• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Morgan’s problem of Boolean control networks

    2017-12-22 06:12:14ShihuaFUYuanhuaWANGDaizhanCHENGJiangboLIU
    Control Theory and Technology 2017年4期

    Shihua FU,Yuanhua WANG,Daizhan CHENG,Jiangbo LIU

    1.School of Control Science and Engineering,Shandong University,Jinan Shandong 250061,China;

    2.School of Management Science and Engineering,Shandong Normal University,Jinan Shandong 250014,China;

    3.Department of Computer Science and Information Systems,Bradley University,Peoria,IL,61625,U.S.A.

    Morgan’s problem of Boolean control networks

    Shihua FU1,Yuanhua WANG2,Daizhan CHENG1,Jiangbo LIU3?

    1.School of Control Science and Engineering,Shandong University,Jinan Shandong 250061,China;

    2.School of Management Science and Engineering,Shandong Normal University,Jinan Shandong 250014,China;

    3.Department of Computer Science and Information Systems,Bradley University,Peoria,IL,61625,U.S.A.

    This paper investigates the Morgan’s problem of Boolean control networks.Based on the matrix expression of logical functions,two key steps are proposed to solve the problem.First,the Boolean control network is converted into an outputdecomposed form by constructing a set of consistent output-friendly subspaces,and a necessary and sufficient condition for the existence of the consistent output-friendly subspaces is obtained.Secondly,a type of state feedback controllers are designed to solve the Morgan’s problem if it is solvable.By solving a set of matrix equations,a necessary and sufficient condition for converting an output-decomposed form to an input-output decomposed form is given,and by verifying the output controllability matrix,the solvability of Morgan’s problem is obtained.

    Boolean control network,Morgan’s problem,regular subspace,y-friendly subspace,semi-tensor product of matrices

    1 Introduction

    The Boolean network,which is first introduced by Kauffman[1],is known as a useful model to describe and simulate the behavior of genetic regulatory networks.Using semi-tensor product method and the matrix expression of logical functions,the dynamics of a Boolean network can be converted into a linear discrete-time system[2].And in recent decades,many classical problems for Boolean networks were solved by using this method,including stability and stabilization[3],controllability[4],observability[5],identification[6],optimal control[7],output tracking problem[8],weighted l1-gain problem[9]and so on.

    In modern control theory the Morgan’s problem is one of the most famous problems for both linear and non-linear control systems.Consider a linear control system

    where x∈Rnis the set of state variable,u∈Rmis the control,y∈Rpis the output.Assume m≥p.The Morgan’s problem means to find a partition of u as u={u1,...,up},such that each uicontrols yiwithout affecting yj,j≠i[10].When m=p,the problem has been completely solved by providing a necessary and sufficient condition as the decoupling matrix is nonsingular[11].Unfortunately,as for the general case,it is still open till now.The situation of the nonlinear case is similar[12,13].

    As for the Boolean control networks,it is obvious that the input-output decomposition is also a theoretically interesting and practically useful problem.But because of certain difficulties,the problem has not been discussed much.A closely related but easier one is the disturbance decoupling problem,which has been discussed by several authors[14,15].The system decomposition with respect to inputs for Boolean control networks has been investigated by[16].A recent work on input-output decomposition of Boolean networks is presented in[17],which considers the case of m=p and does not use the coordinate transformation.Besides,[17]just proposed a method to evaluate whether a Boolean control network was input-output decoupled or not,and didn’t give a controller design algorithm to make a given Boolean control network input-output decoupled.

    This paper considers the input-output decoupling of Boolean control networks under more general case,where m≥p.Moreover,similar to the nonlinear system[18],a coordinate transformation and state feedback controls are allowed.

    For the statement ease,a list of notations is presented as follows:

    1)Mm×n:the set of m × n real matrices.

    2)D:={0,1}.

    3)δin:the ith column of the identity matrix In.

    4)Δn:={δin|i=1,...,n}.

    6)0p×q:a p × q matrix with zero entries.

    7)Coli(M)(Rowi(M)):the ith column(row)of M.

    8)A matrix L ∈ Mm×nis called a logical matrix if the columns of L are of the form of δkm.That is,Col(L)? Δm.Denote by Lm×nthe set of m × n logical matrixes.

    9)If L ∈ Ln×r,by definition it can be expressed asFor the sake of compactness,it is briefly denoted as L=δn[i1,i2,...,ir].

    10)A matrix L ∈ Mm×nis called a Boolean matrix,if all its entries are either 0 or 1.Bm×n:the set of m × n Boolean matrices(Bn:the set of n dimensional Boolean vectors).

    11)Let{x1,...,xk}be a set of logical variables.F?(x1,...,xk)is the set of logical functions of{x1,...,xk}.

    12)Let A ∈ Mm×kand B ∈ Mn×k.Then A?B ∈ Mmn×kis the Khatri-Rao product of A and B[19].

    The rest of this paper is organized as follows:Section2 presents some necessary preliminaries.The Morgan’s problem formulation is given in Section3.In Section4,a necessary and sufficient condition for the existence of the output-decomposed form is given,and the form is obtained by constructing a set of consistent outputfriendly subspaces.Section5 proposes a controller design method to solve the input-output decoupling problem.Based on the input-output decomposition form,the solvable condition of the Morgan’s problem is presented in Section6.Section7 is a brief conclusion.

    2 Preliminaries

    This section presents some related concepts about semi-tensor product of matrices,state space of Boolean control networks and its subspaces.We refer to[2,14]for details.

    Def i nition 1[2]Let M ∈ Mm×nand N ∈ Mp×q,and t=lcm{n,p}be the least common multiple of n and p.The semi-tensor product of M and N is defined as

    where?is the Kronecker product.

    Throughout this paper,we assume the product of two matrices is the semi-tensor product,and the symbolis omitted without the confusion.

    Lemma 1[2] Consider a logical mapping f:Δn→Δk.There exists a unique matrix Mf∈ L2k×2n,called the structure matrix of f,such that

    Consider a Boolean control network(BCN)

    where xi(i=1,...,n),uj(j=1,...,m)and yk(k=1,...,p)are logical variables.That is,they can take values 0 or 1.

    Identify 1~ δ12and 0~ δ22.Using Lemma 1,the algebraic expression of(2)can be described as

    Def i nition 2[14] Consider the BCN(2).

    1)The state space of(2)is described as

    that is,the state space is the set of logical functions of{x1,x2,...,xn}.

    2)Let{y1,...,yk}?X.A subspace Y?X,generated by{y1,...,yk},is

    Given a subspace Y=F?(y1,...,yk)? X.Since yi,i=1,...,k,are functions of{x1,...,xn},we can use the vector expression of yiand express yiin algebraic form as

    where x=ni=1xi,and Gi∈ L2×2n,i=1,...,k.Setting y=kj=1yj,then we have

    where G=G1?...?Gk.Then G is called the structure matrix of the subspace Y.

    Definition 3[14]Let{z1,...,zn}?X and Z=F?(z1,...,zn).Then Ψ :x → z is called a coordinate transformation(or coordinate change)if Ψ is one to one and onto.

    Proposition 1[14] Let z=and the structure matrix of Z be T.That is z=Tx.Then Ψ :x → z is a coordinate transformation,if and only if,T ∈ L2n×2nis nonsingular.

    Def i nition 4[14]Let Z=F?(z1,...,zk)? X.Z is called a regular subspace if there exists a set of logical variables{zk+1,...,zn}? X such that Ψ :(x1,...,xn)→(z1,...,zn)is a coordinate transformation.

    Proposition 2[14]Let Z=F?(z1,...,zk)? X,and its structure matrix be T0.That is,

    where z=kj=1zj.Then Z is a regular subspace,if and only if the elements of T0satisfy

    Example 1Consider X=F?(x1,x2,x3)and its subspace Z=F?(z1,z2)? X.

    1)Assume z1=x1∧x3,z2=x3.Then z=Gx,where

    Z is not a regular subspace.

    2)Assume z1=x1?x3,z2=x3.Then z=Gx,where

    Z is a regular subspace.

    Definition 5[14]Let Y?X be a subspace and Z?X a regular subspace.If Y?Z,then Z is called a Y-friendly subspace.If Z is the smallest size of Y-friendly subspace,it is called a minimum Y-friendly subspace.

    Lemma 2[14] Assume y has its algebraic form y=Hx,and

    1)There is a Y-friendly subspace of dimension r,iff nj,j=1,2,...,2phave a common factor 2n?r.

    2)Assume 2n?ris the largest common factor,which has the form2s,ofnj,j=1,2,...,2p.Then the minimum Y-friendly subspace is of dimension r.

    Proposition 3[2] Define a power reducing matrix

    Let x∈Δn,then

    3 Problem formulation

    Definition 6Consider BCN(2)and assume m≥p.The input-output decomposition problem is:finding a coordinate transformation x→z and a state feedback

    where K ∈ L2p×2n+p,such that(2)can be converted into an input-output decomposed form

    where z=(z0,z1,...,zp)is a partition of z=(z1,z2,...,zn),v(t)=(v1(t),v2(t),...,vp(t)),and vi(t)∈D,j=1,...,p are the reference inputs.Moreover,if vjcan completely control yj,the problem is called the Morgan’s problem of Boolean control networks.

    System(7)motivates the following concept.

    Definition 7Let

    be a set of regular subspaces of X.{Zj|j=1,...,p}is called a set of consistent regular subspaces,if there exists z0,such that{z0,z1,...,zp}form a new coordinate frame.

    The following proposition follows from Definition 7 immediately.

    Proposition 4{Zj|j=1,...,p}is called a set of consistent regular subspaces,if and only if,

    is a structure matrix of a regular subspace.Precisely speaking,T satisfies Proposition 2.

    As a corollary,we have the following necessary condition.

    Corollary 1Assume the input-output decomposition problem is solvable.Then there exists a set of consistent regular subspaces Zj|j=1,...,p,such that Zjis yj-friendly,j=1,...,p.Such a set of yj-friendly consistent regular subspaces is called a consistent yfriendly subspaces.

    From Definition 6,one sees that the Morgan’s problem can be solved in two steps:i)finding consistent regular subspaces Zjsuch that yj∈Zj,j=1,2,...,p;ii)designing a controller,such that zj(t+1)is a function of zj(t)and vj(t),moreover,vjcan completely control yj.

    4 Output decomposition

    This section devotes to finding a set of consistent yjfriendly subspaces of system(2).

    First,we give two lemmas,which will be used for the deduction.

    Lemma 3Let A ∈ Mm×n,B ∈ Mn×s,C ∈ Mp×q,D ∈Mq×s.Then

    Note that for two column vectors X and Y we have

    Lemma 4Let xi∈ Δki,i=1,...,n.Then

    ProofA straightforward calculation shows that

    Under a new coordinate frame z,if system(2)can be expressed as

    where zj,j=1,...,p are consistent regular subspaces,then we call(8)the output-decomposed form of(2).

    Next,we should determine the existence of the consistent output-friendly subspaces.

    Since the output yj∈X,j=1,2,...,p,we can express it in algebraic form as

    Assume Hjhas njrcolumns which are equal to δr2,r=1,2,then,njrcan be calculated by

    In the following,we give an algorithm for constructing the minimum yj-friendly subspace.We just need to construct a logical matrix,such that we can find a logical matrix,satisfying

    where zj(t)=Tjx(t)is a minimum yj-friendly subspace.

    .Step 1:Calculate the two rows of Hj,where

    .Step 2:Split Rowr(Hj)into mjrblocks as

    It is easy to check that Hj=GjTj.

    By Lemma 4,we can recover zji,i=1,2,...,njfrom zj.We have

    is a set of minimum yj-friendly subspaces.

    Remark 1It is worth noting that for any subspace yj∈X,j=1,2,...,p,the minimum yj-friendly subspace is not unique.

    We have the following theorem.

    Theorem 1Consider BCN(2)with outputs yj,j=1,2,...,p,there exist consistent yj-friendly subspaces,iff(11)is a set of consistent regular subspaces.

    Proof(Necessity)Assume

    is a set of minimum consistent yj-friendly subspaces.Denotethen there exist matrices G′j∈and T′j∈such that

    Since(11)are a set of yj-friendly subspaces,we have

    Let y(t)=pj=1yj(t).Using Lemma 3,we have

    where G=G1?G2?...?Gpand T=T1?T2?...?Tp.Similarly,we have

    where G′=G′1? G′2? ...? G′p.

    From the form of Gjand G′j,j=1,2,...,p,there exist permutation matrices,j=1,2,...,p such that

    Since G′T′=H=GT=andit is obvious that the matrix T sat-By Propositions 2 and 4,we get that(11)are a set of consistent regular subspaces.The conclusion of necessity follows.

    The sufficiency is obvious.

    Now assume zj,j=1,...,p are consistent regular subspaces.Then we can find z0and T0,suchthatz={z0,z1,...,zp}is a new coordinate frame,where

    DenoteT=T0?T1?...?Tp.Then,under coordinate frame z,system(2)can be expressed as

    where z(t)=pj=0zj(t).

    Example 2Consider the following system:

    Then it is easy to figure out that a minimum y1-friendly subspace is

    and a minimum y2-friendly subspace is

    It is ready to verify that{z1,z2}is a regular subspace,and we may choose

    such that z={z0,z1,z2}becomes a new coordinate frame.Moreover,under z,system(13)becomes its output-decomposed form as

    wherez0(t)=z1(t),z1(t)=(z2(t),z3(t)),andz2(t)=z4(t).

    5 Input-output decomposition

    In this section we consider how to convert an outputdecomposed form into an input-output decomposed form.

    Assume the algebraic form of state dynamics of(8)is

    where zj,j=1,...,p is a set of consistent regular subspaces.The state feedback control used for the inputoutput decomposition is

    where K ∈ L2m×2n+p.

    The input-output decomposition problem is:find,if possible,a state feedback control(16)such that the closed form(8)of system(2)can be expressed into an input-output decomposed form as

    We call(17)the input-output decomposed form of(2).

    Plugging(16)into(15)yields

    where Pj∈ L2nj×2nj+1can be chosen freely and

    Summarizing the above argument,we have the following result:

    Theorem 2An output-decomposed system(8)is convertible into an input-output decomposed form by a state feedback control,if and only if,there exist K ∈ L2m×2n+m,Pj∈ L2nj×2nj+1,j=1,...,p,such that

    where Ξjand Θjare defined in(19).

    Example 3Recall Example 2 again.According to Theorem 2,system(14)is input-output decomposable,if and only if,there exist K ∈ L22×26,P1∈ L22×23,P2∈L21×22such that

    There is a standard procedure to calculate the algebraic form of(14),we have

    We can choose P1and P2as

    and

    Then we can check that the following K is a solution of(21):

    By Lemma 4,we get that ui(t)can be calculated as follows:

    where K1=(I2?1T2)K and K2=(1T2?I2)K.

    Using K1and K2,we can construct the state feedback control as

    Then the closed-loop form of(14)becomes

    It is obvious that(23)is an input-output decomposed form.

    Next,we should like to convert(20)into an integrated form,which provides a set of linear algebraic equations.

    Multiplying the equations in(18)together yields

    where M=M1?M2?...?Mp.Define

    Using Lemmas 3 and 4,we have the equation

    where Φ ∈ M2p×2p?1and Ψ ∈ M2p?1×2n+p.Then we have the following result:

    Corollary 2Consider the output-decomposed system(15).If there exist Φ ∈ M2p×2p?1and Ψ ∈ M2p?1×2n+psuch that

    then there exists a feedback control as shown in(16)such that the closed form of(15)becomes an inputoutput decomposed form.

    Remark 2Equation(26)is a linear equation about Φ and Ψ ,where Φ and Ψ are independent unknowns.Hence,to solve the input-output decomposition problem,we can solve the linear equations deduced from(26).

    6 Morgan’s problem

    6.1 Output controllability

    Definition 8Consider system(2)with its algebraic expression(3).

    1)ydis said to be reachable,if for any x(0)there exists a time T>0 and a control sequence u(0),u(1),...,u(T?1)such that driven by this sequence of controls the trajectory will reach a terminal state x(T)such that yd=Hx(T).

    2)System(2)is said to be output controllable,if each y is reachable.

    Split L as

    where Li∈ L2n×2n.Then we define

    and define the controllability matrix of(2)as

    where M(i)is the Boolean matrix product of M(i.e.,a+b=a∨b,a×b=ab).C is called the controllability matrix and we have the following result about the controllability of(2)[2].

    Theorem 3Consider system(2).

    1)The system is reachable from x(0)=to x(T)=i.e.,there exists T>0 and a sequence of controls as in Definition 8 such that the system trajectory can be driven fromif and only if Ci,j=1;

    2)The system is reachable tofrom any x(0),if and only if

    3)The system is controllable,i.e.,from any x(0)to any x(T),if and only if

    Using controllability matrix C,we can construct an output controllability matrix as

    where CYis the Boolean matrix product of H and C,and H is the output structure matrix(see(3)).

    Then the following result is an immediate consequence of Definition 8.

    Theorem 4Consider system(2).

    2)The system is output controllable,if and only if,

    6.2 Solution to Morgan’s problem

    Consider the Morgan’s problem.Since each yjcan be completely controlled by vj,it is clear that the overall system should be output controllable.Hence we have the following necessary condition.

    Proposition 5Consider system(2).If the Morgan’s problem is solvable,then the system is output controllable.

    Then the following result is obvious.

    Theorem 5Consider system(2).The Morgan’s problem is solvable,if

    1)there exist a coordinate transformation z=z(x)and a state feed u=g(v,x),such that the system can be converted into an input-output decomposed form(17);

    2)each subsystem

    j=1,...,m is output controllable.

    By(12)and(18),we know the algebraic form of each subsystem can be expressed as

    where Cyjis the Boolean matrix product of Gjand Czj.

    Example4Considersystem(23).Lettingz1=z2z3and z2=z4,we can obtain the algebraic form of the two subsystems as

    where P1= δ4[1 1 2 3 4 4 4 4]and P2= δ2[1 2 2 1].

    A simple calculation shows that

    where G1=δ2[1 2 2 2],G2=I2.

    that is,the two systems are all output controllable.Thus,the Morgan’s problem of system(13)is solved.

    Remark 3By Theorem 5,we know the output controllability of each subsystem(29)depends completely on the matrices Gjand Pj,j=1,2,...,p.Since Gjis conformed in(10)and Pjcan be chosen freely,thus,to guarantee the solvability of the Morgan’s problem,we should choose the kind of Pjwhich can make subsystem zjoutput controllable.Once Pjis conformed,the Morgan’s problem is converted into solving the matrix equation(25).

    7 Conclusions

    In this paper we have investigated the Morgan’s problem of the Boolean control networks.First,by constructing the output-friendly subspaces,a necessary and sufficient condition for the existence of the outputdecomposed form of a Boolean control network has been presented.Furthermore,the method to converted a Boolean control network into its output-decomposed form has been given.Second,by solving a set of matrix equations,a type of state feedback controllers have been obtained to solve the input-output decoupling problem if it is solvable.Moreover,by constructing the output controllability matrices for each subsystem,the solvability of Morgan’s problem has been converted to verifying whether there exists a solution of(20)which satisfies(31).Since the set of solutions of(20)is finite,the verification is executable.

    [1]S.A.Kauffman.Metabolic stability and epigenesis in randomly constructed genetic nets.Journal of Theoretical Biology,1969,22(3):437–467.

    [2]D.Cheng,H.Qi,Z.Li.Analysis and Control of Boolean Networks–A Semi-tensor Product Approach.London:Springer,2011.

    [3]D.Cheng,H.Qi,Z.Li,et al.Stability and stabilization of Boolean networks.International Journal of Robust and Nonlinear Control,2011,21(2):134–156.

    [4]D.Cheng,H.Qi.Controllability and observability of Boolean control networks.Automatica,2009,45(7):1659–1667.

    [5]D.Laschov,M.Margaliot,G.Even.Observability of Boolean networks:A graph-theoretic approach.Automatica,2013,49(8):2351–2362.

    [6]D.Cheng,Y.Zhao.Identification of Boolean control networks.Automatica,2011,47(4):702–710.

    [7]E.Fornasini,M.E.Valcher.Optimal control of Boolean control networks.IEEE Transactions on Automatic Control,2014,59(5):1258–1270.

    [8]H.Li,Y.Wang.Output tracking of switched Boolean networks underopen-loop/closed-loop switching signals.Nonlinear Analysis:Hybrid Systems,2016,22:137–146.

    [9]M.Meng,J.Lam,J.Feng,et al.l1-gain analysis and model reduction problem for Boolean control networks.Information Sciences,2016,348:68–83.

    [10]B.Morgan.The synthesis of linear multivariable systems by statevariable feedback.IEEE Transactions on Automatic Control,1964,9(4):405–411.

    [11]W.M.Wonham.Linear Multivariable Control.Berlin:Springer,1974.

    [12]A.Glumineau,C.H.Moog.Nonlinear Morgan’s problem:Case of(p+1)inputs and p outputs.IEEE transactions on Automatic Control,1992,37(7):1067–1072.

    [13]H.Nijmeijer.Feedback decomposition of nonlinear control systems.IEEE Transactions on Automatic Control,1983,28(8):861–862.

    [14]D.Cheng.Disturbance decoupling of Boolean control networks.IEEE Transactions on Automatic Control,2011,56(1):2–10.

    [15]M.Yang,R.Li,T.Chu.Controller design for disturbance decoupling of Boolean control networks.Automatica,2013,49(1):273–277.

    [16]Y.Zou,J.Zhu.System decomposition with respect to inputs for Boolean control networks.Automatica,2014,50(4):1304–1309.

    [17]M.E.Valcher.Input/output decoupling of Boolean control networks.IET Control Theory and Applications,2017,11(13):2081–2088.

    [18]W.Respondek.On decomposition of nonlinear control systems.Systems&Control Letters,1982,1(5):301–308.

    [19]D.Cheng,H.Qi,Y.Zhao.An Introduction to Semi-tensor Product of Matrices and Its Applications.Singapore:World Scientific,2012.

    25 May 2017;revised 22 September 2017;accepted 25 September 2017

    DOIhttps://doi.org/10.1007/s11768-017-7068-z

    ?Corresponding author.

    E-mail:jiangbo@bradley.edu.Tel.:1-309-6772386.

    This paper is dedicated to Professor T.J.Tarn on the occasion of his 80th birthday.

    This work was supported by the National Natural Science Foundation of China(No.61333001).

    ?2017 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag GmbH Germany

    Shihua FUreceived her M.Sc.degree from the Department of Mathematics,Liaocheng University,Liaocheng,China,in 2014.Since 2014 she has been pursuing her Ph.D.degree at the School of Control Science and Engineering,Shandong University.Her research interests include game theory,logical dynamic systems.E-mail:fush_shanda@163.com.

    Yuanhua WANGreceived her B.Sc.degree and M.Sc.degree from the School of Control Science and Engineering,Shandong University,Jinan,China,in 2004 and 2007,respectively.Since 2013 she is pursuing her Ph.D.at the School of Control Science and Engineering,Shandong University.Currently,she is working in the School of Management Science and Engineering,Shandong Normal University.Her research interests include game theory,analysis and control of logical dynamic systems.E-mail:wyh_1005@163.com.

    DaizhanCHENG(SM’01-F’06)receivedthe B.Sc.degree from Department of Mechanics,Tsinghua University,in 1970,received the M.Sc.degree from Graduate School of Chinese Academy of Sciences in 1981,the Ph.D.degree from Washington University,St.Louis,in 1985.Since 1990,he is a Professor with Institute of Systems Science,Academy of Mathematics and Systems Science,Chinese Academy of Sciences.He is the author/coauthor of over 200 journal papers,9 books and 100 conference papers.He was Associate Editor of the International Journal of Mathematical Systems,Estimation and Control(1990–1993);Automatica(1999–2002);the Asian Journal of Control(2001–2004);Subject Editor of the International Journal of Robust and Nonlinear Control(2005–2008).He is currently Editor-in-Chief of the J.Control Theory and Applications and Deputy Editor-in-Chief of Control and Decision.He was the Chairman of IEEE CSS Beijing Chapter(2006–2008),Chairman of Technical Committee on Control Theory,Chinese Association of Automation,Program Committee Chair of annual Chinese Control Conference(2003–2010),IEEE Fellow(2005–)and IFAC Fellow(2008–).Prof.Cheng’s research interests include nonlinear system control,hamiltonian system,numerical method in system analysis and control,complex systems.E-mail:dcheng@iss.ac.cn.

    Jiangbo LIUreceived his M.Sc.and Ph.D.degrees from Washington University in St.Louis,in 1981 and 1985,respectively.Currently,he is a professor in the Computer Science and Information Systems Department,Bradley University.His research interests include computer networks,distributed computing,mobile computing,and linear and nonlinear control systems.E-mail:jiangbo@bradley.edu.

    国产精品电影一区二区三区| 亚洲在线自拍视频| 免费高清视频大片| 久99久视频精品免费| 精华霜和精华液先用哪个| 又爽又黄无遮挡网站| 欧美激情在线99| 在线a可以看的网站| netflix在线观看网站| 看黄色毛片网站| 网址你懂的国产日韩在线| 搡老妇女老女人老熟妇| 国产成人欧美在线观看| 欧美日韩乱码在线| 久久人人精品亚洲av| 夜夜躁狠狠躁天天躁| 制服丝袜大香蕉在线| 国产三级在线视频| 国产精品野战在线观看| 久久久国产成人免费| 亚洲最大成人av| 天天一区二区日本电影三级| 亚洲人成伊人成综合网2020| 国产精品日韩av在线免费观看| 午夜福利高清视频| 亚洲美女搞黄在线观看 | 九九久久精品国产亚洲av麻豆| 直男gayav资源| 一夜夜www| 九九在线视频观看精品| 久久伊人香网站| 男人的好看免费观看在线视频| 日韩中字成人| 97人妻精品一区二区三区麻豆| 亚洲专区中文字幕在线| a级毛片免费高清观看在线播放| 午夜福利18| 午夜久久久久精精品| 亚洲avbb在线观看| 免费人成视频x8x8入口观看| 欧美绝顶高潮抽搐喷水| 老司机午夜福利在线观看视频| 99热6这里只有精品| 国产精品女同一区二区软件 | 久久这里只有精品中国| 欧美日韩黄片免| 亚洲经典国产精华液单 | 精品不卡国产一区二区三区| 51国产日韩欧美| 能在线免费观看的黄片| 无遮挡黄片免费观看| 12—13女人毛片做爰片一| 久久久国产成人精品二区| 亚洲人成伊人成综合网2020| 一本久久中文字幕| 国产高清视频在线观看网站| 国产精品野战在线观看| 美女 人体艺术 gogo| 一级毛片久久久久久久久女| 国产三级黄色录像| 亚洲 国产 在线| 熟妇人妻久久中文字幕3abv| 国产v大片淫在线免费观看| 亚洲黑人精品在线| 精品乱码久久久久久99久播| 成人特级黄色片久久久久久久| 级片在线观看| 久久精品国产亚洲av天美| 久久精品国产亚洲av天美| 中文字幕免费在线视频6| 亚洲精华国产精华精| 欧美黄色片欧美黄色片| ponron亚洲| 日韩国内少妇激情av| www.熟女人妻精品国产| 成人av在线播放网站| 免费观看人在逋| 免费av毛片视频| 男人舔奶头视频| 人人妻人人澡欧美一区二区| 亚洲中文字幕一区二区三区有码在线看| 99久久成人亚洲精品观看| 热99re8久久精品国产| 久久午夜亚洲精品久久| 综合色av麻豆| 一级a爱片免费观看的视频| 一级黄色大片毛片| 中文字幕高清在线视频| 成年女人毛片免费观看观看9| 精品一区二区三区视频在线| 亚洲黑人精品在线| 亚洲最大成人av| 亚洲精品成人久久久久久| 国产精品亚洲一级av第二区| 国内精品久久久久精免费| 99热这里只有是精品在线观看 | 51国产日韩欧美| 久久性视频一级片| 亚洲av电影在线进入| 国产精品三级大全| 丰满乱子伦码专区| 制服丝袜大香蕉在线| 狠狠狠狠99中文字幕| 亚洲性夜色夜夜综合| 国产午夜精品久久久久久一区二区三区 | 国产一区二区在线观看日韩| 日韩中文字幕欧美一区二区| 99久久99久久久精品蜜桃| 亚洲最大成人手机在线| 免费人成视频x8x8入口观看| 国产亚洲av嫩草精品影院| 精品人妻视频免费看| 国产免费一级a男人的天堂| 伦理电影大哥的女人| 亚洲专区国产一区二区| 欧美乱色亚洲激情| 国产精品乱码一区二三区的特点| 午夜视频国产福利| 99国产综合亚洲精品| 久久人人爽人人爽人人片va | 丰满人妻熟妇乱又伦精品不卡| 天堂影院成人在线观看| 亚洲欧美精品综合久久99| 国产亚洲av嫩草精品影院| 色哟哟哟哟哟哟| 757午夜福利合集在线观看| 熟女电影av网| 亚洲 国产 在线| av中文乱码字幕在线| 国产一级毛片七仙女欲春2| 国产精品99久久久久久久久| 99热这里只有是精品50| 嫩草影院新地址| 久久精品国产自在天天线| 国内精品美女久久久久久| 欧美绝顶高潮抽搐喷水| 高潮久久久久久久久久久不卡| 在线看三级毛片| 国产精品自产拍在线观看55亚洲| www日本黄色视频网| 国产高潮美女av| 99国产精品一区二区三区| 国产久久久一区二区三区| 三级毛片av免费| 少妇丰满av| 国产av在哪里看| 免费在线观看影片大全网站| 波多野结衣高清无吗| 日本五十路高清| 精品久久久久久久久亚洲 | 人人妻人人看人人澡| 精品久久久久久成人av| 51国产日韩欧美| 在现免费观看毛片| 亚洲国产精品成人综合色| 精华霜和精华液先用哪个| 又粗又爽又猛毛片免费看| 91av网一区二区| 国产精品久久久久久精品电影| 97碰自拍视频| 亚洲国产高清在线一区二区三| 国产精品1区2区在线观看.| 亚洲电影在线观看av| 在线观看免费视频日本深夜| av在线观看视频网站免费| 国产欧美日韩一区二区三| 村上凉子中文字幕在线| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 在线观看一区二区三区| 波多野结衣高清无吗| 看黄色毛片网站| 国产精品亚洲美女久久久| 免费在线观看成人毛片| 18禁黄网站禁片午夜丰满| www.www免费av| 性色avwww在线观看| 欧美xxxx黑人xx丫x性爽| bbb黄色大片| 亚洲不卡免费看| 日韩大尺度精品在线看网址| 亚洲无线观看免费| 日韩欧美 国产精品| 男女下面进入的视频免费午夜| a级毛片免费高清观看在线播放| 亚洲精品久久国产高清桃花| 欧美日韩福利视频一区二区| 狂野欧美白嫩少妇大欣赏| 午夜福利成人在线免费观看| 观看免费一级毛片| 国内精品一区二区在线观看| 一区二区三区激情视频| 免费在线观看影片大全网站| 99久久久亚洲精品蜜臀av| 永久网站在线| 成人av一区二区三区在线看| 又粗又爽又猛毛片免费看| 精品国产亚洲在线| 人妻夜夜爽99麻豆av| 此物有八面人人有两片| av中文乱码字幕在线| 国产精品久久久久久亚洲av鲁大| 国产精品久久久久久亚洲av鲁大| 99国产极品粉嫩在线观看| 最好的美女福利视频网| 日韩欧美精品v在线| 国产精品影院久久| 久久国产乱子免费精品| 最新中文字幕久久久久| 国产欧美日韩一区二区三| www.999成人在线观看| 亚洲国产欧美人成| 免费大片18禁| 午夜福利在线观看吧| 简卡轻食公司| 欧洲精品卡2卡3卡4卡5卡区| 国产精品永久免费网站| 真实男女啪啪啪动态图| 激情在线观看视频在线高清| 久久热精品热| 国产精品av视频在线免费观看| 少妇裸体淫交视频免费看高清| 日韩有码中文字幕| aaaaa片日本免费| 蜜桃久久精品国产亚洲av| 黄色一级大片看看| 在线a可以看的网站| 亚洲va日本ⅴa欧美va伊人久久| 国内精品一区二区在线观看| 欧美日韩黄片免| 亚洲自拍偷在线| 丰满的人妻完整版| 九九久久精品国产亚洲av麻豆| 午夜福利免费观看在线| 欧美在线一区亚洲| 欧洲精品卡2卡3卡4卡5卡区| 99久久精品一区二区三区| 少妇熟女aⅴ在线视频| 精品人妻视频免费看| a级毛片免费高清观看在线播放| 97热精品久久久久久| 狂野欧美白嫩少妇大欣赏| 欧美另类亚洲清纯唯美| 精品一区二区三区av网在线观看| 十八禁国产超污无遮挡网站| 99国产精品一区二区蜜桃av| 午夜老司机福利剧场| 女生性感内裤真人,穿戴方法视频| 亚洲18禁久久av| 高清日韩中文字幕在线| 久久精品夜夜夜夜夜久久蜜豆| 欧美最新免费一区二区三区 | 搡老妇女老女人老熟妇| 成人精品一区二区免费| 午夜精品一区二区三区免费看| 日韩欧美在线二视频| 国产v大片淫在线免费观看| 欧美色欧美亚洲另类二区| 精品人妻熟女av久视频| 欧美一区二区国产精品久久精品| 国产精品,欧美在线| 日韩欧美在线乱码| 99久久99久久久精品蜜桃| 九色国产91popny在线| 免费人成在线观看视频色| 日韩 亚洲 欧美在线| 亚洲欧美日韩高清专用| 极品教师在线视频| 亚洲男人的天堂狠狠| 禁无遮挡网站| 我要看日韩黄色一级片| 国模一区二区三区四区视频| 精品人妻熟女av久视频| 亚洲天堂国产精品一区在线| 黄色一级大片看看| 最好的美女福利视频网| 长腿黑丝高跟| 毛片女人毛片| a级一级毛片免费在线观看| 国产白丝娇喘喷水9色精品| 亚洲成人中文字幕在线播放| 99在线人妻在线中文字幕| 国产精品精品国产色婷婷| 欧美中文日本在线观看视频| 国内久久婷婷六月综合欲色啪| 亚洲在线观看片| av天堂中文字幕网| 免费在线观看影片大全网站| 男人舔女人下体高潮全视频| 亚洲最大成人av| 狠狠狠狠99中文字幕| 老司机午夜十八禁免费视频| 国产精品美女特级片免费视频播放器| 亚洲avbb在线观看| 黄色丝袜av网址大全| 久久伊人香网站| 国产成人a区在线观看| 天堂影院成人在线观看| 99精品在免费线老司机午夜| 欧美日韩综合久久久久久 | 最新中文字幕久久久久| 日日干狠狠操夜夜爽| av女优亚洲男人天堂| 久久久久性生活片| 又爽又黄无遮挡网站| 特大巨黑吊av在线直播| 国产 一区 欧美 日韩| 午夜免费男女啪啪视频观看 | 亚洲av不卡在线观看| 国产亚洲av嫩草精品影院| 国产精品免费一区二区三区在线| 亚洲,欧美精品.| 天堂√8在线中文| 99国产综合亚洲精品| a在线观看视频网站| 久久久久久大精品| 国产一区二区三区在线臀色熟女| 免费大片18禁| 欧美zozozo另类| 18美女黄网站色大片免费观看| 日韩欧美精品免费久久 | 俄罗斯特黄特色一大片| 超碰av人人做人人爽久久| 国产免费av片在线观看野外av| 久久精品国产清高在天天线| 美女高潮喷水抽搐中文字幕| АⅤ资源中文在线天堂| 欧美日韩中文字幕国产精品一区二区三区| 90打野战视频偷拍视频| 一级毛片久久久久久久久女| 国产成人影院久久av| 内地一区二区视频在线| 欧美国产日韩亚洲一区| 国产高清三级在线| 欧美最黄视频在线播放免费| 国产精品一区二区三区四区免费观看 | 午夜免费男女啪啪视频观看 | 国产在视频线在精品| 国产精品永久免费网站| 午夜激情欧美在线| 国产精品亚洲av一区麻豆| 色尼玛亚洲综合影院| 国产综合懂色| 精品久久久久久久人妻蜜臀av| 高潮久久久久久久久久久不卡| 亚洲欧美日韩东京热| 淫妇啪啪啪对白视频| 国产 一区 欧美 日韩| 亚洲成av人片在线播放无| 久久香蕉精品热| 国产精品av视频在线免费观看| 久久久久国内视频| 老司机福利观看| 韩国av一区二区三区四区| 久久精品国产清高在天天线| 亚洲熟妇熟女久久| 搡老妇女老女人老熟妇| 特大巨黑吊av在线直播| 一个人看视频在线观看www免费| 我的老师免费观看完整版| 动漫黄色视频在线观看| 亚洲第一区二区三区不卡| 久久久精品大字幕| 亚洲午夜理论影院| 国产视频一区二区在线看| 国产精品一区二区性色av| 久久人人精品亚洲av| 色吧在线观看| 听说在线观看完整版免费高清| 日韩高清综合在线| bbb黄色大片| 99热这里只有是精品50| 欧美最新免费一区二区三区 | 97超级碰碰碰精品色视频在线观看| 精品日产1卡2卡| 精品一区二区三区av网在线观看| 亚洲成av人片在线播放无| 一个人看的www免费观看视频| 免费在线观看影片大全网站| 久久久久久久久久黄片| 亚洲av一区综合| 久久久国产成人免费| 成人美女网站在线观看视频| 一个人看的www免费观看视频| 婷婷六月久久综合丁香| 精品久久国产蜜桃| 91久久精品国产一区二区成人| 一级av片app| 99久久99久久久精品蜜桃| 久久精品久久久久久噜噜老黄 | 九色国产91popny在线| 国产午夜精品论理片| 久久精品91蜜桃| 精品人妻视频免费看| 亚洲av成人av| 免费搜索国产男女视频| 三级毛片av免费| 亚洲av成人精品一区久久| 伊人久久精品亚洲午夜| 一区二区三区高清视频在线| 欧美午夜高清在线| 亚洲av第一区精品v没综合| 午夜福利成人在线免费观看| 韩国av一区二区三区四区| 亚洲av成人不卡在线观看播放网| 欧美午夜高清在线| 亚洲最大成人av| 男女视频在线观看网站免费| 亚洲人与动物交配视频| 两人在一起打扑克的视频| 亚洲最大成人中文| 亚洲第一电影网av| 国产av一区在线观看免费| 别揉我奶头 嗯啊视频| 日本一本二区三区精品| 久久草成人影院| 99热这里只有是精品50| 国产激情偷乱视频一区二区| 中文字幕av在线有码专区| 在线播放无遮挡| 亚洲最大成人中文| 久久婷婷人人爽人人干人人爱| 欧美zozozo另类| 国产精品亚洲av一区麻豆| 特级一级黄色大片| 好男人电影高清在线观看| 亚洲精品乱码久久久v下载方式| 男人的好看免费观看在线视频| 成人毛片a级毛片在线播放| 亚洲久久久久久中文字幕| 日韩亚洲欧美综合| 免费在线观看亚洲国产| 亚洲精品久久国产高清桃花| 男女视频在线观看网站免费| 亚洲五月天丁香| 国产淫片久久久久久久久 | 国产一区二区激情短视频| 一边摸一边抽搐一进一小说| 亚洲av免费高清在线观看| 中文字幕人妻熟人妻熟丝袜美| 内地一区二区视频在线| 天天一区二区日本电影三级| ponron亚洲| 最新中文字幕久久久久| 亚洲av免费在线观看| 午夜亚洲福利在线播放| 51午夜福利影视在线观看| 一区二区三区免费毛片| 成人国产一区最新在线观看| 色在线成人网| 偷拍熟女少妇极品色| 熟女人妻精品中文字幕| 精品99又大又爽又粗少妇毛片 | 99久久成人亚洲精品观看| 九九在线视频观看精品| 波多野结衣高清无吗| 18禁黄网站禁片免费观看直播| 偷拍熟女少妇极品色| 国产亚洲欧美98| 高潮久久久久久久久久久不卡| 亚洲电影在线观看av| 国产蜜桃级精品一区二区三区| 免费看美女性在线毛片视频| 日韩亚洲欧美综合| 女人被狂操c到高潮| 99热精品在线国产| 日本成人三级电影网站| 变态另类成人亚洲欧美熟女| 午夜福利18| 亚洲欧美日韩无卡精品| 亚洲自拍偷在线| 黄片小视频在线播放| 精品久久国产蜜桃| 国产精华一区二区三区| 蜜桃亚洲精品一区二区三区| 9191精品国产免费久久| 国内精品美女久久久久久| 国产主播在线观看一区二区| 淫秽高清视频在线观看| 69av精品久久久久久| 热99re8久久精品国产| 精品人妻一区二区三区麻豆 | 禁无遮挡网站| 国产69精品久久久久777片| 亚洲欧美日韩高清在线视频| 三级男女做爰猛烈吃奶摸视频| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品成人久久久久久| 久久精品国产清高在天天线| 99久久精品热视频| 欧美一区二区亚洲| 毛片一级片免费看久久久久 | 久久这里只有精品中国| 久久人人爽人人爽人人片va | 琪琪午夜伦伦电影理论片6080| 日本 欧美在线| 成年免费大片在线观看| 亚洲午夜理论影院| 18禁黄网站禁片免费观看直播| 亚洲国产精品成人综合色| 日本三级黄在线观看| 内射极品少妇av片p| 亚洲精品一区av在线观看| 亚洲,欧美精品.| 天美传媒精品一区二区| 成人av在线播放网站| 91麻豆av在线| 在线十欧美十亚洲十日本专区| 日韩中文字幕欧美一区二区| 久久人人爽人人爽人人片va | 日韩欧美精品免费久久 | 一级黄色大片毛片| 国产午夜精品久久久久久一区二区三区 | 欧美另类亚洲清纯唯美| 日本免费一区二区三区高清不卡| 一区二区三区免费毛片| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品爽爽va在线观看网站| 99热这里只有是精品50| www日本黄色视频网| 成人av在线播放网站| 亚洲一区二区三区色噜噜| 18禁裸乳无遮挡免费网站照片| 亚洲av二区三区四区| 两个人视频免费观看高清| 久久精品国产亚洲av涩爱 | 欧美一区二区亚洲| 在线播放无遮挡| 听说在线观看完整版免费高清| 亚洲在线自拍视频| 搡女人真爽免费视频火全软件 | 窝窝影院91人妻| 亚洲国产欧洲综合997久久,| 别揉我奶头 嗯啊视频| 中文字幕人成人乱码亚洲影| 亚洲成av人片免费观看| 亚洲不卡免费看| 久久久精品大字幕| 日本一本二区三区精品| 啦啦啦韩国在线观看视频| 在线天堂最新版资源| 成人三级黄色视频| 神马国产精品三级电影在线观看| 最新中文字幕久久久久| 国产精品久久视频播放| 美女 人体艺术 gogo| 国产大屁股一区二区在线视频| av专区在线播放| 国产毛片a区久久久久| 1000部很黄的大片| 好男人在线观看高清免费视频| 精品一区二区三区视频在线观看免费| 高清毛片免费观看视频网站| 99视频精品全部免费 在线| 嫩草影院新地址| 成年版毛片免费区| 欧美一区二区亚洲| 少妇的逼水好多| 一个人免费在线观看的高清视频| 色5月婷婷丁香| 亚洲av一区综合| 国产伦一二天堂av在线观看| 亚洲av一区综合| 国产精品乱码一区二三区的特点| 一区二区三区四区激情视频 | 亚洲中文字幕一区二区三区有码在线看| 色精品久久人妻99蜜桃| 国产精品1区2区在线观看.| 丝袜美腿在线中文| 亚洲av二区三区四区| 嫁个100分男人电影在线观看| 日韩中文字幕欧美一区二区| 久久午夜亚洲精品久久| 女同久久另类99精品国产91| 亚洲av一区综合| 欧美国产日韩亚洲一区| 亚洲国产高清在线一区二区三| 国产成人福利小说| 国产麻豆成人av免费视频| 国产毛片a区久久久久| 免费观看人在逋| 91九色精品人成在线观看| 精品乱码久久久久久99久播| 99久国产av精品| 男女下面进入的视频免费午夜| 精品久久久久久成人av| 在线观看免费视频日本深夜| 精品免费久久久久久久清纯| 高清在线国产一区| 最新中文字幕久久久久| 亚洲avbb在线观看| 国产蜜桃级精品一区二区三区| www.熟女人妻精品国产| 国产av在哪里看| 在线看三级毛片| 色在线成人网| 欧美成人免费av一区二区三区| 亚洲国产精品999在线| 成人鲁丝片一二三区免费| 午夜影院日韩av| 极品教师在线视频| 男女做爰动态图高潮gif福利片| 天堂影院成人在线观看| 久久精品国产清高在天天线| 精品人妻一区二区三区麻豆 | 麻豆国产av国片精品| 色哟哟哟哟哟哟| 精品熟女少妇八av免费久了| 国产高潮美女av| 国产成人av教育| 日本五十路高清| 老司机福利观看| 他把我摸到了高潮在线观看| 尤物成人国产欧美一区二区三区| 国产私拍福利视频在线观看| 人妻丰满熟妇av一区二区三区|