楊 魏 雷曉宇 張志民 李懷誠(chéng) 王福軍
(1.中國(guó)農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院, 北京 100083; 2.北京供水管網(wǎng)系統(tǒng)安全與節(jié)能工程技術(shù)研究中心, 北京 100083;3.中國(guó)水利水電科學(xué)研究院, 北京 100044; 4.上海連成(集團(tuán))有限公司, 上海 201812)
基于載荷分布的潛水軸流泵葉輪與導(dǎo)葉水力設(shè)計(jì)
楊 魏1,2雷曉宇1,2張志民3李懷誠(chéng)4王福軍1,2
(1.中國(guó)農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院, 北京 100083; 2.北京供水管網(wǎng)系統(tǒng)安全與節(jié)能工程技術(shù)研究中心, 北京 100083;3.中國(guó)水利水電科學(xué)研究院, 北京 100044; 4.上海連成(集團(tuán))有限公司, 上海 201812)
對(duì)潛水軸流泵進(jìn)行三維反問(wèn)題設(shè)計(jì),以水力效率為設(shè)計(jì)目標(biāo),提出葉輪、導(dǎo)葉適合的載荷分布形式。通過(guò)正交試驗(yàn)設(shè)計(jì)、單因素分析和數(shù)值模擬的方法研究載荷參數(shù)對(duì)潛水軸流泵內(nèi)外特性的影響,得到水力效率較優(yōu)的載荷分布形式:葉輪葉片為前載型,導(dǎo)葉葉片為輪轂中載、輪緣前載型。具體的載荷參數(shù)取值范圍:對(duì)于葉輪,斜率取值范圍為-1~0,前載點(diǎn)取值范圍為0.25~0.45,后載點(diǎn)取值范圍為0.55~0.75;對(duì)于導(dǎo)葉,輪轂斜率在0附近取值,輪緣斜率取值范圍為0~0.75,輪轂前載點(diǎn)取值范圍為0.25~0.45,輪緣前載點(diǎn)在0.25附近取值,輪轂后載點(diǎn)取值范圍為0.55~0.75。葉輪設(shè)計(jì)中發(fā)現(xiàn):前載型葉片對(duì)原泵葉根尾緣的二次流有改善作用。導(dǎo)葉設(shè)計(jì)中發(fā)現(xiàn):由于潛水軸流泵導(dǎo)葉的擴(kuò)散式結(jié)構(gòu)特點(diǎn),導(dǎo)葉近壁面易出現(xiàn)分離渦,輪轂中載、輪緣前載型葉片能夠有效地抑制導(dǎo)葉近壁面的渦分離。
潛水軸流泵; 三維反問(wèn)題設(shè)計(jì)方法; 載荷分布
南水北調(diào)等工程的建設(shè)促進(jìn)了我國(guó)低揚(yáng)程泵站的發(fā)展[1]。軸流泵作為低揚(yáng)程泵站的主要泵型,應(yīng)用較為廣泛。潛水軸流泵作為傳統(tǒng)軸流泵、混流泵更新?lián)Q代的優(yōu)質(zhì)產(chǎn)品,有其自身的結(jié)構(gòu)特點(diǎn):電動(dòng)機(jī)水泵一體化。這樣的特點(diǎn)決定了其優(yōu)勢(shì):全封閉式電動(dòng)機(jī)嵌入泵體,方便水下運(yùn)行,降噪降溫,簡(jiǎn)化工程結(jié)構(gòu)的同時(shí)節(jié)約了工程造價(jià)[2]。但這種結(jié)構(gòu)特點(diǎn)也決定了它的劣勢(shì):電動(dòng)機(jī)與導(dǎo)葉體相接,導(dǎo)葉出口尺寸受限。電動(dòng)機(jī)尺寸由功率和轉(zhuǎn)速?zèng)Q定,大功率潛水軸流泵的導(dǎo)葉擴(kuò)散角相應(yīng)增大,增加導(dǎo)葉擴(kuò)散損失,降低了水泵效率[3]。在導(dǎo)葉體擴(kuò)散角一定的前提下,通過(guò)調(diào)整葉片型線(xiàn),提高潛水軸流泵水力性能具有現(xiàn)實(shí)意義。
目前,潛水軸流泵的水力設(shè)計(jì)多基于傳統(tǒng)軸流泵設(shè)計(jì)進(jìn)行,常以經(jīng)驗(yàn)為指導(dǎo),參數(shù)多,計(jì)算量大?,F(xiàn)有的三維反問(wèn)題設(shè)計(jì)主要針對(duì)離心式[4-7]和混流式[8-12]機(jī)械,軸流式機(jī)械研究較少[13-15]。本文主要采用三維反問(wèn)題設(shè)計(jì)方法,結(jié)合正交試驗(yàn)設(shè)計(jì)和單因素分析的方法研究載荷對(duì)葉片性能的影響。
1.1 研究方法
三維反問(wèn)題設(shè)計(jì)方法[16]主要通過(guò)載荷來(lái)控制葉片型線(xiàn)。本研究通過(guò)正交試驗(yàn)設(shè)計(jì)[17-18]給定葉片載荷,得到較優(yōu)的葉片載荷參數(shù)范圍,再由單因素分析研究載荷參數(shù)取值對(duì)葉片性能的影響。具體載荷控制方式參照文獻(xiàn)[19]。
給定葉片載荷沿輪轂和輪緣處的分布規(guī)律,其它軸面流線(xiàn)通過(guò)插值計(jì)算得到。分別定義輪轂前加載點(diǎn)位置NC1、輪轂后加載點(diǎn)位置ND1、輪轂斜率k1、輪緣前加載點(diǎn)位置NC2、輪緣后加載點(diǎn)位置ND2以及輪緣斜率k2共6個(gè)參數(shù)。其中k決定載荷形式:對(duì)于葉輪klt;0為前載、k=0為中載、kgt;0為后載;由于導(dǎo)葉從進(jìn)口到出口速度環(huán)量是減小的,載荷是負(fù)值,對(duì)應(yīng)kgt;0為前載、k=0為中載、klt;0為后載。本文采用正交試驗(yàn)設(shè)計(jì)對(duì)6個(gè)參數(shù)進(jìn)行分析。
1.2 數(shù)值模擬
研究對(duì)象:比轉(zhuǎn)數(shù)1 250的潛水軸流泵,轉(zhuǎn)速370 r/min,額定流量18 036 m3/h(5 010 kg/s),葉輪出口直徑1 400 mm。葉輪3個(gè)葉片,導(dǎo)葉5個(gè)葉片。采用UG軟件進(jìn)行三維建模,結(jié)構(gòu)如圖1所示;計(jì)算域包括進(jìn)口段、轉(zhuǎn)輪區(qū)、導(dǎo)葉區(qū)和出口段,出口段包括整體電動(dòng)機(jī)部分,如圖2所示。
圖1 潛水軸流泵結(jié)構(gòu)圖Fig.1 Structure diagram of submersible axial-flow pump
圖2 潛水軸流泵計(jì)算域Fig.2 Computational domain of submersible axial-flow pump1.進(jìn)口段 2.葉輪區(qū) 3.導(dǎo)葉區(qū) 4.出口段
湍流模型采用SSTk-ω模型,動(dòng)靜交界面采用凍結(jié)轉(zhuǎn)子模型(Forzen rotor);邊界條件為質(zhì)量流量進(jìn)口、壓力出口;壁面設(shè)定為無(wú)滑移邊界。
2.1 三維反問(wèn)題設(shè)計(jì)方法驗(yàn)證
三維反問(wèn)題設(shè)計(jì)通過(guò)給定載荷分布計(jì)算得到葉片形狀,如果設(shè)計(jì)得到的葉片能夠給出與給定載荷分布相符的結(jié)果,那么反問(wèn)題設(shè)計(jì)才是有效的。因此在采用三維反問(wèn)題設(shè)計(jì)方法進(jìn)行潛水軸流泵水力設(shè)計(jì)之前,對(duì)該方法進(jìn)行驗(yàn)證。
具體驗(yàn)證過(guò)程如下:以比轉(zhuǎn)數(shù)1 250的潛水軸流泵為對(duì)象,采用三維反問(wèn)題設(shè)計(jì)方法進(jìn)行葉輪的水力設(shè)計(jì),得到葉輪幾何模型;對(duì)設(shè)計(jì)得到的潛水軸流泵進(jìn)行數(shù)值模擬,取出設(shè)計(jì)葉輪的載荷分布(圖3b)并與給定的載荷分布(圖3a)進(jìn)行對(duì)比,可以看出,除了加載點(diǎn)的位置有些誤差之外,載荷分布的形式是一致的,驗(yàn)證了三維反問(wèn)題設(shè)計(jì)方法的有效性。
圖3 設(shè)計(jì)載荷和計(jì)算載荷分布Fig.3 Designed loading and calculated loading distributions
2.2 葉輪和導(dǎo)葉載荷分布研究
2.2.1葉輪載荷分布研究
采用L18(36)正交表安排葉輪正交試驗(yàn)設(shè)計(jì),每個(gè)設(shè)計(jì)參數(shù)取3水平,如表1所示。對(duì)葉輪的6個(gè)載荷參數(shù)進(jìn)行研究,此時(shí)導(dǎo)葉形狀保持不變,以水泵效率為目標(biāo)值的試驗(yàn)結(jié)果見(jiàn)表2。顯著性采用方差分析,分析方法參照文獻(xiàn)[17]。由于本研究正交試驗(yàn)設(shè)計(jì)沒(méi)有安排空列,誤差項(xiàng)的離差平方和由總離差平方和減去各項(xiàng)離差平方和,誤差項(xiàng)的自由度由總自由度減去各項(xiàng)自由度,該算法參照文獻(xiàn)[18]。葉輪方差分析見(jiàn)表3。
表1 葉輪正交試驗(yàn)因素水平Tab.1 Orthogonal factors and levels of impeller
表2 葉輪正交試驗(yàn)結(jié)果Tab.2 Results of impeller orthogonal test
由葉輪正交試驗(yàn)得到對(duì)應(yīng)水力效率較優(yōu)的葉輪載荷參數(shù)取值范圍:輪轂處前加載點(diǎn)NC1為0.25~0.45,后加載點(diǎn)ND1為0.55~0.75,斜率k1為-1~0;輪緣處前加載點(diǎn)NC2為0.25~0.45,后加載點(diǎn)ND2為0.55~0.75,斜率k2為-1~0。輪轂和輪緣均為前載型式。表3葉輪方差分析發(fā)現(xiàn)影響較大的2個(gè)因素為輪緣后加載點(diǎn)位置ND2和輪緣斜率k2,對(duì)這2個(gè)因素進(jìn)行單因素分析,其它因素保持不變,ND2分別取0.55、0.75和0.95;k2分別取-1和0。
表3 葉輪方差分析Tab.3 Variance analysis of impeller
以下基于單因素分析針對(duì)因素ND2、k2進(jìn)行內(nèi)特性分析。如圖4所示,對(duì)比葉輪出口靠近輪轂位置速度矢量圖,發(fā)現(xiàn):ND2取值0.95時(shí),二次流明顯,有回流現(xiàn)象;取值0.55和0.75時(shí),對(duì)二次流有明顯抑制作用。由此,輪緣后加載點(diǎn)位置ND2的較優(yōu)取值范圍為0.55~0.75,與前述正交試驗(yàn)結(jié)果一致。
如圖5所示,對(duì)比葉輪出口靠近輪轂位置速度矢量圖,發(fā)現(xiàn)k2取值0和1時(shí),出口邊近壁面出現(xiàn)漩渦,有回流現(xiàn)象;取值-1時(shí),流態(tài)明顯改善。由此,輪緣斜率k2的較優(yōu)取值為負(fù),為前載型葉片,與前述正交試驗(yàn)結(jié)果一致。
2.2.2導(dǎo)葉載荷分布研究
保持葉輪形狀不變,采用L27(36)正交表安排葉輪正交試驗(yàn)設(shè)計(jì),每個(gè)設(shè)計(jì)參數(shù)取3水平,如表4所示。對(duì)導(dǎo)葉的6個(gè)載荷參數(shù)進(jìn)行研究,以水泵效率為目標(biāo)值的試驗(yàn)結(jié)果見(jiàn)表5。導(dǎo)葉方差分析見(jiàn)表6。
圖4 輪緣后加載點(diǎn)位置取值不同時(shí)葉輪尾緣壓力、速度矢量圖(0.05倍葉高)Fig.4 Pressure and vectors in impeller trailing edge for different ND2 (0.05 times of blade height)
圖5 輪緣斜率取值不同時(shí)葉輪尾緣壓力、速度矢量圖(0.05倍葉高)Fig.5 Pressure and vectors in impeller trailing edge for different slopes (0.05 times of blade height)
由導(dǎo)葉正交試驗(yàn)得到對(duì)應(yīng)水力效率較優(yōu)的導(dǎo)葉載荷參數(shù)取值范圍:輪轂處前加載點(diǎn)NC1為0.25~0.45,后加載點(diǎn)ND1為0.55~0.75,斜率k1為0附近;輪緣處前加載點(diǎn)NC2為0.25附近,后加載點(diǎn)ND2影響有限,斜率k2為0~0.75。
表4 導(dǎo)葉正交試驗(yàn)設(shè)計(jì)因素水平Tab.4 Orthogonal factors and levels of guide vane
表5 導(dǎo)葉正交試驗(yàn)結(jié)果Tab.5 Results of guide vane orthogonal test
圖6 不同輪轂斜率時(shí)導(dǎo)葉0.05倍葉高處壓力、流線(xiàn)圖Fig.6 Pressure and streams in guide vane for different slopes (0.05 times of blade height)
表6導(dǎo)葉方差分析發(fā)現(xiàn)影響較大的因素為輪轂
表6 導(dǎo)葉方差分析Tab.6 Variance analysis of guide vane
前載點(diǎn)位置NC1、輪轂后加載點(diǎn)位置ND1、輪轂斜率k1和輪緣斜率k2,在前人研究中發(fā)現(xiàn)三段線(xiàn)載荷分布中直線(xiàn)段影響較為重要[20],所以接下來(lái)針對(duì)k1和k2進(jìn)行單因素分析,分別取-0.75、0和0.75,其它載荷參數(shù)不變。以下基于單因素分析針對(duì)因素k1和k2進(jìn)行內(nèi)特性分析。
(1)輪轂斜率k1取值不同時(shí)導(dǎo)葉的內(nèi)部流態(tài)
圖6所示為輪轂斜率k1取值不同時(shí)葉根處的壓力、流線(xiàn)圖。發(fā)現(xiàn)k1取值為0時(shí),壓力梯度變化更為均勻,對(duì)應(yīng)流態(tài)更為順滑;k1取值為-0.75(后載),載荷后移,葉片尾部彎曲較大,尾部出現(xiàn)分離渦;k1取值為0.75(前載),載荷前移,葉片前部彎曲較大,前部出現(xiàn)分離渦。輪轂中載型葉片型線(xiàn)更為合理,相較另兩種形式的葉片,對(duì)葉片壓力面葉根處的分離渦有抑制作用。
圖7所示為輪轂斜率k1取值不同時(shí)葉片吸力面葉根出口處的壓力、流線(xiàn)、速度矢量圖。發(fā)現(xiàn)k1取值為0時(shí),壓力梯度變化較為均勻,流線(xiàn)較為順滑,矢量偏離程度較??;k1取值為-0.75(后載),載荷后移,葉跟尾緣壓力梯度大,變化不均勻,出口邊流線(xiàn)不順滑,有小范圍的二次流和回流現(xiàn)象;k1取值為0.75(前載),載荷前移,葉根出口處出現(xiàn)較大的展向壓力梯度,矢量偏離加大,有脫流現(xiàn)象。
圖7 不同輪轂斜率時(shí)導(dǎo)葉吸力面葉根出口壓力、流線(xiàn)、速度矢量圖Fig.7 Pressure, stream and vectors of guide vane suction surface for different slopes (at trailing edge near hub)
(2)輪緣斜率k2取值不同時(shí)導(dǎo)葉的內(nèi)部流態(tài)
圖8所示為輪緣斜率k2取值不同時(shí)靠近輪轂處流線(xiàn)圖。發(fā)現(xiàn)k2取值為-0.75(后載)和0(中載)時(shí),葉片壓力面靠近輪轂處有不同程度的分離渦;相比之下,k2取值為0~0.75(前載)時(shí),葉根處流線(xiàn)更為順滑。
圖8 不同輪緣斜率時(shí)導(dǎo)葉0.05倍葉高處流線(xiàn)圖Fig.8 Streams in guide vane for different slopes (0.05 times of blade height)
圖9所示為輪緣斜率k2取值不同時(shí)靠近輪緣處流線(xiàn)圖。發(fā)現(xiàn)k2取值為-0.75時(shí),葉片尾緣靠近輪緣處有渦脫落現(xiàn)象;k2取值為0~0.75(前載)時(shí),導(dǎo)葉輪緣處流態(tài)更順暢。
圖9 不同輪緣斜率時(shí)導(dǎo)葉0.95倍葉高處流線(xiàn)圖Fig.9 Stream inguide vane for different slopes (0.95 times of blade height)
圖10 不同輪緣斜率時(shí)導(dǎo)葉吸力面壓力、流線(xiàn)圖Fig.10 Pressure and streams on guide vane suction surface for different slopes
圖10所示為輪緣斜率k2取值不同時(shí)導(dǎo)葉吸力面壓力、流線(xiàn)圖。發(fā)現(xiàn)k2取值為-0.75(后載)時(shí),葉片尾緣壓力梯度變化不均勻,二次流現(xiàn)象明顯;k2取值為0.75(前載),隨著輪緣載荷前移,尾緣壓力梯度變化均勻化,二次流得到抑制,流態(tài)更為順暢。
綜上,導(dǎo)葉適合輪轂中載、輪緣前載的載荷形式,與前述正交試驗(yàn)設(shè)計(jì)結(jié)果一致。
2.3 載荷分布驗(yàn)證
在前述葉輪載荷參數(shù)取值范圍內(nèi)任取2組不與之前試驗(yàn)值重合的載荷參數(shù)進(jìn)行設(shè)計(jì)模擬,設(shè)計(jì)葉輪編號(hào)分別為B1、B2。參數(shù)選取盡量具有代表性,如輪轂前載點(diǎn)位置NC1取值范圍為0.25~0.45,則選取0.3和0.4作為驗(yàn)證參數(shù),以此類(lèi)推。具體取值見(jiàn)表7。
如前所述,導(dǎo)葉葉片較優(yōu)的載荷形式為輪轂中載、輪緣前載型。在范圍內(nèi)任取2組不與之前試驗(yàn)值重合的載荷參數(shù)進(jìn)行設(shè)計(jì)模擬,設(shè)計(jì)導(dǎo)葉編號(hào)分別為G1、G2。參數(shù)選取盡量具有代表性,如輪轂前將葉輪B1與導(dǎo)葉G1組合,為組合1;葉輪B2與導(dǎo)葉G1組合,為組合2;葉輪B1與導(dǎo)葉G2組合,為組合3;葉輪B2與導(dǎo)葉G2組合,為組合4。
表7 葉輪驗(yàn)證參數(shù)取值Tab.7 Loading parameters value for impeller validation
載點(diǎn)位置NC1取值范圍為0.25~0.45,則選取0.3和0.4作為驗(yàn)證參數(shù),以此類(lèi)推。具體取值見(jiàn)表8。
表8 導(dǎo)葉驗(yàn)證參數(shù)取值Tab.8 Loading parameters value for guide vane validation
圖11為4個(gè)組合的流量效率曲線(xiàn),4組的水力效率相近,與原泵水力效率相比,均為水力效率較優(yōu)的設(shè)計(jì)結(jié)果??芍谇笆龇秶鷥?nèi)取值,設(shè)計(jì)得到的葉輪和導(dǎo)葉匹配情況良好。具體數(shù)據(jù)對(duì)比中發(fā)現(xiàn),組合2的水力效率略?xún)?yōu)。
圖11 原泵以及4個(gè)組合全工況效率曲線(xiàn)Fig.11 Efficiency comparison of full working conditions
將組合2作為設(shè)計(jì)泵與原泵作內(nèi)外特性對(duì)比分析。
2.3.1葉輪載荷對(duì)比
泵葉輪的設(shè)計(jì)采用前載形式,其載荷分布的計(jì)算結(jié)果如圖12a所示;為了便于對(duì)比分析,原泵葉輪的設(shè)計(jì)采用后載形式,其載荷分布的計(jì)算結(jié)果如圖12b所示。
圖12 設(shè)計(jì)泵和原泵載荷分布形式Fig.12 Loading distributions of designed and original pump
2.3.2外特性對(duì)比
外特性對(duì)比曲線(xiàn)如圖13所示。設(shè)計(jì)泵較原泵水力效率平均高2個(gè)百分點(diǎn);對(duì)于大流量工況,水力效率提升更為明顯。
圖13 水泵外特性對(duì)比Fig.13 Comparison of outer performances
2.3.3內(nèi)特性對(duì)比
原泵的數(shù)值模擬中發(fā)現(xiàn):葉輪出口靠近輪轂處有二次流;導(dǎo)葉由于潛水軸流泵導(dǎo)葉的擴(kuò)散式特性,在進(jìn)口靠近輪轂位置和出口靠近輪緣位置有分離渦。設(shè)計(jì)泵有效地改善了這幾方面的問(wèn)題,以下就內(nèi)特性作出分析(沒(méi)有特別說(shuō)明的均默認(rèn)為設(shè)計(jì)工況)。
(1)葉輪對(duì)比
通過(guò)原泵數(shù)值模擬,發(fā)現(xiàn)原葉輪靠近輪轂出口位置有二次流。綜合圖14、15,前載型葉片能夠較好地抑制葉根出口二次流。
如圖14所示,葉輪葉根的壓力、流線(xiàn)、速度矢量圖,設(shè)計(jì)泵較原泵葉輪出口壓力梯度變化更均勻,流線(xiàn)、矢量偏離度小,對(duì)原葉輪出口的二次流有明顯改善。
圖14 葉輪葉根的壓力、流線(xiàn)、速度矢量圖Fig.14 Comparison for pressure, stream and vector near hub of original and designed impellers
圖15 葉輪葉片出口靠近輪轂位置壓力、速度矢量圖Fig.15 Pressure, vector comparisons of original and designed impellers (at trailing edge of suction surface near hub)
如圖15所示,葉輪吸力面出口靠近輪轂位置速度矢量圖,原泵葉片展向有壓力梯度,二次流明顯;設(shè)計(jì)葉片壓力梯度變化均勻,對(duì)二次流有明顯抑制作用。
(2)導(dǎo)葉對(duì)比
通過(guò)原泵數(shù)值模擬,發(fā)現(xiàn)擴(kuò)散式導(dǎo)葉在輪轂進(jìn)口和輪緣出口容易出現(xiàn)分離渦。綜合圖16、17,輪轂中載、輪緣前載型導(dǎo)葉能夠較好地改善這一問(wèn)題。
如圖16所示,導(dǎo)葉靠近輪轂位置的流線(xiàn)圖,原導(dǎo)葉葉根進(jìn)口位置有分離渦,設(shè)計(jì)導(dǎo)葉進(jìn)口渦分離得到抑制、葉形更符合流場(chǎng)、流線(xiàn)較為順滑。
圖16 導(dǎo)葉葉根位置(0.05倍葉高)流態(tài)對(duì)比圖Fig.16 Comparison for stream near hub of original and designed guide vanes (0.05 times of blade height)
如圖17所示,導(dǎo)葉靠近輪緣位置流線(xiàn)圖,原泵出口位置有分離渦,設(shè)計(jì)葉片明顯改善了這一現(xiàn)象,流線(xiàn)更為順滑。
圖17 導(dǎo)葉靠近輪緣位置(0.85倍葉高)流態(tài)對(duì)比Fig.17 Comparison for stream near shroud of original and designed guide vanes (0.85 times of blade height)
圖18為導(dǎo)葉出口截面靜壓圖,在較小的壓力范圍內(nèi)(1.020×105~1.076×105Pa),設(shè)計(jì)泵的出口壓力云圖更均勻,推斷內(nèi)部流態(tài)更好;與原泵相比,設(shè)計(jì)泵導(dǎo)葉出口壓力更高,擴(kuò)壓效果更好。
圖18 導(dǎo)葉出口靜壓Fig.18 Outlet pressure diagrams of original and designed guide vanes
如圖19所示,偏工況時(shí)導(dǎo)葉靠近輪緣部位流線(xiàn)圖,發(fā)現(xiàn)在偏工況情況下,設(shè)計(jì)泵對(duì)輪緣處的分離渦有良好的改善效果。
(1)潛水軸流泵葉輪適合的載荷分布形式為前載型,具體取值:斜率k取值范圍-1~0,前載點(diǎn)位置NC取值范圍0.25~0.45,后載點(diǎn)位置ND取值范圍0.55~0.75。原泵模擬中發(fā)現(xiàn),葉輪葉片在葉根處扭曲較大,出口易形成二次流。設(shè)計(jì)葉輪載荷參數(shù)在以上范圍內(nèi)取值,對(duì)葉根尾緣的二次流有抑制作用。
(2)潛水軸流泵導(dǎo)葉適合的載荷分布形式為輪轂中載輪緣前載型,具體取值:輪轂斜率k1取值在0附近(中載);輪緣斜率k2取值范圍為0~0.75(前載);輪轂前載點(diǎn)位置NC1取值范圍為0.25~0.45;輪緣前載點(diǎn)位置NC2取值在0.25附近;輪轂后載點(diǎn)位置ND1取值范圍為0.55~0.75。潛水軸流泵由于導(dǎo)葉的擴(kuò)散式結(jié)構(gòu)特點(diǎn),近壁面易出現(xiàn)分離渦,尤其在靠近輪轂進(jìn)口和輪緣出口的位置。設(shè)計(jì)導(dǎo)葉參數(shù)在以上范圍內(nèi)取值,能有效改善擴(kuò)散式導(dǎo)葉近壁面渦分離現(xiàn)象:設(shè)計(jì)工況下,對(duì)于輪轂輪緣的渦分離都有很好的改善作用;在偏工況條件下,對(duì)輪緣的改善效果更為明顯。
圖19 偏工況條件導(dǎo)葉0.95倍葉高流線(xiàn)圖Fig.19 Comparison for stream near shroud of original and designed guide vanes under minimal and maximal working conditions (0.95 times of blade height)
1 劉超. 軸流泵系統(tǒng)技術(shù)創(chuàng)新與發(fā)展分析[J/OL]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2015, 46(6):49-59. http:∥www.j-csam.org/ch/reader/view_abstract.aspx?file_no=20150608amp;flag=1amp;journal_id=jcsam.DOI:10.6041/j.issn.1000-1298.2015.06.008.
LIU C. Researches and developments of axial-flow pump system[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(6):49-59.(in Chinese)
2 張炳亮, 顧曉亮. 潛水軸流泵和立式軸流泵使用特點(diǎn)分析[J]. 科技信息, 2012(19):151.
3 張玉新, 李劍鋒, 陳招鋒,等. 潛水軸流泵的變環(huán)量、變軸面速度設(shè)計(jì)實(shí)踐[J]. 通用機(jī)械, 2014(7):89-91.
4 楊魏, 王福軍, 王宏. 離心式葉輪三維反問(wèn)題設(shè)計(jì)和數(shù)值計(jì)算[J].排灌機(jī)械工程學(xué)報(bào), 2012, 30(6):632-635.
YANG W, WANG F J, WANG H. Three-dimensional inverse design and fluid flow numerical simulation for centrifugal impeller[J]. Journal of Drainage and Irrigation Machinery Engineering, 2012, 30(6):632-635.(in Chinese)
5 江偉, 李國(guó)君, 張新盛. 基于葉片載荷分布的離心泵葉輪水力性能優(yōu)化[J]. 哈爾濱工程大學(xué)學(xué)報(bào), 2015, 36(4):505-510.
JIANG W, LI G J, ZHANG X S. Optimization of the hydraulic performance of a centrifugal pump impeller based on the blad load distribution[J]. Journal of Harbin Engineering University, 2015, 36(4):505-510.(in Chinese)
6 王福軍, 姚志峰, 楊魏,等. 雙吸離心泵葉輪交替加載設(shè)計(jì)方法[J/OL]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2015, 46(6):84-91. http:∥www.j-csam.org/ch/reader/view_abstract.aspx?file_no=20150613amp;flag=1amp;journal_id=jcsam. DOI: 10. 6041/j.issn.1000-1298.2015.06.031.
WANG F J, YAO Z F, YANG W, et al. Impeller design with alternate loading technique for double-suction centrifugal pumps[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(6):84-91.(in Chinese)
7 ZANGENEH M, VOGT D, RODUNER C. Improving a vaned diffuser for a given centrifugal impeller by 3D inverse design[C]∥ASME Turbo Expo 2002: Power for Land, Sea, and Air. Amsterdam, The Netherlands, 2002.
8 肖若富, 陶然, 王維維,等. 混流泵葉輪反問(wèn)題設(shè)計(jì)與水力性能優(yōu)化[J/OL]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2014, 45(9):84-88. http:∥www.j-csam.org/ch/reader/view_abstract.aspx?file_no=20140914amp;flag=1amp;journal_id=jcsam.DOI:10.6041/j.issn.1000-1298.2014.09.014.
XIAO R F, TAO R, WANG W W, et al. Inverse design and hydraulic optimization of mixed-flow pump impeller[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(9):84-88.(in Chinese)
9 ZANGENEH M, GOTO A, TAKEMURA T. Suppression of secondary flows in a mixed-flow pump impeller by application of three-dimensional inverse method. Part 1: design and numerical validation[J]. Journal of Turbomachinery, 1996, 118:536-543.
10 ZANGENEH M, GOTO A, HARADA H. On the design criteria for suppression of secondary flows in centrifugal and mixed flow impellers[J]. Journal of Turbomachinery, 1998, 120(4): 723-735.
11 GOTO A, ASHIHARA K. Improvements of pump suction performance using 3D inverse design method[C]∥3rd ASME/JSME Joint Fluids Engineering Conference. San Francisco,California, 1999.
12 BONAIUTI D, ZANGENEH M, AARTOJARVI R, et al. Parametric design of a waterjet pump by means of inverse design, CFD calculations and experimental analyses[J]. Journal of Fluids Engineering, 2010, 132(3): 1-15.
13 PENG G Y, CAO S L, ISHIZUKA M, et al. Design optimization of axial flow hydraulic turbine runner: part I—an improved Q3D inverse method[J]. International Journal for Numerical Methods in Fluids, 2002, 39(6): 517-531.
14 PENG G Y, CAO S L, ISHIZUKA M, et al. Design optimization of axial flow hydraulic turbine runner: part II—multi-objective constrained optimization method[J]. International Journal for Numerical Methods in Fluids, 2002, 39(6): 533-548.
15 CAO S L, PENG G Y, YU Z Y. Hydraulic design of rotodynamic pump impeller for multiphase pumping by combined approach of inverse design and CFD analysis[J]. Journal of Fluids Engineering, 2005, 127(2): 330-338.
16 ZANGENEH M. A compressible three-dimensional design method for radial and mixed flow turbomachinery blades[J]. International Journal for Numerical Methods in Fluids, 2010, 13(5):599-624.
17 葛宜元. 試驗(yàn)設(shè)計(jì)方法與Design-Expert軟件應(yīng)用[M]. 哈爾濱: 哈爾濱工業(yè)大學(xué)出版社, 2015:120-121.
18 董如何, 肖必華, 方永水,等. 正交試驗(yàn)設(shè)計(jì)的理論分析方法及應(yīng)用[J]. 安徽建筑大學(xué)學(xué)報(bào), 2004, 12(6):103-106.
DONG R H, XIAO B H, FANG Y S, et al. The theoretical analysis of orthogonal test designs[J]. Journal of Anhui Institute of Architecture amp; Industry, 2004, 12(6):103-106.(in Chinese)
19 YANG W, XIAO R F. Multiobjective optimization design of a pump-turbine impeller based on an inverse design using a combination optimization strategy[J]. Journal of Fluids Engineering, 2014, 136(1):249-256.
20 楊魏, 王福軍, 王宏. 離心風(fēng)機(jī)葉片三維反問(wèn)題優(yōu)化設(shè)計(jì)[J/OL]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2012, 43(8):105-109. http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20120820amp;flag=1amp;journal_id=jcsam.DOI:10.6041/j.issn.1000-1298.2012.08.020.
YANG W, WANG F J, WANG H. Aerodynamic optimization design of centrifugal fan blades based on 3-D inverse design method[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(8):105-109.(in Chinese)
HydraulicDesignofSubmersibleAxial-flowPumpBasedonBladeLoadingDistributions
YANG Wei1,2LEI Xiaoyu1,2ZHANG Zhimin3LI Huaicheng4WANG Fujun1,2
(1.CollegeofWaterResourcesandCivilEngineering,ChinaAgriculturalUniversity,Beijing100083,China2.BeijingEngineeringResearchCenterofSafetyandEnergySavingTechnologyforWaterSupplyNetworkSystem,Beijing100083,China3.ChinaInstituteofWaterResourcesandHydropowerResearch,Beijing100044,China4.ShanghaiLiancheng(Group)Co.,Ltd.,Shanghai201812,China)
A three-dimensional inverse design of a submersible axial-flow pump was performed and the loading distributions of both the impeller and guide vane were studied. The hydraulic efficiency was set as the design objective, the optimized loading distributions of the impeller and the guide vane were attained based on numerical simulation results. The orthogonal experimental design, univariate analysis and the numerical simulation were used to study the influence of the loading distribution parameters on both the flow characteristics and hydraulic performance of the submersible axial-flow pump. In order to get superior hydraulic efficiency, the impeller should be fore loaded on both the hub and the shroud, and the guide vane should be mid loaded for the hub and fore loaded for the shroud. Specifically, the range of the loading parameters were as follows: for the impeller blades, the loading slope was in the range of -1~0, which was a front loaded kind, the front loading point was in the range of 0.25~0.45, and the after loading point was in the range of 0.55~0.75; for the guide vane, the hub slope was close to 0 which was a mid loaded kind, the shroud slope was ranged from 0 to 0.75 which was after loaded kind, the hub front loading point was in the range of 0.25~0.45, the shroud front loaded point was close to 0.25, the hub after loading point was in the range of 0.55~0.75. In the impeller design, it was found that the front loaded blade can suppress secondary flows in the blade outlet near the hub. Due to the diffusion structure of the guide vane, the seperation vortex near the wall was inclined to happen. In the design of guide vane, it was found that the separation vortex near the wall was suppressed in the hub-mid-loaded and shroud-fore-loaded diffuser. The impeller and guide vane with the above loading distributions were matched with each other, which can give a better design outcome for the submersible axial-flow pump.
submersible axial-flow pump; three-dimensional inverse design method; loading distribution
10.6041/j.issn.1000-1298.2017.11.022
TH312
A
1000-1298(2017)11-0179-09
2017-08-16
2017-09-12
“十二五”國(guó)家科技支撐計(jì)劃項(xiàng)目(2015BAD20B01)
楊魏(1982—) ,男,副教授,博士生導(dǎo)師,主要從事流體機(jī)械優(yōu)化設(shè)計(jì)研究,E-mail: wyang@cau.edu.cn