• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    兩個(gè)dpa類配體的銅髤配合物的合成、結(jié)構(gòu)、核酸酶活性及細(xì)胞毒性

    2017-12-13 10:52:00岳愛琴張宇婷張鵬騫高媛媛張永坡王高春艷趙晉忠杜維俊
    關(guān)鍵詞:核酸酶農(nóng)業(yè)大學(xué)配體

    岳愛琴 張宇婷 張鵬騫 高媛媛 張永坡王 敏 高春艷*, 趙晉忠 杜維?。?

    兩個(gè)dpa類配體的銅髤配合物的合成、結(jié)構(gòu)、核酸酶活性及細(xì)胞毒性

    岳愛琴1張宇婷2張鵬騫3高媛媛4張永坡2王 敏1高春艷*,2趙晉忠2杜維?。?1

    (1山西農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,太谷 030801)
    (2山西農(nóng)業(yè)大學(xué)文理學(xué)院,太谷 030801)
    (3北京麋鹿生態(tài)實(shí)驗(yàn)中心,北京 100076)
    (4內(nèi)蒙古工業(yè)大學(xué)化工學(xué)院,呼和浩特 010051)

    以dpa衍生配體4-methyl-N,N-bis(pyridin-2-ylmethyl)aniline(L)合成2個(gè)單核銅配合物[CuL(NO3)2](1)和[CuL(OAc)(H2O)]ClO4(2),并對(duì)其進(jìn)行了表征。單晶結(jié)構(gòu)顯示,配合物1中的Cu中心可以描述為畸變的五角雙錐構(gòu)型,而2的Cu中心為畸變的八面體構(gòu)型。運(yùn)用電子吸收和發(fā)射光譜法研究了配合物與CT-DNA的鍵合作用,結(jié)果表明2個(gè)配合物與DNA的相互作用均為部分插入模式。通過改變濃度、時(shí)間進(jìn)一步檢測(cè)配合物切割DNA的能力,以及驗(yàn)證其切割機(jī)理,結(jié)果表明在外界誘導(dǎo)劑存在下,2個(gè)配合物均表現(xiàn)出強(qiáng)的切割DNA的能力,其作用機(jī)理為氧化切割機(jī)理,其中活性氧可能為·OH和1O2。利用MTT法測(cè)定了配合物對(duì)體外HeLa、HepG-2和SGC-7901腫瘤細(xì)胞增殖的抑制能力。

    銅配合物;dpa類配體;DNA鍵合;DNA切割;細(xì)胞毒性

    0 Introduction

    Medicinal inorganic chemistry hasbeen a research field of broad interest since the discovery of cisplatin as well as its anticancer activity in the 1960s[1-3].For the reason of severe side effects,general toxicity and drug resistance problems of cisplatin and its derivatives,metal-based therapeutics is a still expanding field up to now that has not stopped at the point of the discovery of new anticancer drug[4-5].Besides platinum,candidates of complexes for almost all transition metals are investigated in the past few years[6-8]for the purpose of developing new anticancer drugs with more efficient and less systemic toxicity.Among those transition metal compounds,copper complex is an interesting candidate showing much potential over cisplatin and its derivatives of reduced toxicity,novel action mechanism,various activity spectrum,and non-cross-resistance prospect[9].

    Besides the choice of metal ions,purposeful design of ligand framework can significantly alter the biological properties by limiting the adverse effects of metal ion overload, modifying reactivity and lipophilicity,stabilizing specific oxidation states,and facilitating metal ion redistribution[10].Polypyridyl metal complexes have been exploited in a broad range of biological applications for their polydentate chelating structure and unique chemical and redox properties[11].In our previous works,we have reported the biological activity of Ni髤[12]and Zn髤[13-14]complexes containing polypyridyl ligands, the results suggested the complexes performed considerable cytotoxic activities.As a continuation of our interest,in this work,two new copper complexes with a mononuclear polypyridyl ligand were synthesized and structurally characterized.The DNA cleavage efficiencies and the cytotoxicity of the two complexes have been tested and analyzed.

    1 Experimental

    1.1 Materials and method

    The reagents and solvents were purchased from commercial sources.Tridentate dpa-based ligand 4-methyl-N,N-bis(pyridin-2-ylmethyl)aniline(L)and L·xHClO4was synthesized according to previous work[12,14].Calf thymus(CT-DNA),Plasmid pBR322 DNA and ethidium bromide (EB)were purchased from Sigma-Aldrich.Stock solutions of Cu髤complexes(1.0 mmol·L-1in 10%(V/V)DMF aqueous solution)were stored at 4℃and prepared to series concentrations for all experiments.Tris-HCl was prepared using tripledistilled deionized sonicated water.

    Elemental analyses and IR spectra were obtained on the Perkin-Elmer analyzer and Perkin-Elmer FT-IR spectrometer,respectively.Electronic spectra and fluorescence spectral data were collected on the JASCO V-570 spectrophotometer and MPF-4 fluorescence spectrophotometer at room temperature.The gel imaging and documentation DigiDoc-It System were assessed using Labworks Imaging and Analysis Software (UVI,England).TheMTT assaywas determined by measuring the absorbance of each well at 570 nm using a Bio-Rad 680 microplate reader(Bio-Rad,USA).

    1.2 Preparation of the complexes

    1.2.1 Synthesis of[CuL(NO3)2](1)

    A methanol solution (10 mL)with 0.2 mmol L·xHClO4(x was counted as 1)was added to the ethanol solution(10 mL)of Cu(NO3)2·3H2O(0.2 mmol,48 mg).The resulting mixture was stirred for 10 h at room temperature.After filtration,green prism crystals suitable for X-ray diffraction were obtained by slow evaporation of the filtrate after a week,which were collected by filtration,washed with diethyl ether and dried in air(Yield:45%).Anal.Calcd.for C19H19CuN5O6(%):C,47.85;H,4.02;N,14.68.Found(%):C,48.32;H,3.29;N,14.76.FT-IR (KBr,cm-1):3 445,2 924,2 362,1 613,1 516,1 475,1 386,1 294,1 120,1 031,818,782,624.

    1.2.2 Synthesis of[CuL(OAc)(H2O)]ClO4(2)

    Complex 2 was prepared using a similar procedure with that of 1 except of adding an aqueous solution(5 mL)of Cu(OAc)2·H2O(0.2 mmol,40 mg)to the reaction mixture.Blue prism crystals suitable forX-ray diffraction were precipitated by slow evaporation of the filtrate after a week,which were collected by filtration,washed with cold diethyl ether and dried in vacuum(yield:42%).Anal.Calcd.for C21H24ClCuN3O7(%):C,47.64;H,4.57;N,7.94.Found(%):C,47.71;H,4.63;N,7.85.FT-IR (KBr,cm-1):3 490,1 582,1 512,1 400,1 342,1 286,1 099,972,929,832,773,929,832,773,687,624,560,421.

    1.3 X-ray crystallography

    Single crystals of the complexes with suitable size (0.40 mm×0.25 mm×0.12 mm for 1 and 2)were selected.X-ray diffraction data were collected on a Bruker Smart 1000 CCD diffractometer using Mo Kα radiation(λ=0.071 073 nm)with the ω-2θ scan technique.Diffraction data were collected at 293(2)K.Both the crystal structures were solved using direct methods(SHELXS-97)[15]and refined with full-matrix leastsquares technique on F2using the SHELXL-97[16].The hydrogen atoms were added theoretically,and riding on the concerned atoms and refined with fixed thermal factors.Crystallographic data details and structure refinement parameters are presented in Table 1.Selected bond lengths and angles are listed in Table S1.

    CCDC:1521098 for 1;1521097 for 2.

    Table 1 Crystallographic data for complexes 1 and 2

    1.4 DNA binding,DNA cleavage and cytotoxicity experiments

    The chemical nuclease activity and cytotoxicity experiments were conducted using the similar methods described previously[12-14,17]. Detailed experimental methods can be found in the supporting information.

    2 Results and discussion

    2.1 Description of the crystal structures

    Both of the mononuclear Cu髤complexes have been structurally characterized by X-ray crystallography(Fig.1).Complex 1 crystallizes in a triclinic cell with P1 space group.The metal center is heptacoordinated with N3O4donor sets,and weak coordinated interactions(Cu1-O2 0.257 5(5)nm and Cu1-O4 0.247 4(5)nm)exist in the[CuL(NO3)2]unit.The atoms O1,O2,N1,O4 and O6 occupy the corners of the pentagonal basal plane,and the angles around the copper ion within the basal plane vary from 46.28(7)°to 99.04(13)°and the sum of angles spanning these five bonds is 360.07°(Table S1),underscoring the flat nature of this equatorial plane.In addition,the atoms N2 and N3 occupy the axial positions(Cu1-N2 0.195 1(7)nm;Cu1-N3 0.195 9(6)nm and N2-Cu1-N3 164.7(3)°).Therefore,the geometry around copper center can be described as a distorted pentagonal bipyramidal.

    Complex 2 crystallizes in a monoclinic cell with P21/c space group.The metal center is hexa-coordinated with N3O3donor sets,and weak coordinated interaction(Cu1-O2 0.278 9(3)nm)also exist in the[CuL(OAc)(H2O)]ClO4unit,and the geometry around metal center can be described as a distorted octahedron.The atoms O2 and O3 occupy the axial positions(Cu1-O2,0.278 9(3)nm and Cu1-O3,0.245 7(3)nm),the atoms O1,N1,N2 and N3 occupy the corners of the basal plane,the angles around the copper ion within the basal plane vary from 82.26(12)to 97.49(12)°and the sum of angles spanning these five bonds is 359.76°,underscoring the flat nature of this equatorial plane.

    Fig.1 ORTEP view of the molecular structure and atom-labeling scheme of complexes 1(a)and 2(b)with 30%probability ellipsoid

    2.2 DNA-binding and cleavage activities

    2.2.1 DNA-binding study

    Electronic absorption spectroscopy was an effective method in examining the binding mode and strength of the complex with CT-DNA[18].Small molecules binding with DNA through intercalation usually result in the changes in the absorbance and shift in wavelength.The typical titration curve for 1 and 2 are shown in Fig.S1(a~b),and a plot of(εa-εf)/(εb-εf)versus cDNAfor the titration of DNA to complex is presented in corresponding inset.As given in Table 2,the observed absorption peaks at 207 and 214 nm for complexes 1 and 2 are attributed to intraligand π-π*transition.As increasing the concentration of CTDNA,the ligand-based bands exhibit hypochromism(For 1,hypochromism was about 78.8%and for 2 it was 66.7%)with red shifts(10 and 7 nm for 1 and 2,respectively) in band position,which indicatesintercalation between the complexes and DNA[19].To confirm the binding strength of the complexes with CT-DNA,the intrinsic binding constants Kbwere calculated according to the equation[20]:cDNA/(εa-εf)=cDNA/(εb-εf)+1/[Kb(εb-εf)], where cDNAis the DNA concentration in nucleotides;εais the extinction coefficient observed for the charge transfer absorption band at a given DNA concentration;εfis the extinction coefficient of the free complex in solution;εbis the extinction coefficient of the complex when fully bound to DNA.The binding constant Kbvalues (Table 2)follow the order:2(9.60×104L·mol-1)gt;1(4.21×104L·mol-1),which suggest that complex 2 has slightly stronger binding affinity than 1.The Kbvalues are smaller than reported for typical classical intercalators(EB-DNA,3.3×105mol·L-1in 50 mmol·L-1Tris-HCl/1.0 mol·L-1NaCl buffer,pH 7.5)[21],which suggests that the binding strength of the two complexes with DNA is a medium intercalative mode.

    Table 2 Absorption spectral and fluorescence spectral properties of complexes 1 and 2 bound to CT-DNA

    In order to further clarify the CT-DNA binding activity,fluorescence spectralmeasurementswere carried out.No luminescence is observed for both complexes and CT-DNA at room temperature,therefore the binding activity is evaluated by the fluorescence emission intensity of EB bound to DNA as a probe.EB-DNA emits intense fluorescent due to their strong intercalation between the adjacent DNA base pairs[22],which could be quenched by the addition of another compound.The relative binding propensity of the complexes toEB-DNA studied in buffer solution (5 mmol·L-1Tris-HCl/50 mmol·L-1NaCl,pH=7.2)is shown in Fig.S2(a~b),and the plots of I0/I versus ccomplexfor the quenched intensity of 1 and 2 to EB-DNA are shown in the insets,respectively.Fluorescence intensities of EB-DNA at 602 nm(510 nm excitation)were measured,and the extent of reduction of the emission intensity by varying the concentration of the complexes gives a measure of the binding propensity.In the Stern-Volmer equation I0/I=1+KcQ[23],I0and I represent the fluorescence intensities in the absence and presence of quencher,respectively;K is the Stern-Volmer quenching constant,and cQis the concentration of the quencher.The quenching plot indicates the quenching of EB bound to CT-DNA by complex is in agreement with the linear Stern-Volmer equation.In the equation KEBcEB=Kappccomplex,KEBis a constant of 1.0×107mol·L-1(cEB=2.4 μmol·L-1),Kappis the calculated apparent binding constant values,and ccomplexis the concentration at a half reduction of the fluorescence intensity of EB.The Kappvalues(Table 2)are nearly equal and follow the order:1(7.13×105L·mol-1)gt;2(6.83×105L·mol-1).The apparent binding constants values are less than that of the classical intercalators and metallointercalators(1.0×107L·mol-1)[24],indicating medium binding strength of the complexes with CT-DNA.On the whole,the result of fluorescence spectral measurements is consistent with obtained Kbvalues by UV spectroscopy.2.2.2 DNA Cleavage Studies

    Agarose gel electrophoresis was used to explore the supercoiled (SC)pBR322 plasmid DNA cleavage activity of the two complexes in a medium of 50 mmol·L-1Tris-HCl/NaCl buffer for 4 h.In the absence of external agents,the concentration-dependent DNA cleavage activities were observed under the nearly physiological conditions(pH=7.2,37℃)(Fig.S3),and both of 1 and 2 could not induce obvious DNA cleavage with the increase of concentration (10~130 μmol·L-1).The ratios of SC DNA (Form Ⅰ)for complex 1 gradually reduce with the increase of concentration,while NC DNA (Form Ⅱ )doesn′t increase,which suggests that 1 partially degraded SC DNA into undetectable minor fragments[25].When the concentration of 2 increase to 130 μmol·L-1,no obvious change for the ratios of FormⅠand FormⅡwere observed.The above suggest that 1 showed slightly better concentration-dependent activities than 2.The concentration-dependent DNA cleavage experidments by complex were also performed in the presence of H2O2(Fig.2)and GSH(glutathione)(Fig.3),respectively.Notably,the DNA cleavage efficiencies of both complexes exhibit remarkable enhancement.In Fig.2,at the concentration of 10 μmol·L-1Cu2+,both complexes are efficient cleavers of SC DNA(FormⅠ)and produce more than 90%of NC DNA(FormⅡ),which implies that H2O2as a revulsant or an activator plays a vital role.When the concentration of complex increase to 40 μmol·L-1,obvious LC DNA(FormⅢ)is produced and the ratios of which followed the order of 1(57.3%)gt;2(31.0%).In order to further clarify the vital role of external revulsant,the GSH (glutathione)instead of H2O2were added.Similarly,as shown in Fig.3 (lane 2~5),the DNA cleavage efficiencies of both complexes also exhibit remarkable increases.At the concentration of 50 μmol·L-1Cu2+,the DNA cleavage efficiencies(the ratios of FormⅢ)follow the order of 1(61.8%)gt;2(45.2%).Both H2O2and GSH showed similar behavior in DNA cleavage reactions,although H2O2was slightly more active than GSH.

    Fig.2 Gel electrophoresis diagrams showing the cleavage of pBR322 DNA(0.1 μg·μL-1)with complex 1(a)and 2(b)in Tris-HCl/NaCl buffer(pH=7.2)at 37℃

    Fig.3 Gel electrophoresis diagrams showing the cleavage of pBR322 DNA(0.1 μg·μL-1)with complex 1(a)and 2(b)in Tris-HCl/NaCl buffer(pH=7.2)at 37℃

    Fig.4 Time-dependence of pBR322 DNA cleavage by complexes 1(a)and 2(b)according to the inset

    To further assess the cleavage rate of chemical nuclease,the kinetic parameters for complexes 1 and 2 promoted DNA cleavage were determined.The timedependence ofDNA cleavage experimentswere carried out(Fig.4)under the same condition(pH=7.2,37 ℃,cGSH=250 μmol·L-1,cCu2+=10 μmol·L-1).The ratios of FormⅠgradually disappeared and FormⅡincreased with reaction time increase (3~15 min).More than 90%NC DNA(FormⅡ)was observed within 9 min for complex 1 (Fig.4a Inset)and within 15 min for complex 2 (Fig.4b Inset).The decrease of FormⅠor increase of FormⅡwas fitted to a single exponential decay curve (pseudo-first-order kinetics)by the equation[26-27]:y=(100-y0)[1-exp(-kobsx)],where y0is the initial ratio of a form of DNA;y is the ratio of a specific form of DNA at time x;kobsis the apparent rate constant.The reaction profile for the complex displayed approximately pseudo-first-order kinetic behavior(Fig.4(a~b))with kobsfollow the order of 1(0.35 min-1)gt;2(0.22 min-1),showing better than the result of the kobsfor copper-ATCUN complexes(0.07 and 0.14 min-1)obtained by Cowan′s group[28].

    In order to obtain the information about the active oxygen species(ROS)which was responsible for the DNA cleavage,the potential mechanism of DNA cleavage mediated by the complex was investigated in the presence of GSH.DNA cleavage experiments(Fig.5)were carried out using reagents like KI as hydroxyl radical scavenger(·OH),NaN3as singlet oxygen(1O2)quencher,EDTA as the chelator of complex,catalase ashydrogen peroxide scavenger,and superoxide dismutase(SOD)as O2-radical scavenger.In Fig.5(a~b),addition of KI(lane 3)to SC DNA partly inhibited the DNA cleavageactivity,which suggested the possible involvement of hydroxyl radial(·OH)as the reactive species.Also,the complexes showed partial inhibition of DNA-cleavage in the presence of the NaN3(lane 4),and D2O (lane 8)enhanced the DNA cleavage[29],indicating possible involvement of singlet oxygen as the reactive species.No obvious inhibition was observed for other radical scavengers.Therefore,the data suggest the involvement of both hydroxyl radicals (·OH)and singlet oxygen (1O2)as ROS.In addition,The EDTA (lane 5),a Cu髤-specific chelating agent that strongly bind to Cu髤f(xié)orming a stable complex,can efficiently inhibit DNA cleavage,indicating metalion playsthekeyrolein the cleavage.The addition of methyl green(lane 9),which is known to interact to DNA at major groove[30],effectively inhibited DNA cleavage by complex.The result suggests that the complex mainly has interaction with DNA through major groove.

    Fig.5 Cleavage of plasmid pBR322 DNA(0.1 μg·μL-1)in presence of 20 μmol·L-1complex 1(a)~2(b)(0.04%DMF)and different inhibitors after 4 h incubation at 37℃

    2.3 MTT assay

    MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)assay is a colorimetric assay based on the conversion of the yellow tetrazolium salt to purple formazan crystals by metabolically active cells,which has been done to test the ability of complexes to inhibit cell growth and induce cell death in HeLa(human cervical carcinoma),HepG-2 (human liver hepatocellularcarcinoma)and SGC-7901 (human gastric carcinoma)cancer cell lines.In Table 2,both1 and 2 exhibit significant cytotoxic activities toward tested tumor cells and inhibit the growth of cells in a dose-dependent manner,and 2 shows slightly better antitumor effect than 1.Complex 2 exhibits strong anti-proliferative effect on HepG-2 cells with the IC50value of(34.2±2.3)μmol·L-1,which is close to the cisplatin(IC50=(25±3.1)μmol·L-1)and probably has the potential to act as an effective metal-based anticancer drug.

    Table 2 IC50of complexes 1 and 2 obtained with different cell lines for 48 h

    3 Conclusions

    Two new mononuclear Cu髤complexes have been synthesized and characterized.Crystal structure showed that the metal center of 1 is hepta-coordinated with N3O4donorsets,existing weak coordinated interactions,and can be described as a distorted pentagonal bipyramidal.Weak coordinated interaction also exists in the crystal unit of 2 where the metal center is hexa-coordinated and the geometry can be described as a distorted octahedron. Partial intercalation and medium binding strength between the complexes and CT-DNA has been demonstrated.The DNA cleavage efficiencies of both complexes exhibit remarkable enhancement in the presence of H2O2or GSH,and H2O2was slightly more active than GSH.The oxidative cleavage mechanism was confirmed via a pathway involving formation of both·OH and1O2as ROS.The in vitro cytotoxicity of the complexes has been assessed by MTT on tumor cells lines(HeLa,HepG-2 and SGC-7901),both 1 and 2 exhibit significant cytotoxic activities and inhibit the proliferation of cells.

    Acknowledgements:This work was supported by the National Natural Science Foundation of China (Grant No.31171580),Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (Grant No.2015148),Natural Science Foundation of Shanxi (Grants No.201601D011076,201701D221157),Shanxi Key Research and Development Program (Grants No.201703D221008-4,201703D221004-5),Shanxi Agricultural University youth topnotch innovative personnel support program(Grant No.201203),the PhD Research Startup Foundation of Shanxi Agricultural University (Grant No.2013YJ40),The Key Scientific Research Projects of Coal Fund in Shanxi(Grant No.FT201402-01).The Natural Science Foundation of Inner Mongolia (Grant No.2016BS0206),and The Inner Mongolia Autonomous Region Higher Scientific Research Project(Grant No.NJZY088).

    Supporting information is available at http://www.wjhxxb.cn

    [1]Mjos K D,Orvig C.Chem.Rev.,2014,114(8):4540-4563

    [2]Muhammad N,Guo Z.Curr.Opin.Chem.Biol.,2014,19:144-153

    [3]Garbutcheon-Singh K B,Grant M P,Harper B W,et al.Curr.Top.Med.Chem.,2011,11(5):521-542

    [4]Barone G,Terenzi A,Lauria A,et al.Coord.Chem.Rev.,2013,257(19/20):2848-2862

    [5]Deo K M,Pages B J,Ang D L,et al.Int.J.Mol.Sci.,2016,17(11):1818(17 pages)

    [6]Zaki M,Arjmand F,Tabassum S.Inorg.Chim.Acta,2016,444:1-22

    [7]Marloye M,Berger G,Gelbcke M,et al.Future Med.Chem.,2016,8(18):2263-2286

    [8]Ott I,Gust R.Arch.Pharm.,2007,340(3):117-126

    [9]Santini C,Pellei M,Gandin V,et al.Chem.Rev.,2014,114(1):815-862

    [10]Storr T,Thompson K H,Orvig C.Chem.Soc.Rev.,2006,35(6):534-544

    [11]Salassa L.Eur.J.Inorg.Chem.,2011(32):4931-4947

    [12]Gao C Y,Ma Z Y,Zhang Y P,et al.RSC Adv.,2015,5(39):30768-30779

    [13]Gao C Y,Qiao X,Ma Z Y,et al.Dalton Trans.,2012,41(39):12220-12232

    [14]Zhang Y P,Ma Z Y,Gao C Y,et al.New J.Chem.,2016,40(9):7513-7521

    [15]Sheldrick G M.SHELXS-97,Program for the Solution of Crystal Structure,University of G觟ttingen,Germany,1997.

    [16]Sheldrick G M.SHELXL-97,Program for the Refinement of Crystal Structure,University of G觟ttingen,Germany,1997.

    [17]ZHANG Yong-Po(張永坡),YANG Jia-Jia(楊佳佳),L譈 Jia-Yuan(呂佳苑),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2016,32(12):2172-2182

    [18]Marmur J.J.Mol.Biol.,1961,3(2):208-218

    [19]Baldini M,Belicchi-Ferrari M,Bisceglie F,et al.Inorg.Chem.,2004,43(22):7170-7179

    [20]Wolfe A,Shimer Jr G H,Meehan T.Biochemistry,1987,26(20):6392-6396

    [21]Strothkamp K G,Strothkamp R E.J.Chem.Educ.,1994,71(1):77-79

    [22]Meyer-Almes F J,Porschke D.Biochemistry,1993,32(16):4246-4253

    [23]Lakowicz J R,Weber G.Biochemistry,1973,12(21):4171-4179

    [24]Cory M,McKee D D,Kagan J,et al.J.Am.Chem.Soc.,1985,107(8):2528-2536

    [25]Ramakrishnan S,Shakthipriya D,Suresh E,et al.Inorg.Chem.,2011,50(14):6458-6471

    [26]Googisman J,Kirk C,Dabrowiak J C.Biophys.Chem.,1997,69:249-268

    [27]Ordoukhanian E,Joyee G F.J.Am.Chem.Soc.,2002,124(42):12499-12506

    [28]Jin Y,Cowan J A.J.Am.Chem.Soc.,2005,127(23):8408-8415

    [29]Merkel P B,Kearns D R.J.Am.Chem.Soc.,1972,94(3):1029-1030

    [30]Gibellini D,Vitone F,Schiavone P,et al.J.Clin.Virol.,2004,29(4):282-289

    Two Copper髤Complexes with dpa-Based Ligand:Syntheses,Structures,Nuclease Activity and Cytotoxicity

    YUE Ai-Qin1ZHANG Yu-Ting2ZHANG Peng-Qian3GAO Yuan-Yuan4ZHANG Yong-Po2
    WANG Min1GAO Chun-Yan*,2ZHAO Jin-Zhong2DU Wei-Jun*,1
    (1College of Agronomy,Shanxi Agricultural University,Taigu,Shanxi 030801,China)
    (2College of Arts and Sciences,Shanxi Agricultural University,Taigu,Shanxi 030801,China)
    (3Beijing Milu Ecological Research Center,Beijing 100076,China)
    (4Chemical Engineering College,Inner Mongolia University of Technology,Hohhot 010051,China)

    Two new mononuclear copper髤complexes,[CuL(NO3)2](1)and[CuL(OAc)(H2O)]ClO4(2),with dpabased ligand(L=4-methyl-N,N-bis(pyridin-2-ylmethyl)aniline)have been synthesized and characterized by various physico-chemical techniques.The crystal structure of complex 1 displays a distorted pentagonal bipyramidal geometry,and the geometry around copper center of 2 can be described as a distorted octahedron.Interaction of the complexes with CT-DNA has been explored by using absorption and emission spectral methods,and the result suggests that the binding strength of the two complexes with DNA is a medium intercalative mode.Theconcentration-dependent and time-dependent DNA cleavage activity and the mechanism of DNA cleavage have been investigated,which suggest the DNA cleavage efficiencies of both complexes exhibit remarkable enhancement in the presence of external revulsants,and oxidative mechanism has been demonstrated via the pathway involving both hydroxyl radicals(·OH)and singlet oxygen(1O2)as ROS.The in vitro cytotoxic activity of the complexes has been examined by MTT on three cell lines such as HeLa,HepG-2 and SGC-7901.CCDC:1521098,1;1521097,2.

    copper髤complexes;dpa-based ligand;DNA binding;DNA cleavage;cytotoxicity

    O614.121

    A

    1001-4861(2017)12-2287-09

    10.11862/CJIC.2017.273

    2017-05-15。收修改稿日期:2017-09-28。

    國家自然科學(xué)基金(No.31171580)、山西省高等學(xué)??萍紕?chuàng)新項(xiàng)目(No.2015148)、山西省自然科學(xué)基金(No.201601D011076,201701D221157)、山西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(No.201703D221008-4,201703D221004-5)、山西農(nóng)業(yè)大學(xué)中青年拔尖創(chuàng)新人才支持計(jì)劃(No.201203)、山西農(nóng)業(yè)大學(xué)引進(jìn)人才科研啟動(dòng)金(No.2013YJ40)、山西省煤基重點(diǎn)項(xiàng)目(No.FT201402-01)、內(nèi)蒙古自然科學(xué)基金(No.2016BS0206)和內(nèi)蒙古自治區(qū)高等學(xué)??茖W(xué)研究項(xiàng)目(No.NJZY088)。

    *通信聯(lián)系人。 E-mail:gaocynk@163.com,duweijun68@126.com;會(huì)員登記號(hào):S06N2534M1605。

    猜你喜歡
    核酸酶農(nóng)業(yè)大學(xué)配體
    粘質(zhì)沙雷氏菌全能核酸酶的研究進(jìn)展
    湖南農(nóng)業(yè)大學(xué)通知教育中心
    《云南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué))》征稿簡則
    含季銨鹽的芳酰腙配體的銅 (Ⅱ)配合物的合成和表征:體外DNA鍵合和核酸酶活性
    多種Cas12a蛋白變體能識(shí)別不同的PAM序列(2020.4.27 Plant Biotechnology Journal)
    ??? ???? ??? ???????? ?? ?? ??―??? ????? ????
    用megaTAL 核酸酶對(duì)原代人T 細(xì)胞CCR5 基因座進(jìn)行有效修飾可建立HIV-1 抵抗力
    基于配體鄰菲啰啉和肉桂酸構(gòu)筑的銅配合物的合成、電化學(xué)性質(zhì)及與DNA的相互作用
    新型三卟啉醚類配體的合成及其光學(xué)性能
    基于Schiff Base配體及吡啶環(huán)的銅(Ⅱ)、鎳(Ⅱ)配合物構(gòu)筑、表征與熱穩(wěn)定性
    少妇的丰满在线观看| 不卡一级毛片| avwww免费| 中文字幕另类日韩欧美亚洲嫩草| 欧美人与性动交α欧美精品济南到| 亚洲国产精品久久男人天堂| 亚洲av五月六月丁香网| 国产精品久久久av美女十八| 国产一区二区三区在线臀色熟女| 欧美色视频一区免费| 午夜久久久久精精品| 欧美不卡视频在线免费观看 | 天堂动漫精品| 午夜福利视频1000在线观看| 一本精品99久久精品77| 一二三四在线观看免费中文在| 无遮挡黄片免费观看| 国产欧美日韩精品亚洲av| 麻豆av在线久日| 亚洲欧美精品综合久久99| 久久久久免费精品人妻一区二区 | 在线观看午夜福利视频| 黄色丝袜av网址大全| 美女国产高潮福利片在线看| 久久精品aⅴ一区二区三区四区| 51午夜福利影视在线观看| e午夜精品久久久久久久| 亚洲av中文字字幕乱码综合 | 精品熟女少妇八av免费久了| 波多野结衣巨乳人妻| 成人av一区二区三区在线看| 变态另类丝袜制服| 人人妻人人澡人人看| 怎么达到女性高潮| 黑人巨大精品欧美一区二区mp4| 在线观看一区二区三区| 午夜福利在线观看吧| 亚洲男人的天堂狠狠| 欧美国产精品va在线观看不卡| 国产男靠女视频免费网站| 久久久国产精品麻豆| 在线观看日韩欧美| 欧美日本视频| 美女大奶头视频| 免费看美女性在线毛片视频| 人妻久久中文字幕网| 欧美性长视频在线观看| 2021天堂中文幕一二区在线观 | 欧美绝顶高潮抽搐喷水| 久久亚洲精品不卡| 欧美黑人巨大hd| 国内精品久久久久久久电影| 校园春色视频在线观看| 91麻豆av在线| 亚洲一区高清亚洲精品| 免费看日本二区| www.精华液| 91大片在线观看| 怎么达到女性高潮| 欧美精品啪啪一区二区三区| 又紧又爽又黄一区二区| 波多野结衣高清无吗| 他把我摸到了高潮在线观看| 久久久久久国产a免费观看| 亚洲aⅴ乱码一区二区在线播放 | 国产成人av教育| 欧美另类亚洲清纯唯美| 成人18禁高潮啪啪吃奶动态图| 黄色a级毛片大全视频| 无限看片的www在线观看| 国产男靠女视频免费网站| 极品教师在线免费播放| 少妇的丰满在线观看| 欧美性长视频在线观看| 国产91精品成人一区二区三区| 午夜免费激情av| 欧美大码av| 成人特级黄色片久久久久久久| 国产一卡二卡三卡精品| 欧美色视频一区免费| 丁香六月欧美| 波多野结衣av一区二区av| 国产伦人伦偷精品视频| 久久伊人香网站| 亚洲欧美精品综合一区二区三区| 亚洲av美国av| 可以在线观看的亚洲视频| 免费一级毛片在线播放高清视频| 精品久久久久久,| 免费女性裸体啪啪无遮挡网站| www国产在线视频色| 日韩国内少妇激情av| 一a级毛片在线观看| 免费人成视频x8x8入口观看| 高潮久久久久久久久久久不卡| 亚洲熟女毛片儿| 日韩欧美三级三区| 非洲黑人性xxxx精品又粗又长| netflix在线观看网站| 日韩成人在线观看一区二区三区| 日本 欧美在线| 制服人妻中文乱码| 日韩精品青青久久久久久| 欧美性猛交╳xxx乱大交人| 亚洲免费av在线视频| 在线十欧美十亚洲十日本专区| av欧美777| 国产精品 国内视频| 91大片在线观看| 成人av一区二区三区在线看| 最近最新中文字幕大全免费视频| 久久人妻av系列| 黄色 视频免费看| 19禁男女啪啪无遮挡网站| 亚洲五月婷婷丁香| 在线av久久热| 又黄又爽又免费观看的视频| 久久中文看片网| 亚洲色图 男人天堂 中文字幕| 国产精品野战在线观看| 精华霜和精华液先用哪个| 啪啪无遮挡十八禁网站| 丁香六月欧美| 午夜影院日韩av| 听说在线观看完整版免费高清| 欧美一级毛片孕妇| 色老头精品视频在线观看| 91字幕亚洲| 人人妻,人人澡人人爽秒播| 亚洲精品久久成人aⅴ小说| 哪里可以看免费的av片| 91国产中文字幕| 亚洲成国产人片在线观看| 亚洲男人的天堂狠狠| 亚洲欧洲精品一区二区精品久久久| 亚洲中文日韩欧美视频| 中文亚洲av片在线观看爽| 亚洲精品一区av在线观看| 免费av毛片视频| 黑丝袜美女国产一区| 亚洲成av人片免费观看| 午夜老司机福利片| 最新美女视频免费是黄的| 亚洲一区二区三区不卡视频| 久久香蕉精品热| 亚洲成人精品中文字幕电影| 午夜精品在线福利| 国产亚洲精品一区二区www| 午夜a级毛片| 丝袜人妻中文字幕| 中文字幕久久专区| 国产真人三级小视频在线观看| 中国美女看黄片| 国产99久久九九免费精品| av天堂在线播放| 亚洲av熟女| 久久久久久久久免费视频了| 999精品在线视频| 久久久久久大精品| 成熟少妇高潮喷水视频| 国产一区二区三区视频了| 欧美日韩中文字幕国产精品一区二区三区| 国产激情久久老熟女| 国产一区二区三区视频了| 黄色视频,在线免费观看| 国产精品久久电影中文字幕| www.自偷自拍.com| 久久久久国内视频| 欧美乱色亚洲激情| 中文字幕人妻丝袜一区二区| 日本撒尿小便嘘嘘汇集6| 亚洲精品一卡2卡三卡4卡5卡| 亚洲久久久国产精品| xxxwww97欧美| 亚洲精品国产区一区二| 亚洲av熟女| 怎么达到女性高潮| 两个人免费观看高清视频| 欧美色视频一区免费| 一级毛片女人18水好多| 成人三级黄色视频| 在线观看免费午夜福利视频| 国产精品98久久久久久宅男小说| a级毛片a级免费在线| 成人亚洲精品av一区二区| 亚洲精品中文字幕在线视频| 搡老妇女老女人老熟妇| 国产片内射在线| 一进一出抽搐gif免费好疼| 黑丝袜美女国产一区| 色尼玛亚洲综合影院| ponron亚洲| 亚洲av第一区精品v没综合| 中文在线观看免费www的网站 | 女生性感内裤真人,穿戴方法视频| 欧美中文日本在线观看视频| 欧美三级亚洲精品| 母亲3免费完整高清在线观看| 99精品在免费线老司机午夜| 久久精品国产亚洲av香蕉五月| 99精品久久久久人妻精品| 亚洲va日本ⅴa欧美va伊人久久| 99热只有精品国产| 特大巨黑吊av在线直播 | xxxwww97欧美| 每晚都被弄得嗷嗷叫到高潮| 久久久精品欧美日韩精品| 色尼玛亚洲综合影院| 此物有八面人人有两片| 久久天躁狠狠躁夜夜2o2o| 亚洲精品av麻豆狂野| 伊人久久大香线蕉亚洲五| 亚洲五月天丁香| 精品高清国产在线一区| 免费在线观看完整版高清| 99久久精品国产亚洲精品| 一级黄色大片毛片| 两个人视频免费观看高清| 人妻丰满熟妇av一区二区三区| 亚洲国产精品sss在线观看| 午夜精品在线福利| 久久国产精品影院| 狠狠狠狠99中文字幕| 窝窝影院91人妻| 欧美在线黄色| 久久这里只有精品19| 精品不卡国产一区二区三区| 久久精品国产亚洲av高清一级| 高潮久久久久久久久久久不卡| 欧美在线黄色| 欧美黄色淫秽网站| 成人国产一区最新在线观看| 91国产中文字幕| 欧美 亚洲 国产 日韩一| 欧美黑人欧美精品刺激| 国产片内射在线| 男女午夜视频在线观看| 国产麻豆成人av免费视频| 国语自产精品视频在线第100页| 国产一区二区在线av高清观看| 亚洲国产精品久久男人天堂| 91成人精品电影| 国产av又大| 国产精品国产高清国产av| 久久久水蜜桃国产精品网| 国产激情久久老熟女| 国产精品影院久久| 操出白浆在线播放| 老汉色∧v一级毛片| 国产成人精品无人区| 可以在线观看毛片的网站| 黄色女人牲交| 久久久国产成人精品二区| 国产一区二区三区视频了| 一级毛片女人18水好多| 宅男免费午夜| 国产久久久一区二区三区| 神马国产精品三级电影在线观看 | xxx96com| 香蕉av资源在线| 亚洲一区高清亚洲精品| 婷婷精品国产亚洲av在线| 国产成人影院久久av| 超碰成人久久| 日韩三级视频一区二区三区| 精品一区二区三区av网在线观看| 男女做爰动态图高潮gif福利片| 桃色一区二区三区在线观看| 黄色 视频免费看| 最近最新免费中文字幕在线| 成人国产综合亚洲| 狠狠狠狠99中文字幕| 看黄色毛片网站| 欧美激情 高清一区二区三区| 亚洲成国产人片在线观看| 日韩免费av在线播放| 嫁个100分男人电影在线观看| 亚洲自偷自拍图片 自拍| 在线天堂中文资源库| 国产高清videossex| 午夜福利18| 国产真实乱freesex| 日本成人三级电影网站| 色精品久久人妻99蜜桃| 亚洲国产精品合色在线| 亚洲精品中文字幕一二三四区| 免费一级毛片在线播放高清视频| 免费在线观看完整版高清| 国产激情久久老熟女| 村上凉子中文字幕在线| 日本撒尿小便嘘嘘汇集6| 99久久久亚洲精品蜜臀av| 国产精品久久视频播放| 曰老女人黄片| 狠狠狠狠99中文字幕| 可以在线观看毛片的网站| 巨乳人妻的诱惑在线观看| 最近最新中文字幕大全免费视频| 欧美成人免费av一区二区三区| 亚洲av五月六月丁香网| 日本 av在线| 日韩av在线大香蕉| 久久青草综合色| 久久久久久九九精品二区国产 | 久久久久久大精品| 国产视频内射| 搞女人的毛片| 黄色女人牲交| 成年人黄色毛片网站| 啦啦啦韩国在线观看视频| 亚洲国产高清在线一区二区三 | 中文字幕精品亚洲无线码一区 | 每晚都被弄得嗷嗷叫到高潮| 国产精品二区激情视频| 在线观看免费日韩欧美大片| 看片在线看免费视频| 亚洲久久久国产精品| 天堂影院成人在线观看| 久热这里只有精品99| 91麻豆av在线| 中文字幕人成人乱码亚洲影| 狂野欧美激情性xxxx| 伊人久久大香线蕉亚洲五| 1024手机看黄色片| 亚洲国产欧美日韩在线播放| 一级作爱视频免费观看| 久久久久久九九精品二区国产 | 亚洲 欧美一区二区三区| 一进一出好大好爽视频| 国产成人啪精品午夜网站| 美女免费视频网站| 成年女人毛片免费观看观看9| 97碰自拍视频| 99久久精品国产亚洲精品| 成人国产一区最新在线观看| 午夜激情福利司机影院| 午夜免费成人在线视频| 99久久国产精品久久久| 欧美又色又爽又黄视频| 日韩一卡2卡3卡4卡2021年| 欧美一区二区精品小视频在线| 成人手机av| 亚洲人成网站在线播放欧美日韩| 男人的好看免费观看在线视频 | 午夜免费观看网址| 精品第一国产精品| 国产成年人精品一区二区| 黄色丝袜av网址大全| 男女做爰动态图高潮gif福利片| 校园春色视频在线观看| 男女做爰动态图高潮gif福利片| 熟女少妇亚洲综合色aaa.| 亚洲国产精品999在线| 国产97色在线日韩免费| 天天躁狠狠躁夜夜躁狠狠躁| 精品欧美一区二区三区在线| 国产精品香港三级国产av潘金莲| 精品欧美一区二区三区在线| 国内揄拍国产精品人妻在线 | 色在线成人网| 色综合欧美亚洲国产小说| 18禁黄网站禁片免费观看直播| 日韩一卡2卡3卡4卡2021年| 97碰自拍视频| 国产97色在线日韩免费| 一级a爱片免费观看的视频| 成年女人毛片免费观看观看9| 欧美av亚洲av综合av国产av| 成熟少妇高潮喷水视频| 国产免费av片在线观看野外av| 国产激情久久老熟女| 亚洲精品久久成人aⅴ小说| 精品久久久久久成人av| 日韩欧美一区二区三区在线观看| 男女那种视频在线观看| 在线天堂中文资源库| 成人欧美大片| 亚洲av日韩精品久久久久久密| 成人一区二区视频在线观看| 国产精品日韩av在线免费观看| 黄色毛片三级朝国网站| 国产精品精品国产色婷婷| 久久精品国产综合久久久| 国产一区二区三区在线臀色熟女| 搞女人的毛片| 国产精品 国内视频| 一级黄色大片毛片| 欧美成狂野欧美在线观看| 999久久久精品免费观看国产| 大香蕉久久成人网| 一区二区三区高清视频在线| 国内精品久久久久久久电影| 亚洲国产精品999在线| 人妻久久中文字幕网| 亚洲精品久久成人aⅴ小说| 日本在线视频免费播放| 精品乱码久久久久久99久播| 国内精品久久久久精免费| 黄色视频不卡| av电影中文网址| 免费看美女性在线毛片视频| 手机成人av网站| 色精品久久人妻99蜜桃| 不卡一级毛片| x7x7x7水蜜桃| 美女免费视频网站| 久久久久精品国产欧美久久久| 国产av一区二区精品久久| 国内久久婷婷六月综合欲色啪| 国产高清激情床上av| 国内久久婷婷六月综合欲色啪| 国产精品,欧美在线| 人人澡人人妻人| 免费高清视频大片| 色播在线永久视频| 久久精品国产亚洲av高清一级| 免费无遮挡裸体视频| 中亚洲国语对白在线视频| 欧美成人午夜精品| 一级作爱视频免费观看| 欧美日本亚洲视频在线播放| 亚洲精品国产一区二区精华液| 日韩欧美一区二区三区在线观看| 日韩大尺度精品在线看网址| a级毛片a级免费在线| 亚洲专区字幕在线| 久久久久久久精品吃奶| 在线观看免费视频日本深夜| 精品欧美国产一区二区三| 亚洲全国av大片| 国产区一区二久久| 国内揄拍国产精品人妻在线 | 欧美日韩黄片免| 可以在线观看的亚洲视频| 午夜免费成人在线视频| 欧美另类亚洲清纯唯美| 88av欧美| 久久精品国产综合久久久| 久久精品国产亚洲av高清一级| 国产乱人伦免费视频| 又大又爽又粗| 一进一出抽搐gif免费好疼| 久久草成人影院| 搡老岳熟女国产| 国内久久婷婷六月综合欲色啪| 岛国视频午夜一区免费看| 黄色毛片三级朝国网站| 免费女性裸体啪啪无遮挡网站| 777久久人妻少妇嫩草av网站| 一边摸一边抽搐一进一小说| 成人av一区二区三区在线看| 欧美丝袜亚洲另类 | 人人妻,人人澡人人爽秒播| 老司机午夜福利在线观看视频| 久久精品国产亚洲av香蕉五月| 91老司机精品| 久久久精品欧美日韩精品| 亚洲国产精品合色在线| 国产色视频综合| 此物有八面人人有两片| 欧美日韩亚洲国产一区二区在线观看| 亚洲,欧美精品.| 精品国内亚洲2022精品成人| 国产精品自产拍在线观看55亚洲| 国产乱人伦免费视频| 制服诱惑二区| 国产亚洲精品第一综合不卡| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成av片中文字幕在线观看| 亚洲av片天天在线观看| 欧美在线一区亚洲| 久久婷婷成人综合色麻豆| 国产日本99.免费观看| 日韩 欧美 亚洲 中文字幕| 观看免费一级毛片| 黑丝袜美女国产一区| 亚洲av五月六月丁香网| 国产熟女午夜一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲天堂国产精品一区在线| 美女高潮到喷水免费观看| 一本综合久久免费| 精品久久久久久久末码| 每晚都被弄得嗷嗷叫到高潮| 亚洲第一欧美日韩一区二区三区| 精品乱码久久久久久99久播| 欧美日本视频| 日韩欧美免费精品| 国产伦一二天堂av在线观看| 亚洲中文av在线| 午夜免费鲁丝| 久久婷婷人人爽人人干人人爱| 精品一区二区三区四区五区乱码| 老熟妇仑乱视频hdxx| 男人操女人黄网站| 精品国产超薄肉色丝袜足j| cao死你这个sao货| 曰老女人黄片| cao死你这个sao货| 又黄又爽又免费观看的视频| а√天堂www在线а√下载| 看黄色毛片网站| 久久久久久久午夜电影| 久久精品国产亚洲av高清一级| 中文字幕av电影在线播放| 天堂√8在线中文| 精品国内亚洲2022精品成人| 哪里可以看免费的av片| 国产激情欧美一区二区| 久久久久久久久久黄片| 91大片在线观看| 岛国视频午夜一区免费看| 日本一本二区三区精品| 欧美黑人欧美精品刺激| 日韩大尺度精品在线看网址| 一二三四社区在线视频社区8| 美国免费a级毛片| www.www免费av| 自线自在国产av| 久久精品国产99精品国产亚洲性色| 18禁国产床啪视频网站| 欧美日本视频| 男人的好看免费观看在线视频 | 精品久久久久久久毛片微露脸| av免费在线观看网站| 国产国语露脸激情在线看| 国内揄拍国产精品人妻在线 | 99热只有精品国产| 又黄又粗又硬又大视频| 一本一本综合久久| 丁香欧美五月| 免费观看精品视频网站| 69av精品久久久久久| 国产高清视频在线播放一区| 一卡2卡三卡四卡精品乱码亚洲| 久久久水蜜桃国产精品网| 日韩精品中文字幕看吧| 操出白浆在线播放| 久久精品国产亚洲av香蕉五月| 精品高清国产在线一区| 久久精品成人免费网站| 精品人妻1区二区| 中文在线观看免费www的网站 | 少妇的丰满在线观看| 亚洲成av片中文字幕在线观看| 99国产精品一区二区三区| 1024手机看黄色片| avwww免费| 99国产精品99久久久久| 国产精品久久视频播放| 亚洲精品一区av在线观看| 最近最新中文字幕大全电影3 | 国产1区2区3区精品| 亚洲国产精品成人综合色| 18禁观看日本| 国产精品永久免费网站| 极品教师在线免费播放| 999久久久精品免费观看国产| 精品欧美一区二区三区在线| 欧美激情极品国产一区二区三区| 又黄又爽又免费观看的视频| bbb黄色大片| 一区二区日韩欧美中文字幕| 精品高清国产在线一区| 18禁裸乳无遮挡免费网站照片 | 国产真实乱freesex| 国内揄拍国产精品人妻在线 | 长腿黑丝高跟| 国产黄片美女视频| 中文字幕精品亚洲无线码一区 | 亚洲国产中文字幕在线视频| 久久久久久国产a免费观看| 少妇 在线观看| 最新在线观看一区二区三区| 亚洲久久久国产精品| 婷婷亚洲欧美| 老司机午夜十八禁免费视频| 欧美黄色片欧美黄色片| 超碰成人久久| 亚洲成人久久爱视频| 国产欧美日韩一区二区三| av电影中文网址| 欧美色视频一区免费| 国产主播在线观看一区二区| 中文资源天堂在线| 真人一进一出gif抽搐免费| 亚洲精品久久成人aⅴ小说| 亚洲午夜理论影院| 在线观看免费日韩欧美大片| 美女午夜性视频免费| 精品久久久久久久人妻蜜臀av| 久久精品成人免费网站| 亚洲国产精品sss在线观看| 黄色毛片三级朝国网站| 18禁裸乳无遮挡免费网站照片 | 在线看三级毛片| 欧美黑人欧美精品刺激| 白带黄色成豆腐渣| 在线看三级毛片| 老汉色av国产亚洲站长工具| 精品福利观看| 国产日本99.免费观看| 免费高清视频大片| 亚洲一区中文字幕在线| 亚洲欧美激情综合另类| 亚洲精品美女久久久久99蜜臀| 婷婷精品国产亚洲av| 久久久国产成人精品二区| 国产一区二区激情短视频| 中文亚洲av片在线观看爽| 精品日产1卡2卡| 亚洲av电影在线进入| 日本黄色视频三级网站网址| 99久久综合精品五月天人人| 亚洲av电影在线进入|