions a)–d).

    a)There exists a positive integer σ such that

    or in the compact form:

    By Lemma 1,we have

    Then,we see

    By conclusion d)d(〈hk〉we have

    Thus,we need only to consider

    Therefore,we have

    For the time-invariant network with infinite number of noisy observations,we have:

    Theorem 4Letbe produced by(22)–(25)with an arbitrary initial valueAssume A1),A2),A4),B1),C2),and C3)hold.Then

    ProofDefine

    From the proof of Theorems 2 and 3,we have

    Thus we need only to considerand to prove

    Then proceeding along the lines of the proof of Theorem 3,we complete the proof.

    For the time-varying network with infinite number of noisy observations,we have:

    Theorem 5Let{h(ki)}be produced by(22)–(25)with an arbitrary initial valueAssume A1),A2),A4),B2),C2),and C3)hold.Then

    This theorem can be proved by a treatment similar to that for Theorem 4.

    6 Simulation example

    In this section,we present a computer simulation example.We illustrate the convergence of the algorithm in a noisy time-invariant network environment.

    Let the input{sk}be a sequence of iid random variables∈ N(0,1)and observation noise{ηk}be a sequence of iid random variables∈N(0,0.05)and the initial valuesfor all agents are mutually independent and uniformly distributed over the interval[?0.2,0.2].Set the step sizeFor each channel i,the output and input are related as xk=sk? 0.7(1+i)sk?1.

    We consider a four sensor networks,and its topology(shown as Fig.1)and adjacent matrix are as follows.

    Fig.1 Topology of a four-sensor networks.

    To measure the identification performance,we define the normalized error as

    where?hkis the estimate at the kth step and h?denotes the true coefficient vector.βkis a scalar that minimizes the value of?βk?hk?h??;i.e.,

    Figs.2–5 show the identification performance of the algorithm given in Section5 with noisy observations.X-axis stands for iterations and Y-axis stands for the normalized error of each sensor.

    Fig.2 Normalized error for sensor 1.

    Fig.3 Normalized error for sensor 2.

    Fig.4 Normalized error for sensor 3.

    Fig.5 Normalized error for sensor 4.

    7 Conclusions

    In this paper,a mathematical description of the blind channel identification problem for the SIMO system of sensor networks is presented and the identifiability conditions are given as well.The distributed and recursive blind channel identification algorithms are proposed for four different situations.In these algorithms,estimates are updated every time when the local observation and information from its neighbors are derived.The convergence of the algorithms is proved.The proposed distributed and recursive algorithms are easily implemented in real systems such as wireless channels.The algorithm for noisy observations requires knowledge of the co-variance of the noise,but in principle,it can be estimated on the basis of the observed data.For further research,it is of interest to consider the distributed blind channel identification for time-varying SIMO systems and for the multi-input multi-output(MIMO)systems.

    [1] R.Liu.Blind signal processing:an introduction.Proceedings of the 2nd IEEE International Symposium on Circuits and Systems,Atlanta:IEEE,1996:81–84.

    [2]D.Slock.Blind fractionally spaced equalization perfect reconstruction filter banks and multichannel linear prediction.Proceedings of the4th IEEE International Conference on Acoustics,Speech,and Signal Processing,Adelaide,Australia:IEEE,1994:585–588.

    [3]Y.Hua.Fast maximum likelihood for blind identification of multiple FIR channels.IEEE transactions on Signal Processing,1996,44(3):661–672.

    [4]F.Alberg,P.Duhamel,M.Nikolova.Adaptive solution for blind identification/equalization using deterministic maximum likelihood.IEEE Transactions on Signal Processing,2002,50(4):923–936.

    [5]E.Moulines,P.Duhamel,J.Cardoso,et al.Subspace methods for the blind identification of multichannel FIR filters.IEEE Transactions on Signal Processing,1995,43(2):516–525.

    [6]G.Xu,H.Liu,L.Tong,et al.A least-squares approach to blind channel identification.IEEE Transactions on Signal Processing,1995,43(12):2982–2993.

    [7]Q.Zhao,L.Tong.Adaptive blind channel estimation by least squares smoothing.IEEE Transactions on Signal Processing,1999,47(11):3000–3012.

    [8]H.F.Chen,X.Cao,J.Zhu.Convergence of stochastic approximation-based algorithms for blind channel identification.IEEE Transactions on Information Theory,2002,48(5):1214–1225.

    [9]H.Fang,H.F.Chen.Blind channel identification based on noisy observation by stochastic approximation method.Journal of Global Optimization,2003,27(2):249–271.

    [10]R.Abdolee,B.Champagne.Distributed blind adaptive algorithms based on constant modulus for wireless sensor networks.Proceedings of IEEE International Conference on Wireless and Mobile Communications,Valencia,Spain:IEEE,2010:303–308.

    [11]C.Yu,L.Xie,Y.Soh.Distributed blind system identification in sensor networks.Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing,Florence,Italy:IEEE,2014:5065–5069.

    [12]J.Lei,H.F.Chen.Distributed estimation for parameter in heterogeneous linear time-varying models with observations at network sensors.Communications in Information and Systems,2015,15(4):423–451.

    [13]J.Brewer.Kronecker products and matrix calculus in system theory.IEEE Transactions on Circuits and Systems,1978,25(9):772–781.

    [14]J.Lei,H.F.Chen.Distributed stochastic approximation algorithm with expanding truncations:algorithm and applications.arXiv,2014:arXiv:1410.7180.

    3 July 2017;revised 15 September 2017;accepted 15 September 2017

    DOIhttps://doi.org/10.1007/s11768-017-7086-x

    ?Corresponding author.

    E-mail:liurui14@mails.ucas.ac.cn.

    This paper is dedicated to Professor T.J.Tarn on the occasion of his 80th birthday.

    This work was supported by the National Key Basic Research Program of China(973 program,No.2014CB845301),and the National Center for Mathematics and Interdisciplinary Science,Chinese Academy of Sciences.

    ?2017 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag GmbH Germany

    Appendix

    The distributed stochastic approximation algorithm with expanding truncations is proposed to seek roots of the sum of local functions in[14].Consider the sum function given by

    where f(i)(h):is called the local function assigned to agent i and can be observed only by agent:f(h)=0}denote the root set of f(·).For any i∈ V,according to[14]the estimate for G is generated by the following algorithm:

    We list the conditions to be used.

    D2)There exists a continuously differentiable function v(·):RN(L+1)→ R such that

    D3)The local functions f(i),?i∈ V are continuous.

    D4)For any i∈ V the noise sequencesatisfies

    b)along in dices{nk}wheneverconverges,

    ?Tk∈ [0,T]for any sufficient large K,where m(k,T)≤ T},?T > 0.

    Define the vectors

    Proposition 1(Theorem 3.3 in[14]) Letbe produced by(a1)–(a4)with an arbitrary initial value h0.Assume B2)and D1)–D3)hold.Then for the sample path ω for which D4)holds for all agents,the following assertions a)–c)take place:

    or in the compact form

    c)There exists a connected subset G?? G such that

    where 〈hk〉

    If a bounded region containing G is known,then the expanding truncations can be replaced by a fixed truncation bound.Let us assume that?x?< g1,?x∈G={x:f(x)=0},where g1is a known constant.Then we can replacein(a3)and(a4)with a constantwhere cis defined0in the D2)c).In this case,the algorithm(a1)–(a4)becomes a distributed stochastic approximation algorithm with a fixed truncation:

    The following Corollary1 directly follows from Proposition1.

    Corollary 1Assume?x?< g1,?x∈G={x:f(x)=0},and set g=g1∨c0.Letbe produced by a5)–a8)with an arbitrary initial value h0.Assume B2)and D1)–D3)hold.Then for the sample path ω for which D4)holds for all agents,the following assertions a)–c)take place:

    or in the compact form

    c)There exists a connected subset G?? G such that

    Rui LIUreceived her B.Sc.degree in Statistics from Nankai University in 2014 and M.Sc.degree in Operations Research and Cybernetics from Academy of Mathematics and Systems Science,Chinese Academy of Sciences in 2017.Her research interests lie in distributed algorithms and stochastic approximation and its applications to systems,control,and signal processing.E-mail:liurui14@mails.ucas.ac.cn.

    Han-Fu CHENis a Professor at the Key Laboratory of Systems and Control of Chinese Academy of Sciences.His research interests are mainly in stochastic systems,including system identification,adaptive control,and stochastic approximation and its applications to systems,control,and signal processing.He served as an IFAC Council Member(2002–2005),President of the Chinese Association of Automation(1993–2002),and a Permanent member of the Council of the Chinese Mathematics Society(1991–1999).He is an IEEE Fellow,IFAC Fellow,a Member of TWAS,and a Member of Chinese Academy of Sciences.E-mail:hfchen@iss.ac.cn.

    一边摸一边抽搐一进一小说| 国产精品不卡视频一区二区| 成年版毛片免费区| 美女免费视频网站| 最近视频中文字幕2019在线8| 最后的刺客免费高清国语| 久久精品国产99精品国产亚洲性色| 国产综合懂色| 国产精品久久久久久久电影| 精华霜和精华液先用哪个| 最近视频中文字幕2019在线8| 可以在线观看的亚洲视频| 男女那种视频在线观看| 在线a可以看的网站| 日韩精品有码人妻一区| av视频在线观看入口| 美女高潮的动态| 亚洲人成网站在线观看播放| 国产精品久久久久久亚洲av鲁大| 久久久精品欧美日韩精品| 国产亚洲精品久久久com| 色尼玛亚洲综合影院| 亚洲最大成人中文| 少妇丰满av| 俄罗斯特黄特色一大片| 久久久国产成人精品二区| 人人妻人人看人人澡| 午夜福利高清视频| 国产精品爽爽va在线观看网站| 成人性生交大片免费视频hd| 真人做人爱边吃奶动态| 日日啪夜夜撸| 在线观看美女被高潮喷水网站| 久久人人爽人人片av| 国产激情偷乱视频一区二区| 日本免费一区二区三区高清不卡| 久久久久久大精品| 成年免费大片在线观看| 人妻制服诱惑在线中文字幕| 18禁黄网站禁片免费观看直播| 一级毛片久久久久久久久女| 人妻久久中文字幕网| 国产成人freesex在线 | 日本一本二区三区精品| 国产女主播在线喷水免费视频网站 | 黄色视频,在线免费观看| 我要看日韩黄色一级片| 十八禁国产超污无遮挡网站| 中文字幕久久专区| 看免费成人av毛片| 91久久精品电影网| 在线观看一区二区三区| 亚洲av免费在线观看| 一区二区三区四区激情视频 | 最近在线观看免费完整版| 欧美另类亚洲清纯唯美| 啦啦啦韩国在线观看视频| av天堂中文字幕网| 村上凉子中文字幕在线| 美女黄网站色视频| 岛国在线免费视频观看| 午夜精品在线福利| 国产日本99.免费观看| 淫妇啪啪啪对白视频| 白带黄色成豆腐渣| 99久久久亚洲精品蜜臀av| 欧美日韩在线观看h| 国产精品av视频在线免费观看| 亚洲av成人av| 国产精品精品国产色婷婷| 久久午夜福利片| 亚洲成人久久爱视频| 亚洲av不卡在线观看| 男女那种视频在线观看| 91狼人影院| 成人亚洲欧美一区二区av| 国产午夜福利久久久久久| 无遮挡黄片免费观看| 国产精品人妻久久久影院| 精品免费久久久久久久清纯| 人妻少妇偷人精品九色| 亚洲欧美日韩高清在线视频| 亚洲av中文av极速乱| 九九热线精品视视频播放| 三级毛片av免费| 国产亚洲精品av在线| 亚洲av中文av极速乱| 国产一区二区三区在线臀色熟女| 成人亚洲精品av一区二区| 亚洲av五月六月丁香网| 亚洲18禁久久av| 国产真实乱freesex| 小蜜桃在线观看免费完整版高清| 一级a爱片免费观看的视频| 午夜亚洲福利在线播放| 亚洲人成网站在线播| 亚洲精品一卡2卡三卡4卡5卡| 丰满的人妻完整版| 99久国产av精品国产电影| 成人美女网站在线观看视频| 大型黄色视频在线免费观看| 免费观看人在逋| 欧美另类亚洲清纯唯美| 国产免费一级a男人的天堂| 亚洲国产欧美人成| 老司机午夜福利在线观看视频| 婷婷亚洲欧美| 免费高清视频大片| 成年免费大片在线观看| 国产亚洲精品久久久久久毛片| 久久久久久久久久黄片| 秋霞在线观看毛片| 国产精品1区2区在线观看.| 国产美女午夜福利| 国产午夜精品论理片| 日韩欧美精品v在线| 丝袜美腿在线中文| 大又大粗又爽又黄少妇毛片口| 亚洲欧美精品自产自拍| 国产精品精品国产色婷婷| 晚上一个人看的免费电影| 白带黄色成豆腐渣| 国产一区二区亚洲精品在线观看| 极品教师在线视频| 色哟哟哟哟哟哟| 国国产精品蜜臀av免费| 高清毛片免费看| 免费无遮挡裸体视频| 久久99热这里只有精品18| 日本欧美国产在线视频| 国产免费男女视频| 国产精品人妻久久久影院| 少妇人妻精品综合一区二区 | 亚洲精品一卡2卡三卡4卡5卡| 日韩三级伦理在线观看| 国产亚洲欧美98| 国产精品国产高清国产av| 香蕉av资源在线| 亚洲欧美日韩高清专用| 久久鲁丝午夜福利片| 色综合亚洲欧美另类图片| 日本欧美国产在线视频| 日韩国内少妇激情av| www.色视频.com| 一本一本综合久久| 欧美绝顶高潮抽搐喷水| 丰满人妻一区二区三区视频av| 99在线视频只有这里精品首页| 国产亚洲精品综合一区在线观看| 一进一出好大好爽视频| av女优亚洲男人天堂| 亚洲成av人片在线播放无| 五月伊人婷婷丁香| 一进一出抽搐动态| 久久久久国产精品人妻aⅴ院| 日日撸夜夜添| 桃色一区二区三区在线观看| 你懂的网址亚洲精品在线观看 | 亚洲精品色激情综合| 国产美女午夜福利| 成人亚洲欧美一区二区av| 色哟哟·www| 一级av片app| 国产老妇女一区| 国产一区二区在线av高清观看| 免费看av在线观看网站| 成年女人看的毛片在线观看| 少妇裸体淫交视频免费看高清| 欧美国产日韩亚洲一区| av天堂在线播放| 欧美在线一区亚洲| 国产色婷婷99| 国内揄拍国产精品人妻在线| 美女 人体艺术 gogo| 日韩,欧美,国产一区二区三区 | 日本 av在线| 久久久色成人| 欧美激情久久久久久爽电影| 五月玫瑰六月丁香| 欧美极品一区二区三区四区| 精品人妻偷拍中文字幕| 亚洲五月天丁香| 国产欧美日韩精品一区二区| 国产蜜桃级精品一区二区三区| 国产成人aa在线观看| 久久精品国产亚洲av涩爱 | 美女cb高潮喷水在线观看| 久久久欧美国产精品| 在线观看一区二区三区| 欧美色欧美亚洲另类二区| 欧美最新免费一区二区三区| 听说在线观看完整版免费高清| 国产精品伦人一区二区| 国产免费一级a男人的天堂| 精品免费久久久久久久清纯| 麻豆一二三区av精品| 久久精品久久久久久噜噜老黄 | 一区二区三区免费毛片| 亚洲性久久影院| 美女黄网站色视频| 国产精品伦人一区二区| 又粗又爽又猛毛片免费看| 欧美zozozo另类| 青春草视频在线免费观看| 日韩欧美精品v在线| 毛片女人毛片| 人妻制服诱惑在线中文字幕| 有码 亚洲区| 校园春色视频在线观看| av在线观看视频网站免费| 日韩欧美精品免费久久| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品av视频在线免费观看| 国产黄色视频一区二区在线观看 | 熟妇人妻久久中文字幕3abv| 女生性感内裤真人,穿戴方法视频| 精品日产1卡2卡| av.在线天堂| 在线观看美女被高潮喷水网站| 国产精品一区二区免费欧美| avwww免费| 国产人妻一区二区三区在| 看十八女毛片水多多多| 久久久久久大精品| 啦啦啦观看免费观看视频高清| 3wmmmm亚洲av在线观看| 韩国av在线不卡| 国产精品亚洲一级av第二区| 久久6这里有精品| 欧美潮喷喷水| 99热只有精品国产| 99热这里只有精品一区| 日本与韩国留学比较| 最近手机中文字幕大全| 伦理电影大哥的女人| 九九热线精品视视频播放| 精品人妻一区二区三区麻豆 | 一进一出抽搐动态| 日本黄大片高清| 91在线精品国自产拍蜜月| 成人欧美大片| 国产成年人精品一区二区| 成年女人毛片免费观看观看9| 免费在线观看影片大全网站| 成人无遮挡网站| 久久亚洲国产成人精品v| 高清日韩中文字幕在线| 99热这里只有精品一区| 日本色播在线视频| 日本撒尿小便嘘嘘汇集6| 成年女人看的毛片在线观看| 一边摸一边抽搐一进一小说| 伦理电影大哥的女人| 国产一区二区三区在线臀色熟女| 日韩一区二区视频免费看| 国产伦精品一区二区三区视频9| 精品无人区乱码1区二区| 欧美日韩一区二区视频在线观看视频在线 | 国产精品,欧美在线| 麻豆av噜噜一区二区三区| 国产真实伦视频高清在线观看| 亚洲av免费高清在线观看| 国产精品一区二区三区四区免费观看 | 欧美高清性xxxxhd video| 亚洲精品日韩在线中文字幕 | 亚洲在线自拍视频| 欧美日韩在线观看h| 别揉我奶头~嗯~啊~动态视频| 少妇高潮的动态图| av在线播放精品| 日韩欧美在线乱码| 日本精品一区二区三区蜜桃| 中文在线观看免费www的网站| 18禁黄网站禁片免费观看直播| 一进一出抽搐动态| 午夜福利高清视频| 别揉我奶头~嗯~啊~动态视频| 日本成人三级电影网站| 黄色视频,在线免费观看| 天堂网av新在线| 精品一区二区免费观看| 午夜精品国产一区二区电影 | 99热网站在线观看| 亚洲不卡免费看| 国产三级在线视频| 少妇熟女欧美另类| 日韩精品青青久久久久久| 最近手机中文字幕大全| 99视频精品全部免费 在线| 搡老妇女老女人老熟妇| 搡老熟女国产l中国老女人| 欧美精品国产亚洲| 国产 一区 欧美 日韩| 亚洲成人精品中文字幕电影| 97超级碰碰碰精品色视频在线观看| 国内精品美女久久久久久| 国产精品久久视频播放| 国产精品1区2区在线观看.| 校园人妻丝袜中文字幕| 亚洲无线观看免费| 久久精品综合一区二区三区| 欧美最黄视频在线播放免费| 亚洲18禁久久av| av黄色大香蕉| 久久婷婷人人爽人人干人人爱| 中出人妻视频一区二区| 亚洲精品日韩av片在线观看| 啦啦啦啦在线视频资源| 日本免费一区二区三区高清不卡| 能在线免费观看的黄片| 国内精品美女久久久久久| 日韩高清综合在线| 熟女电影av网| 性插视频无遮挡在线免费观看| 免费看光身美女| 欧美性感艳星| 91狼人影院| 综合色av麻豆| 亚洲中文日韩欧美视频| 国产精品爽爽va在线观看网站| 亚洲丝袜综合中文字幕| 亚洲国产欧美人成| 亚洲人成网站在线观看播放| 91久久精品国产一区二区三区| 成人美女网站在线观看视频| 亚洲熟妇中文字幕五十中出| 精品久久久久久久久久免费视频| 97超视频在线观看视频| 国产色爽女视频免费观看| 精品一区二区免费观看| 尤物成人国产欧美一区二区三区| 婷婷六月久久综合丁香| 亚洲不卡免费看| 男女下面进入的视频免费午夜| 成年女人毛片免费观看观看9| 国产三级在线视频| 久久精品国产99精品国产亚洲性色| 日本五十路高清| 国产成人aa在线观看| 99久久久亚洲精品蜜臀av| 日本欧美国产在线视频| 国产极品精品免费视频能看的| 久久天躁狠狠躁夜夜2o2o| 国产精品国产高清国产av| 亚洲七黄色美女视频| 中国美白少妇内射xxxbb| a级毛片a级免费在线| 可以在线观看毛片的网站| 波多野结衣高清作品| 真实男女啪啪啪动态图| 免费高清视频大片| 天堂av国产一区二区熟女人妻| 亚洲自偷自拍三级| 联通29元200g的流量卡| 国产黄a三级三级三级人| 亚洲欧美日韩高清在线视频| 国产黄a三级三级三级人| 国产探花在线观看一区二区| 国产黄a三级三级三级人| 啦啦啦韩国在线观看视频| 99在线人妻在线中文字幕| 啦啦啦观看免费观看视频高清| 国产精品一区二区三区四区久久| 天堂网av新在线| 日本精品一区二区三区蜜桃| 欧美潮喷喷水| 亚洲最大成人av| 国产精品人妻久久久久久| 久久久久久大精品| 伦精品一区二区三区| 免费大片18禁| 人妻制服诱惑在线中文字幕| 国产成人a∨麻豆精品| h日本视频在线播放| 久久午夜福利片| 欧美日韩综合久久久久久| 欧美成人a在线观看| 黄色日韩在线| 毛片女人毛片| 国产乱人视频| 99热这里只有是精品在线观看| 免费看a级黄色片| 欧美丝袜亚洲另类| 人人妻人人澡欧美一区二区| 久久精品国产99精品国产亚洲性色| 少妇人妻一区二区三区视频| 精品日产1卡2卡| avwww免费| 久久久久久久久久久丰满| 搡女人真爽免费视频火全软件 | 亚洲精品日韩av片在线观看| 免费黄网站久久成人精品| 亚洲欧美成人综合另类久久久 | 校园春色视频在线观看| 一进一出好大好爽视频| 黄色欧美视频在线观看| 精品久久国产蜜桃| 91狼人影院| 校园人妻丝袜中文字幕| 亚洲经典国产精华液单| 国内精品宾馆在线| 亚洲激情五月婷婷啪啪| 欧美中文日本在线观看视频| 男人舔女人下体高潮全视频| 国产大屁股一区二区在线视频| 国产精品免费一区二区三区在线| 天堂网av新在线| 女生性感内裤真人,穿戴方法视频| 久久久久久久久中文| 欧美一区二区亚洲| 三级经典国产精品| 国模一区二区三区四区视频| 人妻夜夜爽99麻豆av| 欧美xxxx性猛交bbbb| 人人妻,人人澡人人爽秒播| a级毛色黄片| 一级a爱片免费观看的视频| 国产91av在线免费观看| 免费不卡的大黄色大毛片视频在线观看 | 草草在线视频免费看| 欧美国产日韩亚洲一区| 亚洲国产欧洲综合997久久,| 亚洲中文日韩欧美视频| 69人妻影院| 免费无遮挡裸体视频| 18禁裸乳无遮挡免费网站照片| 不卡一级毛片| 在线免费观看不下载黄p国产| 村上凉子中文字幕在线| 精品久久久久久久久av| 亚洲人成网站在线观看播放| 国产不卡一卡二| 一区二区三区免费毛片| 欧美绝顶高潮抽搐喷水| avwww免费| 别揉我奶头 嗯啊视频| 久久久久久久久大av| 淫妇啪啪啪对白视频| 精品久久久久久久久av| 欧美+日韩+精品| 免费人成视频x8x8入口观看| 成人亚洲欧美一区二区av| 国产精品嫩草影院av在线观看| 天天躁夜夜躁狠狠久久av| 亚洲成a人片在线一区二区| 精品久久久久久久久亚洲| 国产乱人偷精品视频| 99久久中文字幕三级久久日本| 成人美女网站在线观看视频| or卡值多少钱| 婷婷亚洲欧美| 亚洲最大成人手机在线| 精品人妻偷拍中文字幕| 国产v大片淫在线免费观看| 精品一区二区免费观看| 日韩一区二区视频免费看| 偷拍熟女少妇极品色| 欧美激情久久久久久爽电影| 午夜免费激情av| ponron亚洲| 免费看av在线观看网站| 亚洲av.av天堂| 欧美潮喷喷水| 日本a在线网址| 国产成人freesex在线 | 你懂的网址亚洲精品在线观看 | 在现免费观看毛片| 欧美日本亚洲视频在线播放| 免费黄网站久久成人精品| 国产一区亚洲一区在线观看| 日韩在线高清观看一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 亚洲人成网站在线播放欧美日韩| 国产美女午夜福利| 一a级毛片在线观看| 国产大屁股一区二区在线视频| 色哟哟·www| 精品少妇黑人巨大在线播放 | 女人十人毛片免费观看3o分钟| 在线天堂最新版资源| 51国产日韩欧美| 18禁黄网站禁片免费观看直播| 老师上课跳d突然被开到最大视频| 国产黄a三级三级三级人| 欧美人与善性xxx| 在线观看午夜福利视频| 国内少妇人妻偷人精品xxx网站| 一级av片app| 国产精品,欧美在线| 成人精品一区二区免费| 卡戴珊不雅视频在线播放| 你懂的网址亚洲精品在线观看 | 麻豆成人午夜福利视频| 97人妻精品一区二区三区麻豆| 老师上课跳d突然被开到最大视频| 欧美一区二区国产精品久久精品| 国产精品国产高清国产av| 久久午夜亚洲精品久久| 2021天堂中文幕一二区在线观| 久久精品国产亚洲av天美| 亚洲熟妇熟女久久| 黄色配什么色好看| 欧美色视频一区免费| 国产一区二区三区av在线 | 精品一区二区三区人妻视频| 欧美色欧美亚洲另类二区| 久久99热这里只有精品18| 天堂av国产一区二区熟女人妻| 一区二区三区四区激情视频 | 亚洲精品粉嫩美女一区| 日韩精品中文字幕看吧| 亚洲国产精品成人久久小说 | 久久韩国三级中文字幕| 亚洲成人久久性| 亚洲精品456在线播放app| 日韩欧美三级三区| 欧美激情国产日韩精品一区| 国产亚洲精品久久久com| 亚洲乱码一区二区免费版| 国内久久婷婷六月综合欲色啪| 变态另类丝袜制服| 少妇熟女aⅴ在线视频| 国产精品嫩草影院av在线观看| 亚洲欧美日韩无卡精品| 天堂网av新在线| 精品免费久久久久久久清纯| 精品一区二区三区人妻视频| 特大巨黑吊av在线直播| 九色成人免费人妻av| 久久鲁丝午夜福利片| 日韩亚洲欧美综合| 久久精品国产自在天天线| 啦啦啦韩国在线观看视频| 成人午夜高清在线视频| 悠悠久久av| 精品日产1卡2卡| 九色成人免费人妻av| 色综合色国产| 51国产日韩欧美| 国产蜜桃级精品一区二区三区| 看黄色毛片网站| 97热精品久久久久久| 嫩草影视91久久| 国产精品永久免费网站| 欧美性猛交黑人性爽| 变态另类成人亚洲欧美熟女| 久久精品国产亚洲网站| 香蕉av资源在线| 欧美日韩国产亚洲二区| 禁无遮挡网站| 五月伊人婷婷丁香| 国产av麻豆久久久久久久| 免费人成视频x8x8入口观看| 嫩草影视91久久| 国产在视频线在精品| 欧美性猛交╳xxx乱大交人| 亚洲中文字幕日韩| 91精品国产九色| 国产成人福利小说| 黄色日韩在线| 亚洲成a人片在线一区二区| 亚州av有码| 搞女人的毛片| av女优亚洲男人天堂| 日韩精品有码人妻一区| 日韩欧美在线乱码| 禁无遮挡网站| 少妇被粗大猛烈的视频| 日韩一区二区视频免费看| 亚洲高清免费不卡视频| 人人妻人人澡欧美一区二区| 精品一区二区三区av网在线观看| 狠狠狠狠99中文字幕| 国产乱人视频| 国产综合懂色| 亚洲av第一区精品v没综合| 人妻夜夜爽99麻豆av| 欧洲精品卡2卡3卡4卡5卡区| 亚洲性夜色夜夜综合| 全区人妻精品视频| 如何舔出高潮| 欧美一区二区国产精品久久精品| 国产精品亚洲一级av第二区| 久久精品国产99精品国产亚洲性色| 99在线人妻在线中文字幕| 一个人看的www免费观看视频| a级毛色黄片| 国产亚洲91精品色在线| 黄色日韩在线| 久久久国产成人精品二区| 床上黄色一级片| av福利片在线观看| 欧美中文日本在线观看视频| 精品久久国产蜜桃| 国产精品亚洲一级av第二区| 99久国产av精品| 97在线视频观看| 高清午夜精品一区二区三区 | 国产白丝娇喘喷水9色精品| 三级毛片av免费| 久久久久久久久久黄片| 婷婷亚洲欧美| 97超级碰碰碰精品色视频在线观看| 波多野结衣高清作品| 亚洲精品一卡2卡三卡4卡5卡| 亚洲一区高清亚洲精品| 精品久久国产蜜桃| 中文亚洲av片在线观看爽| 女的被弄到高潮叫床怎么办| or卡值多少钱| 1000部很黄的大片| 又爽又黄a免费视频| а√天堂www在线а√下载| 男人舔奶头视频| 久久久久久久亚洲中文字幕|